The Many Faces of Latency

Nothing is more damaging to a website than poor response times. Latency is probably the most serious issue that website application developers have to contend with. Whether it is retail application or a e-ticketing application poor response times play havoc on user experience. Latency has many faces each contributing in a little way to the overall response times of the application. This article looks at some of the key culprits that contribute to a website latency

Link Latencies: This is one of major contributors. The link speeds from the host computer to the website plays a major role. For those applications that are hosted on the public cloud it makes sense to deploy in multiple availability zones dispersed geographically. This will ensure that people across the globe get to the website from a cloud deployment closest to them. Besides, with the recent Amazon EC2 outage it definitely makes sense to be able to deploy across availability zones promoting geographical resiliency in the application. Dispersing the applications geographically helps in connecting the user with the least number of intervening hops thus reducing the response times.

DNS latencies: This is another area which needs to be focused on. DNS lookup can be fairly expensive. Hence it makes sense to speed DNS lookups by using some DNS services that provide additional name servers across geographical regions. There are many such DNS services that speed DNS lookups by propagating DNS lookup across geographies. Some examples are Amazon’s Route 53, UltraDNS etc.

Load Balancer Latencies: Typical cloud deployments will multiple instances usually be behind a load balancer. Depending on what algorithm the load balancer adopts for balancing the incoming traffic it is definitely going to contribute to the latency. Amazon’s Elastic Load Balancer is usually a set of participating IPs.

Application Latencies: When the load balancer sends the request to the Web application the logic in processing the request is a key contributor. This latency is within the control of the developer so it makes sense to bring this down to the absolute minimum.

Web page Rendering Latencies: A poorly designed web page can also result in large latencies. A webpage that needs to download a lot of items prior to being able to render it will definitely affect the user’s experience. Hence it is necessary to design an efficient web page that renders quickly. A standard technique to deliver content to a website is to use a Content Delivery Network (CDN) to deliver content. CDNs typically distribute content across multiple servers dispersed geographically. The content server selected for content delivery is based on user proximity based on the fewest number of hops. Major players in CDNS are Akamai, Edgecast andAmazon’s Cloudfront.

These are the many aspects that contribute to overall latencies. Focus should being trying to optimize in all areas while deploying a web application either in a hosted network or the public cloud.

Find me on Google+

Cloud Computing – Show me the money!

Published in Telecom Lead – Cloud Computing – Show me the money!

A lot has been said about the merits of cloud computing and how it is going to be the technological choice of most enterprises in the not so distant future. But the key question that is bound to keep cropping up in the higher echelons of the enterprise is whether the cloud makes good business sense. While most know that cloud computing adopts a pay-per-use model similar to regular utilities like electricity and water and does away with upfront infrastructure costs to the organization the nagging question to most senior management people is whether cloud computing is prudent choice in the long term.

This is not an easy question to answer and depends on a multitude of factors. The alternative to cloud computing is to have an in-house infrastructure of servers, hardware and software, software licenses, broadband links, firewalls etc. All these will form the Capital Expenditure (CAPEX) for the organization. In addition to these expenses will be the Operational Expenditures (OPEX) of real estate to house the equipment, power supply systems, cooling systems, maintenance personnel, annual maintenance contracts (AMC) etc which will be recurring expenses for the organization.

Cloud Computing does away completely with procurement of hardware, software, databases, licenses etc and an enterprise should be able to host their application in a couple of hours provided they know ahead of time the resources their application will need.

Hence as can be seen while the upfront costs and the running costs of maintaining a data center will be high in comparison to the zero upfront costs of the deploying on the cloud the steeper operational costs of the cloud will eventually catch up with the in-house infrastructure.

Depending on how well the application is designed the point at which the cumulative running costs of the cloud breaks even with in-house data center can be made to occur a couple of years down the line after the application is deployed.  Assuming that the break even happens in 3 years the advantage of cloud deployment is that the enterprise does not have to worry about equipment obsolescence, upgrading of software etc not to mention the depreciation of the equipment costs.

Moreover cloud technology is extremely useful to enterprises which are planning to deploy application in which there is difficulty in forecasting the type of traffic that will be hit their application. Where the traffic may be intermittent, bursty or seasonal then a cloud makes perfect business sense since can it scale up or scale down depending on the traffic.

Some typical applications which are prime candidates for the cloud are CRM software, office tools, testing tools, online retail stores, webmail etc.

One possible worry of the enterprise will be the security concerns while deploying to the public cloud. In such situations the organization can take a hybrid strategy where their sensitive data are hosted in in-house data centers and their main application is hosted on a public cloud.

Hence in most situation cloud deployments do have a definite edge for certain key application of the enterprise.

Find me on Google+

Technology Trends – 2011 and beyond

There are lots of exciting things happening in the technological landscape. Innovation and development in every age is dependent on a set of key driving factors namely – the need for better, faster and cheaper, the need to handle disruptive technologies, the need to keep costs down and the need to absorb path breaking innovations. Given all these factors and the current trends in the industry the following technologies will enter mainstream in the years to come.

Long Term Evolution (LTE): LTE, also known as 4G technologies, has been born out of the disruptive entry of data hungry smart phones and tablet PCs. Besides, the need for better and faster applications has been the key driver of this technology. LTE is a data only technology that allows mobile users to access the internet on the move.  LTE uses OFDM technology for sending and receiving data from user devices and also uses MIMO (multiple-in, multiple out). LTE is more economical, and spectrally efficient when compared to earlier 3.5G technologies like HSDPA, HSUPA and HSPA. LTE promises a better Quality of Experience (QoE) for end users.

IP Multimedia Systems IMS): IMS has been around for a while. However with the many advances in IP technology and the transport of media the time is now ripe for this technology to take wings and soar high. IMS uses the ubiquitous internet protocol for its core network both for media transport and for SIP signaling. Many innovative applications are possible with IMS including high definition video conferencing, multi-player interactive games, white boarding etc.

All senior management personnel of organizations are constantly faced with the need to keep costs down. The next two technologies hold a lot of promise in reducing costs for organizations and will surely play a key role in the years to come.

Cloud Computing: Cloud Computing obviates the need for upfront capital and infrastructure costs of organizations. Enterprises can deploy their applications on a public cloud which provides virtually infinite computing capacity in the hands of organizations. Organizations only pay as much as they use akin to utilities like electricity or water

Analytics: These days’ organizations are faced with a virtual deluge of data from their day to day operations. Whether the organizations belong to retail, health, finance, telecom, or transportation there is a lot of data that is generated. Data by itself is useless. This is where data analytics plays an important role. Predictive analytics help in classifying data, determining key trends and identifying correlations between data. This helps organizations in making strategic business decisions.

The following two technologies listed below are really path breaking and their applications are limitless.

Internet of Things: This technology envisages either passive or intelligent devices connected to the internet with a database at the back end for processing the data collected from these intelligent devices. This is also known as M2M (machine to machine) technology. The applications range from monitoring the structural integrity of bridges to implantable devices monitoring fatal heart diseases of patients.

Semantic Web (Web 3.0): This is the next stage in the evolution of the World Wide Web. The Web is now a vast repository of ideas, thoughts, blogs, observations etc. This technology envisages intelligent agents that can analyze the information in the web. These agents will determine the relations between information and make intelligent inferences. This technology will have to use artificial intelligence techniques, data mining and cloud computing to plumb the depths of the web

Conclusion: Creativity and innovation has been the hallmark of mankind from time immemorial. With the demand for smarter, cheaper and better the above technologies are bound to endure in the years to come.

Find me on Google+

The Future of Telecom

Published in Voice & Data – Bright Future

Introduction: The close of the 20th century will long be remembered for one thing. The dotcom bust followed by the downward spiral of many major telecom and technology companies. For those who believe in the theory of the 12 year economic cycle this downturn is right about to end and we should see good times soon. Even otherwise there is good news for those in the telecom domain. We could shortly be witness to golden years ahead. There are many signs that seem to indicate that the telecom industry is on the verge of many major breakthroughs. Technologies like LTE, IMS, smartphones, cloud computing point to interesting times ahead. In fact telecom is at a inflexion point when the fortunes seem to be pointed northward. This article looks at some of the promising technologies which are going to bring back the sunshine to telecom.

3G Technologies –Better Quality of Experience (QoE): The auction of the 3G spectrum ended after 131 days of hectic bidding for this cutting edge telecom technology. 3G promises a whole new customer experience backed by extremely high data speeds. 3G promises download speed of up to 2 Mbps for stationary subscribers and 384 Kbps for moving subscribers. It is very clear that such high data speeds will inspire a host of new and exciting applications. Applications that span location based services (LBS), m-Commerce and NFC communications will be simply be irresistible to the users. Moreover the ability to watch video clips or live action on mobile TV or on laptops enabled with 3G dongles will have a lot of takers for 3G technology. App stores for 3G are bound to do a roaring business as 3G takes off in India.

Smartphones – The game changers: In the last decade or so in the telecom industry no other invention has had such a disruptive effect in the telecom domain as smartphones. Smartphones like the IPhone, Droid or Nexus One have changed the rules of the game. The impact of smartphone has been so huge that it actually spawned an entire industry of developers who developed applications for smartphones, content developers and app stores. The irresistible appeal of smartphones is the ease of use and the ability to browse the net as though they were using a normal data connection.  Users can watch youtube clips, play games or chat on the Smartphone.

IP Multimedia Systems (IMS) – Digital Convergence:  IP Multimedia System (IMS) , based on 3GPP’s Release 5 Specification in 2005, has been in the wings for quite some time. The IMS envisions an access agnostic telecommunication architecture that will use an all-IP Core for the transport of medium be it voice, data or video. IMS uses SIP protocol for signaling between network elements and SDP for exchanging media between applications.  The IMS architecture promises a whole slew of exciting application ranging from high quality video conference, high speed data access, white boarding or real time interactive gaining.  IMS represents a true convergence of the telecom wireless concepts with the data communication protocols. The types of services that are possible with IMS will be only limited by imagination. With the entry of smartphones and tablet PCs, IMS is a technology that is waiting to happen and will soon become prime time

Long Term Evolution (LTE)Blazing Speeds: Already there are upward of 5 billion mobile devices and a report from Cisco states that the total data navigating the net will exceed ½ a zettabyte (1021) by the year 2013. The exponential growth of data and the need to provide even higher Quality of Experience (QoE) led to the development of the LTE. LTE is considered 4G technology. LTE promises speeds anywhere between to 56 Mbps to 100 Mbps to users enabling unheard of speeds and applications.  What makes  LTE so attractive is that it promises better spectral efficiency and lower cost per bit than 3G networks. The competing technology for LTE is WIMAX which is also considered as 4G. But LTE has a better evolution path from 3G networks as opposed to WiMAX, While LTE is a packet only network there are sound strategies for handling voice traffic with LTE.  The standards body 3GPP offers two options for handling voice. The first is the Circuit switched (CS) fallback to 2G/3G network. In this scenario data access will be through the packet network of LTE while voice calls will use legacy 2G/3G voice networks. The other alternative is the switch voice traffic to the IMS network with its all-IP Core. This method is supported by the One Voice initiative of many major telecom companies and accepted by GSMA.  This strategy for handling voice through an IMS network is known as VoLTE (Voice over LTE)

Internet of Things- Towards a connected World:  “The Internet of Things” visualizes a highly interconnected world made of tiny passive or intelligent devices that connect to large databases and to the internet. This technology promises to transform the network from a dumb-bit pipe to a truly “computing” network. The Internet of Things or M2M (machine-to-machine) envisages an anytime, anywhere, anyone, anything network. The devices in this M2M network will be made up of passive elements, sensors and intelligent devices that communicate with the network. The devices will be capable of sensing, identifying and responding to changes in the immediate environment. Radio Frequency Identification (RFIDs) is one of the early and key enabler of this technology. The uses for this technology range from warning when the structural integrity of bridges is compromised to implantable devices in heart patients warning doctors of possible heart attacks.  The impact of the Internet of Things will be far-reaching. There are numerous applications for this technology. In fact, ubiquitous computing or the Internet of Things allows us to distribute processing power and intelligence throughout the network into a kind of ambient intelligence spread across the network. This technology promises to blur the lines between science fiction and reality.

App StoresThe final verdict:  The success of App Stores in the last couple of years has been nothing short of phenomenal. It is a complete ecosystem with App Store Developers, App Stores, and the Content Developers and Service Providers.  Apps and App stores have changed the rules of the game so completely. No longer is a mobile phone’s snazzy looks enough for it to be a best seller.  The mobile should be supported by cool downloadable apps for the user to use.  App Stores and apps will play an increasingly important role with apps being developed for smartphones and tablet PCs.  There are bound to be several interesting apps spanning technologies like   Location Based Service (LBS), mobile Commerce, eTicketing, Near Field Communication

Cloud Computing – Utility computing: Cloud Computing has been around some but is slowly gaining more and more prominence. Cloud computing follows a utility model for computing where the cloud user only pays for the computing power and storage capacity used. Cloud computing not involve any upfront Capacity expenditure (Capex).  Users of public clouds like EC2, App Engine or Azure can pay according to the usage of the resources provided by the cloud. Cloud technologies allow the CSPs to purchase processing power, platforms, and databases almost like a utility like electricity or water.  The cloud exhibits an elastic behavior and expands to accommodate increasing demands and contracts when the demand drops. Cloud computing will be slowly be adopted by more and more organizations and enterprises in the years to come.

AnalyticsMining intelligence from data:  Nowadays organizations all over are faced with a deluge of data.  For raw data to be useful it has been analyzed, classified and important patterns determined from the data. This is where data mining and analytics come into play. Analytics uses statistical methods to classify data, determine correlations, identify patterns, and highlight and detect key trends among large data sets. Analytics enables industries to plumb the data sets through the process of selecting, exploring and modeling large amount of data to uncover previously unknown data patterns. The insights which analytics provides can be channelized to business advantage. Data mining and predictive analytics unlock the hidden secrets of data and help businesses make strategic decisions. Analytics is bound to become more common and will play a predominant role in all organizations in the years to come.

Internet TVHot off the net:  If IMS represents the convergence of Telecom and the internet, Internet TV represents the marriage of TV and the internet. Internet TV is a technology whose time has come. Internet TV will bring a whole new user experience by allowing the viewer to be view rich content on his TV in an interactive manner. The technology titans like Apple, Microsoft and Google  have their own version of this technology. Internet TV combines TV, the internet and apps for this new technology.  Internet TV is bound to become popular with complementary technologies like IMS, LTE allowing for high speed data exchange and the popularity of websites like Youtube etc. Internet TV will receive a further boost from apps of smartphones and tablet PCs

IPv4 exhaustion – Damocles’ sword: While the future holds the promise of many new technologies it is also going throw a lot of attendant challenges. One serious problem that will need serious attention in the not too distant future is the IPv4 address space exhaustion.  This problem may be even more serious than the Y2K problem. The issue is that IPv4 can address only 2 32 or 4.3 billion devices. Already the pool has been exhausted because of new technologies like IMS which uses an all IP Core and the Internet of things with more devices, sensors connected to the internet – each identified by an IP address. The solution to this problem has been addressed long back and requires that the Internet adopt IPv6 addressing scheme. IPv6 uses 128-bit long address and allows 3.4 x 1038 or 340 trillion, trillion, trillion unique addresses. However the conversion to IPv6 is not happening at the required pace and pretty soon will have to be adopted on war footing. It is clear that while the transition takes place, both IPv4 and IPv6 will co-exist so there will be an additional requirement of devices on the internet to be able to convert from one to another

Conclusion:

Technologies like IMS, LTE, and Internet TV have a lot of potential and hold a lot of promise.  We as human beings have a constant need for better, faster and cheaper technologies. We can expect a lot of changes to happen in the next couple of years. We may once see rosy times ahead for telecom as a whole

<
Find me on Google+

The rise of analytics

Published in The Hindu – The rise of analytics

We are slowly, but surely, heading towards the age of “information overload”. The Sloan Digital Sky Survey started in the year 2000 returned around 620 terabytes of data in 11 months — more data than had ever been amassed in the entire history of astronomy.

The Large Hadron Collider (LHC) at CERN, Europe’s particle physics laboratory, in Geneva will during its search for the origins of the universe and the elusive Higgs particle, early next year, spew out terabytes of data in its wake. Now there are upward of five billion devices connected to the Internet and the numbers are showing no signs of slowing down.

A recent report from Cisco, the data networking giant, states that the total data navigating the Net will cross 1/2 a zettabyte (10 {+2} {+1}) by the year 2013.

Such astronomical volumes of data are also handled daily by retail giants including Walmart and Target and telcos such as AT&T and Airtel. Also, advances in the Human Genome Project and technologies like the “Internet of Things” are bound to throw up large quantities of data.

The issue of storing data is now slowly becoming non-existent with the plummeting prices of semi-conductor memory and processors coupled with a doubling of their capacity every 18 months with the inevitability predicted by Moore’s law.

Plumbing the depths

Raw data is by itself quite useless. Data has to be classified, winnowed and analysed into useful information before if it can be utilised. This is where analytics and data mining come into play. Analytics, once the exclusive preserve of research labs and academia, has now entered the mainstream. Data mining and analytics are now used across a broad swath of industries — retail, insurance, manufacturing, healthcare and telecommunication. Analytics enables the extraction of intelligence, identification of trends and the ability to highlight the non-obvious from raw, amorphous data. Using the intelligence that is gleaned from predictive analytics, businesses can make strategic game-changing decisions.

Analytics uses statistical methods to classify data, determine correlations, identify patterns, and highlight and detect deviations among large data sets. Analytics includes in its realms complex software algorithms such as decision trees and neural nets to make predictions from existing data sets. For e.g. a retail store would be interested in knowing the buying patterns of its consumers. If the store could determine that product Y is almost always purchased when product X is purchased then the store could come up with clever schemes like an additional discount on product Z when both products X & Y are purchased. Similarly, telcos could use analytics to identify predominant trends that promote customer loyalty.

Studying behaviour

Telcos could come with voice and data plans that attract customers based on consumer behaviour, after analysing data from its point of sale and retail stores. They could use analytics to determine causes for customer churn and come with strategies to prevent it.

Analytics has also been used in the health industry in predicting and preventing fatal infections in infants based on patterns in real-time data like blood pressure, heart rate and respiration.

Analytics requires at its disposal large processing power. Advances in this field have been largely fuelled by similar advances in a companion technology, namely cloud computing. The latter allows computing power to be purchased on demand almost like a utility and has been a key enabler for analytics.

Data mining and analytics allows industries to plumb the data sets that are held in the organisations through the process of selecting, exploring and modelling large amount of data to uncover previously unknown data patterns which can be channelised to business advantage.

Analytics help in unlocking the secrets hidden in data and provide real insights to businesses; and enable businesses and industries to make intelligent and informed choices.

In this age of information deluge, data mining and analytics are bound to play an increasingly important role and will become indispensable to the future of businesses.

Find me on Google+