yorkpy takes a hat-trick, bowls out Intl. T20s, BBL and Natwest T20!!!

“Dear, dear! How queer everything is to-day! And yesterday things went on just as usual. I wonder if I’ve been changed in the night? Let me think: was I the same when I got up this morning? I almost think I can remember feeling a little different. But if I’m not the same, the next question is ’Who in the world am I? Ah, that’s the great puzzle!”

             Alice's adventures  in Wonderland, Lewis Carroll

1. Introduction

In this post, yorkpy clean bowls the following T20 formats namely International T20s, Big Bash League and Natwest T20 Blast. I take yorkpy on a spin through these T20 leagues. In the post below,I choose a random set of about 10-12 of the overall 63 functions that yorkpy has, and execute them for each of the different T20 leagues – Intl T20s, BBL and Natwest T20s. yorkpy, is the python avatar of my R package yorkr, see Introducing cricket package yorkr: Part 1- Beaten by sheer pace!

There were a couple of new functions that needed to be added for each of the T20 leagues – Intl T20, BBL and Natwest T20 to take into account the different teams in each of these leagues. Further some bugs were also ironed out in tje latest version of yorkpy. yorkpy uses data from Cricsheet . The match data is in the form of YAML files. yorkpy converts these YAML files to dataframes. YAML files are very detailed and include a ball-by-ball account of the match.

– You can clone/fork the latest code for yorkpy from github yorkpy
– This post has also been published in RPubs at yorkpy takes a hat-trick
– You can download the PDF version of this post at yorkpy takes a hat-trick

The data for IPL, Intl. T20, BBL and Natwest T20 have already been converted into pandas dataframes and saved as CSVs. You can download the converted files from Github at [allYorkpyT20Data])(https://github.com/tvganesh/allYorkpyT20Data)

yorkpy has the following 4 main classes of functions

A.Functions analyzing individual T20 match (Class 1)

This was demonstrated in Pitching yorkpy . short of good length to IPL – Part 1 The functions deal with individual T20 matches. The functions are

  1. convertYaml2PandasDataframeT20()
  2. convertAllYaml2PandasDataframesT20()
  3. teamBattingScorecardMatch()
  4. teamBatsmenPartnershipMatch()
  5. teamBatsmenVsBowlersMatch()
  6. teamBowlingScorecardMatch()
  7. teamBowlingWicketKindMatch()
  8. teamBowlingWicketRunsMatch()
  9. teamBowlingWicketMatch()
  10. teamBowlersVsBatsmenMatch()
  11. matchWormChart()

B. Functions that analyze all matches between 2 T20 teams (Class 2

Pitching yorkpy.on the middle and outside off-stump to IPL – Part 2 included functions that analyze head-to-head confrontation between any 2 T20 teams The functions are

  1. getAllMatchesBetweenTeams()
  2. saveAllMatchesBetween2IPLTeams()
  3. getAllMatchesBetweenTeams()
  4. saveAllMatchesBetween2IPLTeams()
  5. teamBatsmenPartnershiOppnAllMatches()
  6. teamBatsmenPartnershipOppnAllMatchesChart()
  7. teamBatsmenVsBowlersOppnAllMatches()
  8. teamBattingScorecardOppnAllMatches()
  9. teamBowlingScorecardOppnAllMatches()
  10. teamBowlingWicketKindOppositionAllMatches()
  11. teamBowlersVsBatsmenOppnAllMatches()
  12. plotWinLossBetweenTeams()
  13. plotWinsByRunOrWickets() 23.plotWinsbyTossDecision()

C. Functions that analyze the performance of a T20 team against all other teams (Class 3)

The post Pitching yorkpy.swinging away from the leg stump to IPL – Part 3 is based on Class C set of functions shown below

  1. getAllMatchesAllOpposition()
  2. saveAllMatchesAllOppositionIPLT20(dir1)
  3. getAllMatchesAllOpposition()
  4. saveAllMatchesAllOppositionIPLT20()
  5. teamBatsmenPartnershiAllOppnAllMatches()
  6. teamBatsmenPartnershipAllOppnAllMatchesChart()
  7. teamBatsmenVsBowlersAllOppnAllMatches()
  8. teamBattingScorecardAllOppnAllMatches()
  9. teamBowlingScorecardAllOppnAllMatches()
  10. teamBowlingWicketKindAllOppnAllMatches()
  11. teamBowlersVsBatsmenAllOppnAllMatches()
  12. plotWinLossByTeamAllOpposition()
  13. plotWinsByRunOrWicketsAllOpposition()
  14. plotWinsbyTossDecisionAllOpposition()

D. Functions that analyze performances of T20 batsmen and bowlers (Class 4)

These set of functions analyze individual batsmen and bowlers and have been used in Pitching yorkpy . in the block hole – Part 4 The functions are

  1. getTeamBattingDetails()
  2. getBatsmanDetails()
  3. batsmanRunsVsDeliveries()
  4. batsmanFoursSixes()
  5. batsmanDismissals()
  6. batsmanRunsVsStrikeRate()
  7. batsmanMovingAverage()
  8. batsmanCumulativeAverageRuns()
  9. batsmanCumulativeStrikeRate()
  10. batsmanRunsAgainstOpposition()
  11. batsmanRunsVenue
  12. getTeamBowlingDetails()
  13. getBowlerWicketDetails()
  14. bowlerMeanEconomyRate()
  15. bowlerMeanRunsConceded()
  16. bowlerMovingAverage()
  17. bowlerCumulativeAvgWickets()
  18. bowlerCumulativeAvgEconRate()
  19. bowlerWicketPlot()
  20. bowlerWicketsAgainstOpposition()
  21. bowlerWicketsVenue()

Additional new functions were added to handle Intl T20s, Big Bash League and Natwest T20 Blast, since the teams are different. They are

59. saveAllMatchesBetween2IntlT20s()
60. saveAllMatchesAllOppositionIntlT20()
61. saveAllMatchesBetween2BBLTeams()
62 saveAllMatchesAllOppositionBBLT20()
63. saveAllMatchesBetween2NWBTeams()
64. saveAllMatchesAllOppositionNWBT20()

All other functions can be used as is! You can get the help of any function in yorkpy using

import yorkpy.analytics as yka
help(yka.teamBatsmenPartnershiOppnAllMatches)
## Help on function teamBatsmenPartnershiOppnAllMatches in module yorkpy.analytics:
## 
## teamBatsmenPartnershiOppnAllMatches(matches, theTeam, report='summary', top=5)
##     Team batting partnership against a opposition all IPL matches
##     
##     Description
##     
##     This function computes the performance of batsmen against all bowlers of an oppositions in 
##     all matches. This function returns a dataframe
##     
##     Usage
##     
##     teamBatsmenPartnershiOppnAllMatches(matches,theTeam,report="summary")
##     Arguments
##     
##     matches     
##     All the matches of the team against the oppositions
##     theTeam     
##     The team for which the the batting partnerships are sought
##     report      
##     If the report="summary" then the list of top batsmen with the highest partnerships 
##     is displayed. If report="detailed" then the detailed break up of partnership is returned 
##     as a dataframe
##     top
##     The number of players to be displayed from the top
##     Value
##     
##     partnerships The data frame of the partnerships
##     
##     Note
##     
##     Maintainer: Tinniam V Ganesh tvganesh.85@gmail.com
##     
##     Author(s)
##     
##     Tinniam V Ganesh
##     
##     References
##     
##     http://cricsheet.org/
##     https://gigadom.wordpress.com/
##     
##     
##     See Also
##     
##     teamBatsmenVsBowlersOppnAllMatchesPlot
##     teamBatsmenPartnershipOppnAllMatchesChart

As I mentioned above I will be randomly choosing a set of 12 functions from Class 1,2,3,4 for each of the T20 leagues (Intl T20, BBL and NWB T20) for analysis

2. International T20s

The following functions were added for handling Intl. T20s

  1. saveAllMatchesBetween2IntlT20s()
  2. saveAllMatchesAllOppositionIntlT20()

To handle the countries in Intl. T20s below

Afghanistan, Australia, Bangladesh, Bermuda, Canada, England,Hong Kong,India, Ireland, Kenya, Nepal, Netherlands, “New Zealand, Oman,Pakistan,Scotland,South Africa, Sri Lanka, United Arab Emirates,West Indies, Zimbabwe

import os
#os.chdir('C:\\software\\cricket-package\\yorkpyT20\\t20s')
#import yorkpy.analytics as yka
#1.  Convert all YAML files to dataframes and CSV
#yka.convertAllYaml2PandasDataframesT20(".", "..\\data1")
#dir1='C:\\software\\cricket-package\\yorkpyT20\\IntlT20-Matches'
#2. Save all matches between 2 T20 teams
#yka.saveAllMatchesBetween2IntlT20s(dir1)
#3. Save all matches between a T20 team and all other teams
#dir1='C:\\software\\cricket-package\\yorkpyT20\\IntlT20-Matches'
#yka.saveAllMatchesAllOppositionIntlT20(dir1)
#4. Get batting details
#dir1='C:\\software\\cricket-package\\yorkpyT20\\IntlT20-Matches
#yka.getTeamBattingDetails("Afghanistan",dir=dir1, save=True)
#yka.getTeamBattingDetails("Australia",dir=dir1,save=True)
#yka.getTeamBattingDetails("Bangladesh",dir=dir1,save=True)
#...
#5. Get bowling details
#dir1='C:\\software\\cricket-package\\yorkpyT20\\IntlT20-Matches
#yka.getTeamBowlingDetails("Afghanistan",dir=dir1, save=True)
#yka.getTeamBowlingDetails("Australia",dir=dir1,save=True)
#yka.getTeamBowlingDetails("Bangladesh",dir=dir1,save=True)
# ...

Once the data is converted you can use the yorkpy functions. The data has been converted for Intl T20 and is available at Github at IntlT20

To use the yorkpy functions for a new league we need to initial convert the YAML files into appropriate format for processing by yorkpy functions

This will create the necessary files which are are used in the functions below

2.2 2.1 Intl. T20 – Team score card  (Class 1)

import os
import pandas as pd
import yorkpy.analytics as yka
dir1="C:\\software\\cricket-package\\yorkpyT20\\IntlT20-Matches"
path=os.path.join(dir1,".\\India-New Zealand-2007-09-16.csv")
ind_nz=pd.read_csv(path)
scorecard,extras=yka.teamBattingScorecardMatch(ind_nz,"India")
print(scorecard)
##             batsman  runs  balls  4s  6s          SR
## 0         G Gambhir    51     34   5   2  150.000000
## 1          V Sehwag    40     18   6   2  222.222222
## 2        RV Uthappa     0      2   0   0    0.000000
## 3          MS Dhoni    24     20   2   0  120.000000
## 4      Yuvraj Singh     5      7   0   0   71.428571
## 5        KD Karthik    17     12   3   0  141.666667
## 6         IK Pathan    11     10   2   0  110.000000
## 7        AB Agarkar     1      2   0   0   50.000000
## 8   Harbhajan Singh     7      6   1   0  116.666667
## 9       S Sreesanth    19     10   4   0  190.000000
## 10         RP Singh     1      1   0   0  100.000000
print(extras)
##    total  wides  noballs  legbyes  byes  penalty  extras
## 0    370      6        0        8     0        0      14

2.2 Intl. T20 -Team batsmen partnership (Class 1)

import os
import pandas as pd
import yorkpy.analytics as yka
dir1="C:\\software\\cricket-package\\yorkpyT20\\IntlT20-Matches"
path=os.path.join(dir1,".\\South Africa-Australia-2009-03-27.csv")
sa_aus=pd.read_csv(path)
yka.teamBatsmenPartnershipMatch(sa_aus,'Australia','New Zealand',plot=True)

2.3 Intl. T20 -Team bowling scorecard match (Class 1)

import os
import pandas as pd
import yorkpy.analytics as yka
dir1="C:\\software\\cricket-package\\yorkpyT20\\IntlT20-Matches"
path=os.path.join(dir1,".\\Sri Lanka-West Indies-2012-09-28.csv")
sl_wi=pd.read_csv(path)
a=yka.teamBowlingScorecardMatch(sl_wi,'Sri Lanka')
print(a)
##          bowler  overs  runs  maidens  wicket  econrate
## 0    A Mohammed      2    13        0       0       6.5
## 1  SA Campbelle      1     8        0       1       8.0
## 2     SC Selman      1     3        0       0       3.0
## 3      SF Daley      2     5        0       1       2.5
## 4     SR Taylor      2     4        0       1       2.0
## 5     TD Smartt      2    17        0       0       8.5

2.4 Intl. T20 -Match Worm chart (Class 1)

import os
import pandas as pd
import yorkpy.analytics as yka
dir1="C:\\software\\cricket-package\\yorkpyT20\\IntlT20-Matches"
path=os.path.join(dir1,".\\England-India-2012-09-29.csv")
eng_ind=pd.read_csv(path)
yka.matchWormChart(eng_ind,"England", "India")

path=os.path.join(dir1,".\\Bangladesh-Ireland-2015-12-05.csv")
ban_ire=pd.read_csv(path)
yka.matchWormChart(ban_ire,"Bangladesh", "Ireland")

2.5 Intl. T20 -Team Batting partnerships all matches 2 teams (Class 2)

import os
import pandas as pd
import yorkpy.analytics as yka
dir1="C:\\software\\cricket-package\\yorkpyT20\\IntlT20-allMatchesBetween2Teams"
path=os.path.join(dir1,"India-England-allMatches.csv")
dc_mi_matches = pd.read_csv(path)
theTeam='India'
m=yka.teamBatsmenPartnershiOppnAllMatches(dc_mi_matches,theTeam,report="detailed", top=4)
print(m)
##      batsman  totalPartnershipRuns    non_striker  partnershipRuns
## 0   SK Raina                   265      G Gambhir                2
## 1   SK Raina                   265       KL Rahul               40
## 2   SK Raina                   265      MK Tiwary               24
## 3   SK Raina                   265       MS Dhoni              124
## 4   SK Raina                   265        P Kumar                0
## 5   SK Raina                   265      PP Chawla                4
## 6   SK Raina                   265       R Ashwin                1
## 7   SK Raina                   265      RG Sharma               16
## 8   SK Raina                   265        V Kohli               47
## 9   SK Raina                   265   Yuvraj Singh                7
## 10  MS Dhoni                   264       A Mishra                1
## 11  MS Dhoni                   264      AT Rayudu               18
## 12  MS Dhoni                   264      HH Pandya                8
## 13  MS Dhoni                   264      IK Pathan                2
## 14  MS Dhoni                   264      JJ Bumrah                2
## 15  MS Dhoni                   264      MK Pandey                3
## 16  MS Dhoni                   264  Parvez Rasool               21
## 17  MS Dhoni                   264       R Ashwin               11
## 18  MS Dhoni                   264      RA Jadeja               11
## 19  MS Dhoni                   264      RG Sharma                9
## 20  MS Dhoni                   264        RR Pant                6
## 21  MS Dhoni                   264     RV Uthappa                5
## 22  MS Dhoni                   264       SK Raina               98
## 23  MS Dhoni                   264      YK Pathan               36
## 24  MS Dhoni                   264   Yuvraj Singh               33
## 25   V Kohli                   236      AM Rahane                3
## 26   V Kohli                   236      G Gambhir               78
## 27   V Kohli                   236       KL Rahul               46
## 28   V Kohli                   236      RG Sharma                2
## 29   V Kohli                   236     RV Uthappa                4
## 30   V Kohli                   236       S Dhawan               45
## 31   V Kohli                   236       SK Raina               48
## 32   V Kohli                   236   Yuvraj Singh               10
## 33     M Raj                   176       A Sharma                2
## 34     M Raj                   176         H Kaur               18
## 35     M Raj                   176      J Goswami                6
## 36     M Raj                   176        KV Jain                5
## 37     M Raj                   176       L Kumari                5
## 38     M Raj                   176    N Niranjana                3
## 39     M Raj                   176       N Tanwar               17
## 40     M Raj                   176        PG Raut               41
## 41     M Raj                   176     R Malhotra                5
## 42     M Raj                   176     S Mandhana                8
## 43     M Raj                   176         S Naik               10
## 44     M Raj                   176       S Pandey               19
## 45     M Raj                   176       SK Naidu               37

2.6 Intl. T20 -Team Batsmen vs Bowlers all matches 2 teams (Class 2)

import os
import pandas as pd
import yorkpy.analytics as yka
dir1="C:\\software\\cricket-package\\yorkpyT20\\IntlT20-allMatchesBetween2Teams"
path=os.path.join(dir1,"Ireland-Netherlands-allMatches.csv")
ire_nl_matches = pd.read_csv(path)
yka.teamBatsmenVsBowlersOppnAllMatches(ire_nl_matches,'Ireland',"Netherlands",plot=True,top=3,runsScored=10)

2.7 Intl. T20 -Team Bowling scorecard all matches 2 teams (Class 2)

import os
import pandas as pd
import yorkpy.analytics as yka
dir1="C:\\software\\cricket-package\\yorkpyT20\\IntlT20-allMatchesBetween2Teams"
path=os.path.join(dir1,"Bangladesh-Nepal-allMatches.csv")
bang_nep_matches = pd.read_csv(path)
scorecard=yka.teamBowlingScorecardOppnAllMatches(bang_nep_matches,'Bangladesh',"Nepal")
print(scorecard)
##         bowler  overs  runs  maidens  wicket   econrate
## 0      B Regmi      3    14        0       1   4.666667
## 3   SP Gauchan      4    40        0       1  10.000000
## 1   JK Mukhiya      2    16        0       0   8.000000
## 2     P Khadka      3    23        0       0   7.666667
## 4    Sagar Pun      1    16        0       0  16.000000
## 5  Sompal Kami      2    21        0       0  10.500000

2.8 Intl. T20 -Team Batsmen vs Bowlers all Oppositions (Class 3)

import os
import pandas as pd
import yorkpy.analytics as yka
dir1="C:\\software\\cricket-package\\yorkpyT20\\\IntlT20-allMatchesAllOpposition\\"
path=os.path.join(dir1,"Australia-allMatchesAllOpposition.csv")
aus_matches = pd.read_csv(path)
yka.teamBatsmenVsBowlersAllOppnAllMatches(aus_matches,"Australia",plot=True,top=3,runsScored=40)

2.9 Intl. T20 -Wins vs Losses of a team against all other teams (Class 3)

import os
import pandas as pd
import yorkpy.analytics as yka
dir1="C:\\software\\cricket-package\\yorkpyT20\\\IntlT20-allMatchesAllOpposition\\"
path=os.path.join(dir1,"South Africa-allMatchesAllOpposition.csv")
sa_matches = pd.read_csv(path)
team1='South Africa'
yka.plotWinLossByTeamAllOpposition(sa_matches,team1,plot="detailed")

2.10 Intl. T20 -Batsmen analysis (Class 4)

import os
import pandas as pd
import yorkpy.analytics as yka
dir1="C:\\software\\cricket-package\\yorkpyT20\\\IntlT20-BattingBowlingDetails\\"
# Rohit Sharma
name="RG Sharma"
team='India'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanCumulativeAverageRuns(df,name)

# MJ Guptill
name="MJ Guptill"
team='New Zealand'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanCumulativeStrikeRate(df,name)

2.11 Intl. T20 -Bowler analysis (Class 4)

import os
import pandas as pd
import yorkpy.analytics as yka
dir1="C:\\software\\cricket-package\\yorkpyT20\\\IntlT20-BattingBowlingDetails\\"
# Shakib Al Hasan
name="Shakib Al Hasan"
team='Bangladesh'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerMeanEconomyRate(df,name)

# Rashid Khan
name="SL Malinga"
team='Sri Lanka'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerWicketsAgainstOpposition(df,name)

3. Big Bash League

The following functions for added to handle BBL teams

  1. saveAllMatchesBetween2BBLTeams()
  2. saveAllMatchesAllOppositionBBLT20

The BBL teams are included are Adelaide Strikers, Brisbane Heat, Hobart Hurricanes, Melbourne Renegades, Perth Scorchers, Sydney Sixers, Sydney Thunder

To use the yorkpy functions first the YAML files have to be converted into pandas dataframe and then saved as CSV as shown below

import os
import yorkpy.analytics as yka
os.chdir('C:\\software\\cricket-package\\yorkpyBBL\\bbl')
#1. Convert all YAML files to dataframes and save as CSV
#yka.convertAllYaml2PandasDataframesT20(".", "..\\BBLT20-Matches")
#2. Save all matches between 2 BBL teams
dir1='C:\\software\\cricket-package\\yorkpyBBL\\BBLT20-Matches'
#yka.saveAllMatchesBetween2BBLTeams(dir1)
#3. Save T20 matches between a BBL team and all other teams
dir1='C:\\software\\cricket-package\\yorkpyBBL\\BBLT20-Matches'
#yka.saveAllMatchesAllOppositionBBLT20(dir1)
#4. Get the batting details
dir1='C:\\software\\cricket-package\\yorkpyBBL\\BBLT20-Matches'
#yka.getTeamBattingDetails("Adelaide Strikers",dir=dir1, save=True)
#yka.getTeamBattingDetails("Brisbane Heat",dir=dir1,save=True)
#yka.getTeamBattingDetails("Hobart Hurricanes",dir=dir1,save=True)
#...
# Get the bowling details
dir1='C:\\software\\cricket-package\\yorkpyBBL\\BBLT20-Matches'
#yka.getTeamBowlingDetails("Adelaide Strikers",dir=dir1, save=True)
#yka.getTeamBowlingDetails("Brisbane Heat",dir=dir1,save=True)
#yka.getTeamBowlingDetails("Hobart Hurricanes",dir=dir1,save=True)
#...

The functions below perform analysis on the generated files from above. The YAML files have already been converted and are available at Github at BBL

3.1 Big Bash League – Team score card (Class 1)

import os
import pandas as pd
import yorkpy.analytics as yka
dir1="C:\\software\\cricket-package\\yorkpyBBL\\BBLT20-Matches"
path=os.path.join(dir1,".\\Adelaide Strikers-Brisbane Heat-2012-12-13.csv")
as_bh=pd.read_csv(path)
scorecard,extras=yka.teamBattingScorecardMatch(as_bh,"Brisbane Heat")
print(scorecard)
##          batsman  runs  balls  4s  6s          SR
## 0  LA Pomersbach    65     42   8   2  154.761905
## 1       JR Hopes     1      2   0   0   50.000000
## 2       JA Burns    37     31   2   2  119.354839
## 3   DT Christian    12     15   0   0   80.000000
## 4    NLTC Perera    12      4   0   2  300.000000
## 5        CA Lynn    19     18   1   1  105.555556
## 6    BCJ Cutting    13      5   0   2  260.000000
## 7     PJ Forrest    12      8   0   1  150.000000
## 8     CD Hartley     5      2   1   0  250.000000
print(extras)
##    total  wides  noballs  legbyes  byes  penalty  extras
## 0    371     10        2        5     0        0      17

3.2 Big Bash League -Team batsmen vs Bowlers (Class 1)

import os
import pandas as pd
import yorkpy.analytics as yka
dir1="C:\\software\\cricket-package\\yorkpyBBL\\BBLT20-Matches"
path=os.path.join(dir1,".\\Hobart Hurricanes-Melbourne Renegades-2012-01-18.csv")
hh_mr=pd.read_csv(path)
yka.teamBatsmenVsBowlersMatch(hh_mr,'Hobart Hurricanes','Melbourne Renegades',plot=True)

3.3 Big Bash League -Team bowling scorecard match (Class 1)

import os
import pandas as pd
import yorkpy.analytics as yka
dir1="C:\\software\\cricket-package\\yorkpyBBL\\BBLT20-Matches"
path=os.path.join(dir1,".\\Melbourne Stars-Sydney Thunder-2016-01-24.csv")
ms_st=pd.read_csv(path)
a=yka.teamBowlingScorecardMatch(ms_st,'Sydney Thunder')
print(a)
##           bowler  overs  runs  maidens  wicket   econrate
## 0        A Zampa      4    32        0       2   8.000000
## 1  BW Hilfenhaus      2    21        0       0  10.500000
## 2      DJ Hussey      1     9        0       1   9.000000
## 3     DJ Worrall      3    42        0       0  14.000000
## 4      EP Gulbis      2    19        0       0   9.500000
## 5        MA Beer      3    25        0       1   8.333333
## 6     MP Stoinis      4    30        0       3   7.500000

3.4 Big Bash League – Match Worm chart (Class 1)

import os
import pandas as pd
import yorkpy.analytics as yka
dir1="C:\\software\\cricket-package\\yorkpyBBL\\BBLT20-Matches"
path=os.path.join(dir1,".\\Sydney Sixers-Melbourne Stars-2011-12-27.csv")
ss_ms=pd.read_csv(path)
yka.matchWormChart(ss_ms,"Melbourne Stars", "Sydney Sixers")

path=os.path.join(dir1,".\\Hobart Hurricanes-Brisbane Heat-2015-01-02.csv")
hh_bh=pd.read_csv(path)
yka.matchWormChart(hh_bh,"Hobart Hurricanes", "Brisbane Heat")

3.5 Big Bash League -Team Batting partnerships all matches 2 teams (Class 2)

import os
import pandas as pd
import yorkpy.analytics as yka
dir1="C:\\software\\cricket-package\\yorkpyBBL\\BBLT20-allMatchesBetween2Teams"
path=os.path.join(dir1,"Brisbane Heat-Adelaide Strikers-allMatches.csv")
bh_as_matches = pd.read_csv(path)
yka.teamBatsmenPartnershipOppnAllMatchesChart(bh_as_matches,"Brisbane Heat","Adelaide Strikers",plot=True, top=4, partnershipRuns=20)

3.6 Big Bash League -Team Bowling wicket kind all matches 2 teams (Class 2)

import os
import pandas as pd
import yorkpy.analytics as yka
dir1="C:\\software\\cricket-package\\yorkpyBBL\\BBLT20-allMatchesBetween2Teams"
path=os.path.join(dir1,"Sydney Sixers-Perth Scorchers-allMatches.csv")
ss_ps_matches = pd.read_csv(path)
yka.teamBowlingWicketKindOppositionAllMatches(ss_ps_matches,'Perth Scorchers','Sydney Sixers',plot=True,top=5,wickets=1)

3.7 Big Bash League -Team Bowling scorecard all teams (Class 3)

import os
import pandas as pd
import yorkpy.analytics as yka
dir1="C:\\software\\cricket-package\\yorkpyBBL\\BBLT20-allMatchesAllOpposition"
path=os.path.join(dir1,"Hobart Hurricanes-allMatchesAllOpposition.csv")
hh_matches = pd.read_csv(path)
scorecard=yka.teamBowlingScorecardAllOppnAllMatches(hh_matches,"Hobart Hurricanes")
print(scorecard)
##              bowler  overs  runs  maidens  wicket   econrate
## 16            B Lee     20   132        0       9   6.600000
## 30         CJ McKay     13   110        0       9   8.461538
## 88    NJ Rimmington     16   103        1       9   6.437500
## 67      JW Hastings     15    88        0       8   5.866667
## 63      JP Faulkner     15   146        0       7   9.733333
## 27        CJ Gannon     17   147        1       7   8.647059
## 93          NM Lyon      8    51        0       7   6.375000
## 20      BCJ Cutting     27   226        0       7   8.370370
## 48          GB Hogg     22   167        0       7   7.590909
## 107       SM Boland     12    96        0       7   8.000000
## 15       B Laughlin     13    99        0       7   7.615385
## 87      MT Steketee     15   134        0       5   8.933333
## 121    Yasir Arafat      9    48        0       4   5.333333
## 96       PJ Cummins      8    83        0       4  10.375000
## 46      Fawad Ahmed     11    64        0       4   5.818182
## 76          MA Beer     12    63        0       4   5.250000
## 108     SNJ O'Keefe     15   104        0       4   6.933333
## 75   M Muralitharan      7    31        0       4   4.428571
## 10           AJ Tye     16   127        0       4   7.937500
## 52          J Botha     13    94        0       4   7.230769
## 56     JL Pattinson      7    71        0       4  10.142857
## 62   JP Behrendorff     16   119        0       4   7.437500
## 3           AC Agar     12    87        0       4   7.250000
## 24     BM Edmondson      4    40        0       4  10.000000
## 37        DJ Hussey      8    47        0       3   5.875000
## 49       GJ Maxwell      8    65        0       3   8.125000
## 84       MN Samuels      4    22        0       3   5.500000
## 81         MG Neser      5    54        0       3  10.800000
## 44     DT Christian      9   114        0       3  12.666667
## 50        GS Sandhu      7    51        0       3   7.285714
## ..              ...    ...   ...      ...     ...        ...
## 43        DP Nannes      8    58        0       1   7.250000
## 51         IA Moran      4    25        0       1   6.250000
## 55         JK Lalor     10    82        0       1   8.200000
## 54        JH Kallis      3    18        0       1   6.000000
## 73   LR Butterworth      4    25        0       1   6.250000
## 4      AC McDermott      2    28        0       1  14.000000
## 70         LA Doran      4    38        0       1   9.500000
## 69    KW Richardson      6    44        0       1   7.333333
## 119     WD Sheridan      2     6        0       0   3.000000
## 2       AB McDonald      1    15        0       0  15.000000
## 115      TD Andrews      3    23        0       0   7.666667
## 11          AK Heal      4    33        0       0   8.250000
## 7        AD Russell      4    40        0       0  10.000000
## 8          AJ Finch      2    15        0       0   7.500000
## 9         AJ Turner      3    28        0       0   9.333333
## 60        JM Mennie      1    20        0       0  20.000000
## 18        BA Stokes      1     9        0       0   9.000000
## 26         CH Gayle      1    16        0       0  16.000000
## 28         CJ Green      4    44        0       0  11.000000
## 95   PD Collingwood      2    20        0       0  10.000000
## 31       CJ Simmons      4    21        0       0   5.250000
## 59       JM Holland      3    34        0       0  11.333333
## 36         DJ Bravo      6    64        0       0  10.666667
## 38     DJ Pattinson      2    16        0       0   8.000000
## 41       DJ Worrall      8    90        0       0  11.250000
## 72      LN O'Connor      6    56        0       0   9.333333
## 71        LJ Wright      3    27        0       0   9.000000
## 68       KA Pollard      1     7        0       0   7.000000
## 58       JM Herrick      4    23        0       0   5.750000
## 92       NM Hauritz      5    42        0       0   8.400000
## 
## [122 rows x 6 columns]

3.8 Big Bash League -Plot wins vs losses against all teams(Class 3)

import os
import pandas as pd
import yorkpy.analytics as yka
dir1="C:\\software\\cricket-package\\yorkpyBBL\\BBLT20-allMatchesAllOpposition"
path=os.path.join(dir1,"Sydney Sixers-allMatchesAllOpposition.csv")
ss_matches = pd.read_csv(path)
yka.plotWinLossByTeamAllOpposition(ss_matches,'Sydney Sixers')

3.9 Big Bash League -Wins vs losses by toss decision (Class 3)

import os
import pandas as pd
import yorkpy.analytics as yka
dir1="C:\\software\\cricket-package\\yorkpyBBL\\BBLT20-allMatchesAllOpposition"
path=os.path.join(dir1,"Adelaide Strikers-allMatchesAllOpposition.csv")
as_matches = pd.read_csv(path)
yka.plotWinsByRunOrWicketsAllOpposition(as_matches,'Adelaide Strikers')

3.10 Big Bash League -Batsmen Analysis (Class 4)

import os
import pandas as pd
import yorkpy.analytics as yka
dir1="C:\\software\\cricket-package\\yorkpyBBL\\BBLT20-BattingBowlingDetails"
# CA Lynn
name="CA Lynn"
team='Brisbane Heat'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanRunsVsStrikeRate(df,name)

# UT Khawaja
name="UT Khawaja"
team='Sydney Thunder'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanRunsAgainstOpposition(df,name)

3.11Big Bash League – Bowler analysis (Class 4)

import os
import pandas as pd
import yorkpy.analytics as yka
dir1="C:\\software\\cricket-package\\yorkpyBBL\\BBLT20-BattingBowlingDetails"
# CJ McKay
name="CJ McKay"
team='Sydney Thunder'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerCumulativeAvgWickets(df,name)

# AU Rashid
name="AU Rashid"
team='Adelaide Strikers'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerCumulativeAvgEconRate(df,name)

4. Natwest T20 Blast

The following functions for added to handle Natwest T20 teams

  1. saveAllMatchesBetween2NWBTeams()
  2. saveAllMatchesAllOppositionNWBT20

The Natwest teams are
Derbyshire, Durham, Essex, Glamorgan, Gloucestershire, Hampshire, Kent,Lancashire, Leicestershire, Middlesex,Northamptonshire, Nottinghamshire, Somerset, Surrey, Sussex, Warwickshire, Worcestershire,Yorkshire

In order to perform analysis with yorkpy, the YAML data has to be converted to pandas dataframe and saves as CSV as shown

#import os
#import yorkpy.analytics as yka
#os.chdir('C:\\software\\cricket-package\\yorkpyNWB\\nwb')
#1. Convert YAML to dataframes and save as CSV
#yka.convertAllYaml2PandasDataframesT20(".", "..\\NWBT20-Matches")
#2. Save all matches between 2 NWBT20 teams
#dir1='C:\\software\\cricket-package\\yorkpyNWB\\NWBT20-Matches'
#yka.saveAllMatchesBetween2NWBTeams(dir1)
#3. Save all matches between a NWB T20 team and all other teams
#dir1='C:\\software\\cricket-package\\yorkpyNWB\\NWBT20-Matches'
#yka.saveAllMatchesAllOppositionNWBT20(dir1)
#4. Compute the batting details
dir1='C:\\software\\cricket-package\\yorkpyNWB\\NWBT20-Matches'
#yka.getTeamBattingDetails("Derbyshire",dir=dir1, save=True)
#yka.getTeamBattingDetails("Durham",dir=dir1,save=True)
#yka.getTeamBattingDetails("Essex",dir=dir1,save=True)
#..
#5. Compute bowling details
dir1='C:\\software\\cricket-package\\yorkpyNWB\\NWBT20-Matches'
#yka.getTeamBowlingDetails("Derbyshire",dir=dir1, save=True)
#yka.getTeamBowlingDetails("Durham",dir=dir1,save=True)
#yka.getTeamBowlingDetails("Essex",dir=dir1,save=True)
#...

Once the data is converted all yorkpy functions can be used. This has already been done and is available at github NWB

4.1 Natwest T20 Blast – Team score card (Class 1)

import os
import pandas as pd
import yorkpy.analytics as yka
dir1="C:\\software\\cricket-package\\\yorkpyNWB\\NWBT20-Matches"
path=os.path.join(dir1,".\\Durham-Yorkshire-2016-08-20.csv")
d_y=pd.read_csv(path)
scorecard,extras=yka.teamBattingScorecardMatch(d_y,"Durham")
print(scorecard)
##           batsman  runs  balls  4s  6s          SR
## 0     MD Stoneman    25     20   4   0  125.000000
## 1     KK Jennings    11     13   1   0   84.615385
## 2       BA Stokes    56     37   4   3  151.351351
## 3   MJ Richardson    29     23   4   1  126.086957
## 4     JTA Burnham    17     15   1   1  113.333333
## 5      RD Pringle    10      9   1   0  111.111111
## 6  PD Collingwood     2      3   0   0   66.666667
## 7        U Arshad     1      1   0   0  100.000000
print(extras)
##    total  wides  noballs  legbyes  byes  penalty  extras
## 0    305      2        0        5     0        0       7

4.2 Natwest T20 Blast -Team batsmen vs Bowlers (Class 1)

import os
import pandas as pd
import yorkpy.analytics as yka
dir1="C:\\software\\cricket-package\\\yorkpyNWB\\NWBT20-Matches"
path=os.path.join(dir1,".\\Derbyshire-Lancashire-2016-07-13.csv")
d_l=pd.read_csv(path)
yka.teamBatsmenVsBowlersMatch(d_l,'Lancashire','Derbyshire',plot=True)

4.3 Natwest T20 Blast -Team bowling scorecard match (Class 1)

import os
import pandas as pd
import yorkpy.analytics as yka
dir1="C:\\software\\cricket-package\\\yorkpyNWB\\NWBT20-Matches"
path=os.path.join(dir1,".\\Essex-Surrey-2016-05-20.csv")
e_s=pd.read_csv(path)
a=yka.teamBowlingScorecardMatch(e_s,'Essex')
print(a)
##           bowler  overs  runs  maidens  wicket   econrate
## 0  Azhar Mahmood      3    38        0       4  12.666667
## 1       GJ Batty      4    33        0       1   8.250000
## 2       JE Burke      1    18        0       0  18.000000
## 3     MW Pillans      3    28        0       0   9.333333
## 4      SM Curran      4    23        0       2   5.750000
## 5      TK Curran      4    21        0       3   5.250000

4.4 Natwest T20 Blast -Match Worm chart (Class 1)

import os
import pandas as pd
import yorkpy.analytics as yka
dir1="C:\\software\\cricket-package\\\yorkpyNWB\\NWBT20-Matches"
path=os.path.join(dir1,".\\Gloucestershire-Glamorgan-2016-06-10.csv")
ss_ms=pd.read_csv(path)
yka.matchWormChart(ss_ms,"Gloucestershire", "Glamorgan")

path=os.path.join(dir1,".\\Leicestershire-Northamptonshire-2016-05-20.csv")
hh_bh=pd.read_csv(path)
yka.matchWormChart(hh_bh,"Northamptonshire", "Leicestershire")

4.5 Natwest T20 Blast -Team Batting partnerships all matches 2 teams (Class 2)

import os
import pandas as pd
import yorkpy.analytics as yka
dir1="C:\\software\\cricket-package\\yorkpyNWB\\NWBT20-allMatchesBetween2Teams"
path=os.path.join(dir1,"Hampshire-Sussex-allMatches.csv")
h_s_matches = pd.read_csv(path)
yka.teamBatsmenPartnershipOppnAllMatchesChart(h_s_matches,"Hampshire","Sussex",plot=True, top=4, partnershipRuns=10)

4.6 Natwest T20 Blast -Team Bowling wicket kind all matches 2 teams (Class 2)

import os
import pandas as pd
import yorkpy.analytics as yka
dir1="C:\\software\\cricket-package\\yorkpyNWB\\NWBT20-allMatchesBetween2Teams"
path=os.path.join(dir1,"Kent-Somerset-allMatches.csv")
k_s_matches = pd.read_csv(path)
yka.teamBowlersVsBatsmenOppnAllMatches(k_s_matches,'Kent','Somerset',plot=True,
top=5,runsConceded=10)

4.7 Natwest T20 Blast -Team Bowling scorecard all teams (Class 3)

import os
import pandas as pd
import yorkpy.analytics as yka
dir1="C:\\software\\cricket-package\\yorkpyNWB\\NWBT20-allMatchesAllOpposition"
path=os.path.join(dir1,"Middlesex-allMatchesAllOpposition.csv")
m_matches = pd.read_csv(path)
scorecard=yka.teamBowlingScorecardAllOppnAllMatches(m_matches,"Middlesex")
print(scorecard)
##               bowler  overs  runs  maidens  wicket   econrate
## 1             AJ Tye      8    75        0       6   9.375000
## 5         BAC Howell      8    41        0       5   5.125000
## 26         GR Napier      7    65        0       5   9.285714
## 15        DI Stevens      4    31        0       4   7.750000
## 19       DW Lawrence      6    37        0       4   6.166667
## 32       JW Dernbach      4    33        0       3   8.250000
## 7          BTJ Wheal      4    43        0       3  10.750000
## 18         DR Briggs      4    24        0       3   6.000000
## 50     RK Kleinveldt      4    24        0       3   6.000000
## 46         R McLaren      7    59        0       3   8.428571
## 47         R Rampaul      3    21        0       3   7.000000
## 34         L Gregory      6    51        0       2   8.500000
## 33   KMDN Kulasekara      2    24        0       2  12.000000
## 40          MG Hogan      3    17        0       2   5.666667
## 43        MTC Waller      4    31        0       2   7.750000
## 49        RJ Gleeson      4    20        0       2   5.000000
## 48  RE van der Merwe      5    24        0       2   4.800000
## 51  RN ten Doeschate      4    32        0       2   8.000000
## 53        S Prasanna      4    20        0       2   5.000000
## 56           SW Tait      3    17        0       2   5.666667
## 57     Shahid Afridi      8    55        0       2   6.875000
## 59  T van der Gugten      3    13        1       2   4.333333
## 64          TS Mills      3    34        0       2  11.333333
## 65          WAT Beer      4    23        0       2   5.750000
## 31          JH Davey      4    28        0       2   7.000000
## 68         ZS Ansari      3    16        0       2   5.333333
## 25         GM Andrew      3    19        0       2   6.333333
## 23          GJ Batty      6    55        0       2   9.166667
## 16          DJ Bravo      3    27        0       2   9.000000
## 41          MR Quinn      6    65        0       1  10.833333
## ..               ...    ...   ...      ...     ...        ...
## 24     GL van Buuren      7    49        0       1   7.000000
## 37           MD Hunn      3    35        0       1  11.666667
## 36        LC Norwell      6    62        0       1  10.333333
## 29       JC Tredwell      4    35        0       1   8.750000
## 35         LA Dawson      6    53        0       1   8.833333
## 62           TL Best      4    51        0       0  12.750000
## 58         T Westley      2    12        0       0   6.000000
## 4         Azharullah      3    24        0       0   8.000000
## 60     TD Groenewald      1    21        0       0  21.000000
## 61         TK Curran      4    35        0       0   8.750000
## 38         MD Taylor      3    30        0       0  10.000000
## 30        JG Myburgh      1     5        0       0   5.000000
## 8          C Overton      2    18        0       0   9.000000
## 2        Ashar Zaidi      1     5        0       0   5.000000
## 66          WR Smith      2    25        0       0  12.500000
## 28         J Overton      2    24        0       0  12.000000
## 6          BJ Taylor      1     6        0       0   6.000000
## 22          GG White      4    31        0       0   7.750000
## 55          SP Crook      1     9        0       0   9.000000
## 39        ME Claydon      4    40        0       0  10.000000
## 52         RS Bopara      4    32        0       0   8.000000
## 10           CD Nash      2    19        0       0   9.500000
## 11         CH Morris      4    36        0       0   9.000000
## 12         DA Cosker      3    32        0       0  10.666667
## 13      DA Griffiths      4    39        0       0   9.750000
## 45          PD Trego      1    11        0       0  11.000000
## 44   PA van Meekeren      2    19        0       0   9.500000
## 42          MS Crane      2    25        0       0  12.500000
## 20        FK Cowdrey      1    19        0       0  19.000000
## 14        DD Masters      2    16        0       0   8.000000
## 
## [69 rows x 6 columns]

4.8 Natwest T20 Blast -Plot wins vs losses against all teams(Class 3)

import os
import pandas as pd
import yorkpy.analytics as yka
dir1="C:\\software\\cricket-package\\yorkpyNWB\\NWBT20-allMatchesAllOpposition"
path=os.path.join(dir1,"Warwickshire-allMatchesAllOpposition.csv")
w_matches = pd.read_csv(path)
yka.plotWinLossByTeamAllOpposition(w_matches,'Warwickshire')

4.9 Natwest T20 Blast -Batsmen Analysis (Class 4)

import os
import pandas as pd
import yorkpy.analytics as yka
dir1="C:\\software\\cricket-package\\yorkpyNWB\\NWBT20-BattingBowlingDetails"
# M Klinger
name="M Klinger"
team='Gloucestershire'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanRunsAgainstOpposition(df,name)

# CA Ingram
name="CA Ingram"
team='Glamorgan'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanCumulativeStrikeRate(df,name)

4.11 Natwest T20 Blast -Bowler analysis (Class 4)

import os
import pandas as pd
import yorkpy.analytics as yka
dir1="C:\\software\\cricket-package\\yorkpyNWB\\NWBT20-BattingBowlingDetails"
# BAC Howell
name="BAC Howell"
team='Gloucestershire'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerCumulativeAvgEconRate(df,name)

# GR Napier
name="GR Napier"
team='Essex'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerWicketsVenue(df,name)

Note: yorkpy will work for all T20 leagues which are in YAML format as specified in Cricsheet.

You can clone/fork the latest code for yorkpy from github yorkpy

The data for IPL, Intl. T20, BBL and Natwest T20 have already been converted into pandas dataframes and saved as CSVs. You can download the converted files from Github at [allYorkpyT20Data])(https://github.com/tvganesh/allYorkpyT20Data)

Conclusion This post shows the kind of detailed analysis that can be performed with yorkpy. In fact with all the converted data it should be possible to also train a Machine Learning model, which I will probably keep for another day. You could go ahead and use the data in other innovative ways. Do keep me posted if you do!!

Important note: Do check out my other posts using yorkpy at yorkpy-posts

Have fun with yorkpy!!

See also
1. Take 4+: Presentations on ‘Elements of Neural Networks and Deep Learning’ – Parts 1-8
2. My book ‘Practical Machine Learning in R and Python: Third edition’ on Amazon
3. Hand detection through Haartraining: A hands-on approach
4.My book ‘Deep Learning from first principles:Second Edition’ now on Amazon
5. Introducing QCSimulator: A 5-qubit quantum computing simulator in R
6. The 3rd paperback & kindle editions of my books on Cricket, now on Amazon

To see all posts click Index of posts

Pitching yorkpy … in the block hole – Part 4

A good programmer is someone who always looks both ways before crossing a one-way street.  Doug Linder

There are two ways to write error-free programs; only the third one works. Alan J. Perlis

In order to understand recursion, one must first understand recursion. Anonymous

This is the fourth and final part of my Python package yorkpy. In this part yorkpy, the python avatar of my R package yorkr see Introducing cricket package yorkr: Part 1- Beaten by sheer pace!, develops wings and is prepared for take-off. The yorkpy package uses data from Cricsheet

You can clone/download the code at Github yorkpy
This post has been published to RPubs at yorkpy-Part4
You can download this post as PDF at IPLT20-yorkpy-part4
You can download all the data used in this post and the previous post at yorkpyData

This post is a continuation of the earlier posts on yorkpy

1. Pitching yorkpy . short of good length to IPL – Part 1 In this part I included functions that convert the yaml data of IPL matches into Pandas dataframe which are then saved as CSV. This part can perform analysis of individual IPL matches. Note The converted data is available at yorkpyData
2. Pitching yorkpy.on the middle and outside off-stump to IPL – Part 2 This part included functions to create a large data frame for head-to-head confrontation between any 2IPL teams says CSK-MI, DD-KKR etc, which can be saved as CSV. Analysis is then performed on these team-2-team confrontations. Note The converted data is available at yorkpyData
3. Pitching yorkpy.swinging away from the leg stump to IPL – Part 3 The 3rd part includes the performance of any IPL team against all other IPL teams. The data can also be saved as CSV.Note The converted data is available at yorkpyData

Note: If you would like to do a similar analysis for a different set of batsman and bowlers, you can clone/download my skeleton yorkpy-template from Github (which is the R Markdown file I have used for the analysis below).

This 4th and final part includes analysis of batting and bowling performances of any IPL player. The batting and bowling details for all teams have already been converted and are available at IPLT20-Batting-BowlingDetails

This part includes the following new functions

Batsman functions

  1. batsmanRunsVsDeliveries
  2. batsmanFoursSixes
  3. batsmanDismissals
  4. batsmanRunsVsStrikeRate
  5. batsmanMovingAverage
  6. batsmanCumulativeAverageRuns
  7. batsmanCumulativeStrikeRate
  8. batsmanRunsAgainstOpposition
  9. batsmanRunsVenue

Bowler functions

  1. bowlerMeanEconomyRate
  2. bowlerMeanRunsConceded
  3. bowlerMovingAverage
  4. bowlerCumulativeAvgWickets
  5. bowlerCumulativeAvgEconRate
  6. bowlerWicketPlot
  7. bowlerWicketsAgainstOpposition
  8. bowlerWicketsVenue

A. Batsman functions

1. Get IPL Team Batting details

The function below gets the overall IPL team batting details based on the CSV files that were saved for IPL T20 matches. This is currently also available in Github at yorkpyData. The batting details of the IPL team in each match is created and a huge data frame is created by combining the batting details from each match. This can be saved as a csv file with name as for e.g. Delhi Daredevils-BattingDetails.csv.

dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
#csk_details = yka.getTeamBattingDetails("Chennai Super Kings",dir=dir1, save=True)
#dd_details = yka.getTeamBattingDetails("Delhi Daredevils",dir=dir1,save=True)
#kkr_details = yka.getTeamBattingDetails("Kolkata Knight Riders",dir=dir1,save=True)

2. Get IPL batsman details

This function is used to get the individual IPL T20 batting record for a the specified batsman of the team as in the functions below.

For the batsmen functions below I have chosen Rishabh Pant, Kane Williamson and Ambati Rayudu for the analysis as they top the batting lists. You can choose any IPL batsmen for the analysis

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
# 1. Rishabh Pant
name="RR Pant"
team='Delhi Daredevils'
rpant=yka.getBatsmanDetails(team,name,dir=dir1)

3 Batsman Runs vs Deliveries (in IPL matches)

This functions plots the runs vs deliveries faced for batsman

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
# 1. Rishabh Pant
name="RR Pant"
team='Delhi Daredevils'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanRunsVsDeliveries(df,name)

# 2. Kane Williamson
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
name="KS Williamson"
team='Sunrisers Hyderabad'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanRunsVsDeliveries(df,name)

#3. Ambati Rayudu
name="AT Rayudu"
team='Mumbai Indians'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanRunsVsDeliveries(df,name)

4. Batsman fours and sixes (in IPL matches)

This plots the fours, sixes and the total runs for a batsman

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
# 1. Rishabh Pant
name="RR Pant"
team='Delhi Daredevils'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanFoursSixes(df,name)


# 2. Kane Williamson
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
name="KS Williamson"
team='Sunrisers Hyderabad'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanFoursSixes(df,name)

#3. Ambati Rayudu
name="AT Rayudu"
team='Mumbai Indians'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanFoursSixes(df,name)

5. Batsman dismissals (in IPL matches)

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
# 1. Rishabh Pant
name="RR Pant"
team='Delhi Daredevils'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanDismissals(df,name)

# 2. Kane Williamson
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
name="KS Williamson"
team='Sunrisers Hyderabad'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanDismissals(df,name)

#3. Ambati Rayudu
name="AT Rayudu"
team='Mumbai Indians'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanDismissals(df,name)

6. Batsman Runs vs Strike Rate (in IPL matches)

The plots below give the Runs vs Strike rate for batsmen

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
# 1. Rishabh Pant
name="RR Pant"
team='Delhi Daredevils'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanRunsVsStrikeRate(df,name)

# 2. Kane Williamson
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
name="KS Williamson"
team='Sunrisers Hyderabad'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanRunsVsStrikeRate(df,name)

#3. Ambati Rayudu
name="AT Rayudu"
team='Mumbai Indians'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanRunsVsStrikeRate(df,name)

7. Batsman Moving average of runs (in IPL matches)

The plots below compute and plot the moving average of batsmen

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
# 1. Rishabh Pant
name="RR Pant"
team='Delhi Daredevils'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanMovingAverage(df,name)

# 2. Kane Williamson
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
name="KS Williamson"
team='Sunrisers Hyderabad'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanMovingAverage(df,name)

#3. Ambati Rayudu
name="AT Rayudu"
team='Mumbai Indians'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanMovingAverage(df,name)

8. Batsman Cumulative average of runs (in IPL matches)

The functions below plot the cumulative average of the batsmen

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
# 1. Rishabh Pant
name="RR Pant"
team='Delhi Daredevils'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanCumulativeAverageRuns(df,name)

# 2. Kane Williamson
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
name="KS Williamson"
team='Sunrisers Hyderabad'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanCumulativeAverageRuns(df,name)

#3. Ambati Rayudu
name="AT Rayudu"
team='Mumbai Indians'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanCumulativeAverageRuns(df,name)

9. Batsman Cumulative Strike Rate (in IPL matches)

The functions below plot the cumulative strike rate of the batsmen

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
# 1. Rishabh Pant
name="RR Pant"
team='Delhi Daredevils'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanCumulativeStrikeRate(df,name)

# 2. Kane Williamson
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
name="KS Williamson"
team='Sunrisers Hyderabad'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanCumulativeStrikeRate(df,name)

#3. Ambati Rayudu
name="AT Rayudu"
team='Mumbai Indians'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanCumulativeStrikeRate(df,name)

10. Batsman performance against opposition (in IPL matches)

The plots below show how the batsmen performed against other IPL teams

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
# 1. Rishabh Pant
name="RR Pant"
team='Delhi Daredevils'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanRunsAgainstOpposition(df,name)

# 2. Kane Williamson
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
name="KS Williamson"
team='Sunrisers Hyderabad'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanRunsAgainstOpposition(df,name)

#3. Ambati Rayudu
name="AT Rayudu"
team='Mumbai Indians'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanRunsAgainstOpposition(df,name)

11. Batsman performance at different venues (in IPL matches)

The plots below show how the batsmen performed at different venues

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
# 1. Rishabh Pant
name="RR Pant"
team='Delhi Daredevils'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanRunsVenue(df,name)

# 2. Kane Williamson
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
name="KS Williamson"
team='Sunrisers Hyderabad'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanRunsVenue(df,name)

#3. Ambati Rayudu
name="AT Rayudu"
team='Mumbai Indians'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanRunsVenue(df,name)

B. Bowler functions

12. Get bowling details in IPL matches

The function below gets the overall team IPL T20 bowling details based on the RData file available in IPL T20 matches. This is currently also available in Github at yorkpyData. The IPL T20 bowling details of the IPL team in each match is created, and a huge data frame is created by stacking the individual dataframes. This can be saved as a CSV file for e.g. Chennai Super Kings-BowlingDetails.csv

dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
#kkr_bowling = yka.getTeamBowlingDetails("Kolkata Knight Riders",dir=dir1,save=True)
#csk_bowling = yka.getTeamBowlingDetails("Chennai Super Kings",dir=dir1,save=True)
#kxip_bowling = yka.getTeamBowlingDetails("Kings XI Punjab",dir=dir1,save=True)

13. Get bowling details of the individual IPL bowlers

This function is used to get the individual bowling record for a specified bowler of the country as in the functions below.

The plots below deal with bowler’s performance. For this analysis I have chosen Amit Mishra, Piyush Chawla and Bhuvaneshwar Kumar for the analysis. You can chose any other IPL bowler

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
# 1. Amit Mishra
name="A Mishra"
team='Delhi Daredevils'
#df=yka.getBowlerWicketDetails(team,name,dir=dir1)

14. Bowler Economy Rate (in IPL matches)

The plots below show the economy rate of the selected bowlers

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
# 1. Amit Mishra
name="A Mishra"
team='Delhi Daredevils'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerMeanEconomyRate(df,name)

# 2. Piyush Chawla
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
name="PP Chawla"
team='Kolkata Knight Riders'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerMeanEconomyRate(df,name)

#3. Bhuvneshwar Kumar
name="B Kumar"
team='Sunrisers Hyderabad'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerMeanEconomyRate(df,name)

15. Bowler Mean Runs conceded (in IPL matches)

The plots below show the mean runs conceded by the selected bowlers

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
# 1. Amit Mishra
name="A Mishra"
team='Delhi Daredevils'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerMeanRunsConceded(df,name)

# 2. Piyush Chawla
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
name="PP Chawla"
team='Kolkata Knight Riders'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerMeanRunsConceded(df,name)

#3. Bhuvneshwar Kumar
name="B Kumar"
team='Sunrisers Hyderabad'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerMeanRunsConceded(df,name)

16. Moving average of wickets for bowler (in IPL matches)

The moving average of the bowlers are plotted below

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
# 1. Amit Mishra
name="A Mishra"
team='Delhi Daredevils'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerMovingAverage(df,name)

# 2. Piyush Chawla
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
name="PP Chawla"
team='Kolkata Knight Riders'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerMovingAverage(df,name)

#3. Bhuvneshwar Kumar
name="B Kumar"
team='Sunrisers Hyderabad'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerMovingAverage(df,name)

17. Cumulative average wickets for bowler (in IPL matches)

The cumulative average wickets for each bowler is computed and plotted

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
# 1. Amit Mishra
name="A Mishra"
team='Delhi Daredevils'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerCumulativeAvgWickets(df,name)

# 2. Piyush Chawla
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
name="PP Chawla"
team='Kolkata Knight Riders'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerCumulativeAvgWickets(df,name)

#3. Bhuvneshwar Kumar
name="B Kumar"
team='Sunrisers Hyderabad'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerCumulativeAvgWickets(df,name)

18. Cumulative average economy rate for bowler (in IPL matches)

The plots below give the cumulative average economy rate for each bowler

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
# 1. Amit Mishra
name="A Mishra"
team='Delhi Daredevils'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerCumulativeAvgEconRate(df,name)

# 2. Piyush Chawla
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
name="PP Chawla"
team='Kolkata Knight Riders'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerCumulativeAvgEconRate(df,name)

#3. Bhuvneshwar Kumar
name="B Kumar"
team='Sunrisers Hyderabad'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerCumulativeAvgEconRate(df,name)

19. Bowler wicket plot (in IPL matches)

The plots below give the over vs wickets for bowlers

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
# 1. Amit Mishra
name="A Mishra"
team='Delhi Daredevils'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerWicketPlot(df,name)

# 2. Piyush Chawla
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
name="PP Chawla"
team='Kolkata Knight Riders'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerWicketPlot(df,name)

#3. Bhuvneshwar Kumar
name="B Kumar"
team='Sunrisers Hyderabad'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerWicketPlot(df,name)

20. Bowler wicket against opposition (in IPL matches)

The performance of the bowlers against different IPL teams is shown below

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
# 1. Amit Mishra
name="A Mishra"
team='Delhi Daredevils'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerWicketsAgainstOpposition(df,name)

# 2. Piyush Chawla
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
name="PP Chawla"
team='Kolkata Knight Riders'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerWicketsAgainstOpposition(df,name)

#3. Bhuvneshwar Kumar
name="B Kumar"
team='Sunrisers Hyderabad'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerWicketsAgainstOpposition(df,name)

21. Bowler wicket in different venues (in IPL matches)

The plots below show how the bowlers perform at different venues

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
# 1. Amit Mishra
name="A Mishra"
team='Delhi Daredevils'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerWicketsVenue(df,name)

# 2. Piyush Chawla
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
name="PP Chawla"
team='Kolkata Knight Riders'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerWicketsVenue(df,name)

#3. Bhuvneshwar Kumar
name="B Kumar"
team='Sunrisers Hyderabad'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerWicketsVenue(df,name)

Note:You can clone/download the code at Github yorkpy

Important note: Do check out my other posts using yorkpy at yorkpy-posts

Conclusion: This concludes the python package yorkpy. Go ahead and give yorkpy a spin!

Also see
1. Take 4+: Presentations on ‘Elements of Neural Networks and Deep Learning’ – Parts 1-8
2. My book ‘Practical Machine Learning in R and Python: Third edition’ on Amazon
3. Hand detection through Haartraining: A hands-on approach
4.My book ‘Deep Learning from first principles:Second Edition’ now on Amazon
5. Big Data-1: Move into the big league:Graduate from Python to Pyspark
6. Cricpy takes a swing at the ODIs

To see all posts click Index of posts

Pitching yorkpy … short of good length to IPL – Part 1

I fear not the man who has practiced 10,000 kicks once, but I fear the man who has practiced one kick 10,000 times.
Bruce Lee

I’ve missed more than 9000 shots in my career. I’ve lost almost 300 games. 26 times, I’ve been trusted to take the game winning shot and missed. I’ve failed over and over and over again in my life. And that is why I succeed.
Michael Jordan

Man, it doesn’t matter where you come in to bat, the score is still zero
Viv Richards

Introduction

“If cricketr is to cricpy, then yorkr is to _____?”. Yes, you guessed it right, it is yorkpy. In this post, I introduce my 2nd python package, yorkpy, which is a python clone of my R package yorkr. This package is based on data from Cricsheet. yorkpy currently handles IPL T20 matches.

When I created cricpy, the python avatar, of my R package cricketr, see Introducing cricpy:A python package to analyze performances of cricketers, I had decided that I should avoid doing a python avatar of my R package yorkr (see Introducing cricket package yorkr: Part 1- Beaten by sheer pace!) , as it was more involved, and required the parsing of match data available as yaml files.

Just out of curiosity, I tried the python package ‘yaml’ to read the match data, and lo and behold, I was sucked into the developing the package and so, yorkpy was born. Of course, it goes without saying that, usually when I am in the thick of developing something, I occasionally wonder, why I am doing it, for whom and for what purpose? Maybe it is the joy of ideation, the problem-solving,  the programmer’s high, for sharing my ideas etc. Anyway, whatever be the reason, I hope you enjoy this post and also find yorkpy useful.

You can clone/download the code at Github yorkpy
This post has been published to RPubs at yorkpy-Part1
You can download this post as PDF at IPLT20-yorkpy-part1

Note: If you would like to do a similar analysis for a different set of batsman and bowlers, you can clone/download my skeleton yorkpy-template from Github (which is the R Markdown file I have used for the analysis below).

The IPL T20 functions in yorkpy are

2. Install the package using ‘pip install’

import pandas as pd
import yorkpy.analytics as yka
#pip install yorkpy

3. Load a yaml file from Cricsheet

There are 2 functions that can be to convert the IPL Twenty20 yaml files to pandas dataframeare

  1. convertYaml2PandasDataframeT20
  2. convertAllYaml2PandasDataframesT20

Note 1: While I have already converted the IPL T20 files, you will need to use these functions for future IPL matches

4. Convert and save IPL T20 yaml file to pandas dataframe

This function will convert a IPL T20 IPL yaml file, in the format as specified in Cricsheet to pandas dataframe. This will be saved as as CSV file in the target directory. The name of the file wil have the following format team1-team2-date.csv. The IPL T20 zip file can be downloaded from Indian Premier League matches.  An example of how a yaml file can be converted to a dataframe and saved is shown below.

import pandas as pd
import yorkpy.analytics as yka
#convertYaml2PandasDataframe(".\\1082593.yaml","..\ipl", ..\\data")

5. Convert and save all IPL T20 yaml files to dataframes

This function will convert all IPL T20 yaml files from a source directory to dataframes, and save it in the target directory, with the names as mentioned above. Since I have already done this, I will not be executing this again. You can download the zip of all the converted RData files from Github at yorkpyData

import pandas as pd
import yorkpy.analytics as yka
#convertAllYaml2PandasDataframes("..\\ipl", "..\\data")

You can download the the zip of the files and use it directly in the functions as follows.For the analysis below I chosen a set of random IPL matches

The randomly selected IPL T20 matches are

  • Chennai Super Kings vs Kings Xi Punjab, 2014-05-30
  • Deccan Chargers vs Delhi Daredevils, 2012-05-10
  • Gujarat Lions vs Mumbai Indians, 2017-04-29
  • Kolkata Knight Riders vs Rajasthan Royals, 2010-04-17
  • Rising Pune Supergiants vs Royal Challengers Bangalore, 2017-04-29

6. Team batting scorecard

The function below computes the batting score card of a team in an IPL match. The scorecard gives the balls faced, the runs scored, 4s, 6s and strike rate. The example below is based on the CSK KXIP match on 30 May 2014.

You can check against the actual scores in this match Chennai Super Kings-Kings XI Punjab-2014-05-30

import pandas as pd
import yorkpy.analytics as yka
csk_kxip=pd.read_csv(".\\Chennai Super Kings-Kings XI Punjab-2014-05-30.csv")
scorecard,extras=yka.teamBattingScorecardMatch(csk_kxip,"Chennai Super Kings")
print(scorecard)
##         batsman  runs  balls  4s  6s          SR
## 0      DR Smith     7     12   0   0   58.333333
## 1  F du Plessis     0      1   0   0    0.000000
## 2      SK Raina    87     26  12   6  334.615385
## 3   BB McCullum    11     16   0   0   68.750000
## 4     RA Jadeja    27     22   2   1  122.727273
## 5     DJ Hussey     1      3   0   0   33.333333
## 6      MS Dhoni    42     34   3   3  123.529412
## 7      R Ashwin    10     11   0   0   90.909091
## 8     MM Sharma     1      3   0   0   33.333333
print(extras)
##    total  wides  noballs  legbyes  byes  penalty  extras
## 0    428     14        3        5     5        0      27
print("\n\n")
scorecard1,extras1=yka.teamBattingScorecardMatch(csk_kxip,"Kings XI Punjab")
print(scorecard1)
##       batsman  runs  balls  4s  6s          SR
## 0    V Sehwag   122     62  12   8  196.774194
## 1     M Vohra    34     33   1   2  103.030303
## 2  GJ Maxwell    13      8   1   1  162.500000
## 3   DA Miller    38     19   5   1  200.000000
## 4   GJ Bailey     1      2   0   0   50.000000
## 5     WP Saha     6      4   0   1  150.000000
## 6  MG Johnson     1      1   0   0  100.000000
print(extras1)
##    total  wides  noballs  legbyes  byes  penalty  extras
## 0    428     14        3        5     5        0      27

Let’s take another random match between Gujarat Lions and Mumbai Indian on 29 Apr 2017 Gujarat Lions-Mumbai Indians-2017-04-29

import pandas as pd
gl_mi=pd.read_csv(".\\Gujarat Lions-Mumbai Indians-2017-04-29.csv")
import yorkpy.analytics as yka
scorecard,extras=yka.teamBattingScorecardMatch(gl_mi,"Gujarat Lions")
print(scorecard)
##          batsman  runs  balls  4s  6s          SR
## 0   Ishan Kishan    48     38   6   2  126.315789
## 1    BB McCullum     6      4   1   0  150.000000
## 2       SK Raina     1      3   0   0   33.333333
## 3       AJ Finch     0      3   0   0    0.000000
## 4     KD Karthik     2      9   0   0   22.222222
## 5      RA Jadeja    28     22   2   1  127.272727
## 6    JP Faulkner    21     29   2   0   72.413793
## 7      IK Pathan     2      3   0   0   66.666667
## 8         AJ Tye    25     12   2   2  208.333333
## 9   Basil Thampi     2      4   0   0   50.000000
## 10    Ankit Soni     7      2   0   1  350.000000
print(extras)
##    total  wides  noballs  legbyes  byes  penalty  extras
## 0    306      8        3        1     0        0      12
print("\n\n")
scorecard1,extras1=yka.teamBattingScorecardMatch(gl_mi,"Mumbai Indians")
print(scorecard1)
##             batsman  runs  balls  4s  6s          SR
## 0          PA Patel    70     45   9   1  155.555556
## 1        JC Buttler     9      7   2   0  128.571429
## 2            N Rana    19     16   1   1  118.750000
## 3         RG Sharma     5     13   0   0   38.461538
## 4        KA Pollard    15     11   2   0  136.363636
## 5         KH Pandya    29     20   2   1  145.000000
## 6         HH Pandya     4      5   0   0   80.000000
## 7   Harbhajan Singh     0      1   0   0    0.000000
## 8    MJ McClenaghan     1      1   0   0  100.000000
## 9         JJ Bumrah     0      1   0   0    0.000000
## 10       SL Malinga     0      1   0   0    0.000000
print(extras1)
##    total  wides  noballs  legbyes  byes  penalty  extras
## 0    306      8        3        1     0        0      12

7. Plot the team batting partnerships

The functions below plot the team batting partnership in the match. It shows what the partnership were in the mtach

Note: Many of the plots include an additional parameters plot which is either True or False. The default value is plot=True. When plot=True the plot will be displayed. When plot=False the data frame will be returned to the user. The user can use this to create an interactive chart using one of the packages like rcharts, ggvis,googleVis or plotly.

import pandas as pd
import yorkpy.analytics as yka
dc_dd=pd.read_csv(".\\Deccan Chargers-Delhi Daredevils-2012-05-10.csv")
yka.teamBatsmenPartnershipMatch(dc_dd,'Deccan Chargers','Delhi Daredevils')

yka.teamBatsmenPartnershipMatch(dc_dd,'Delhi Daredevils','Deccan Chargers',plot=True)
# Print partnerships as a dataframe

rps_rcb=pd.read_csv(".\\Rising Pune Supergiant-Royal Challengers Bangalore-2017-04-29.csv")
m=yka.teamBatsmenPartnershipMatch(rps_rcb,'Royal Challengers Bangalore','Rising Pune Supergiant',plot=False)
print(m)
##            batsman     non_striker  runs
## 0   AB de Villiers         V Kohli     3
## 1         AF Milne         V Kohli     5
## 2        KM Jadhav         V Kohli     7
## 3           P Negi         V Kohli     3
## 4        S Aravind         V Kohli     0
## 5        S Aravind       YS Chahal     8
## 6         S Badree         V Kohli     2
## 7        STR Binny         V Kohli     1
## 8      Sachin Baby         V Kohli     2
## 9          TM Head         V Kohli     2
## 10         V Kohli  AB de Villiers    17
## 11         V Kohli        AF Milne     5
## 12         V Kohli       KM Jadhav     4
## 13         V Kohli          P Negi     9
## 14         V Kohli       S Aravind     2
## 15         V Kohli        S Badree     8
## 16         V Kohli     Sachin Baby     1
## 17         V Kohli         TM Head     9
## 18       YS Chahal       S Aravind     4

8. Batsmen vs Bowler

The function below computes and plots the performances of the batsmen vs the bowlers. As before the plot parameter can be set to True or False. By default it is plot=True

import pandas as pd
import yorkpy.analytics as yka
gl_mi=pd.read_csv(".\\Gujarat Lions-Mumbai Indians-2017-04-29.csv")
yka.teamBatsmenVsBowlersMatch(gl_mi,"Gujarat Lions","Mumbai Indians", plot=True)
# Print 

csk_kxip=pd.read_csv(".\\Chennai Super Kings-Kings XI Punjab-2014-05-30.csv")
m=yka.teamBatsmenVsBowlersMatch(csk_kxip,'Chennai Super Kings','Kings XI Punjab',plot=False)
print(m)
##          batsman           bowler  runs
## 0    BB McCullum         AR Patel     4
## 1    BB McCullum       GJ Maxwell     1
## 2    BB McCullum  Karanveer Singh     6
## 3      DJ Hussey          P Awana     1
## 4       DR Smith       MG Johnson     7
## 5       DR Smith          P Awana     0
## 6       DR Smith   Sandeep Sharma     0
## 7   F du Plessis       MG Johnson     0
## 8      MM Sharma         AR Patel     0
## 9      MM Sharma       MG Johnson     0
## 10     MM Sharma          P Awana     1
## 11      MS Dhoni         AR Patel    12
## 12      MS Dhoni  Karanveer Singh     2
## 13      MS Dhoni       MG Johnson    11
## 14      MS Dhoni          P Awana    15
## 15      MS Dhoni   Sandeep Sharma     2
## 16      R Ashwin         AR Patel     1
## 17      R Ashwin  Karanveer Singh     4
## 18      R Ashwin       MG Johnson     1
## 19      R Ashwin          P Awana     1
## 20      R Ashwin   Sandeep Sharma     3
## 21     RA Jadeja         AR Patel     5
## 22     RA Jadeja       GJ Maxwell     3
## 23     RA Jadeja  Karanveer Singh    19
## 24     RA Jadeja          P Awana     0
## 25      SK Raina       MG Johnson    21
## 26      SK Raina          P Awana    40
## 27      SK Raina   Sandeep Sharma    26

9. Bowling Scorecard

This function provides the bowling performance, the number of overs bowled, maidens, runs conceded. wickets taken and economy rate for the IPL match

import pandas as pd
import yorkpy.analytics as yka
dc_dd=pd.read_csv(".\\Deccan Chargers-Delhi Daredevils-2012-05-10.csv")
a=yka.teamBowlingScorecardMatch(dc_dd,'Deccan Chargers')
print(a)
##        bowler  overs  runs  maidens  wicket  econrate
## 0  AD Russell      4    39        0       0      9.75
## 1   IK Pathan      4    46        0       1     11.50
## 2    M Morkel      4    32        0       1      8.00
## 3    S Nadeem      4    39        0       0      9.75
## 4    VR Aaron      4    30        0       2      7.50
rps_rcb=pd.read_csv(".\\Rising Pune Supergiant-Royal Challengers Bangalore-2017-04-29.csv")
b=yka.teamBowlingScorecardMatch(rps_rcb,'Royal Challengers Bangalore')
print(b)
##               bowler  overs  runs  maidens  wicket  econrate
## 0          DL Chahar      2    18        0       0      9.00
## 1       DT Christian      4    25        0       1      6.25
## 2        Imran Tahir      4    18        0       3      4.50
## 3         JD Unadkat      4    19        0       1      4.75
## 4        LH Ferguson      4     7        1       3      1.75
## 5  Washington Sundar      2     7        0       1      3.50

10. Wicket Kind

The plots below provide the kind of wicket taken by the bowler (caught, bowled, lbw etc.) for the IPL match

import pandas as pd
import yorkpy.analytics as yka
kkr_rr=pd.read_csv(".\\Kolkata Knight Riders-Rajasthan Royals-2010-04-17.csv")
yka.teamBowlingWicketKindMatch(kkr_rr,'Kolkata Knight Riders','Rajasthan Royals')

csk_kxip=pd.read_csv(".\\Chennai Super Kings-Kings XI Punjab-2014-05-30.csv")
m = yka.teamBowlingWicketKindMatch(csk_kxip,'Chennai Super Kings','Kings-Kings XI Punjab',plot=False)
print(m)
##             bowler     kind  player_out
## 0         AR Patel  run out           1
## 1         AR Patel  stumped           1
## 2  Karanveer Singh  run out           1
## 3       MG Johnson   caught           1
## 4          P Awana   caught           2
## 5   Sandeep Sharma   bowled           1

11. Wicket vs Runs conceded

The plots below provide the wickets taken and the runs conceded by the bowler in the IPL T20 match

import pandas as pd
import yorkpy.analytics as yka
dc_dd=pd.read_csv(".\\Deccan Chargers-Delhi Daredevils-2012-05-10.csv")
yka.teamBowlingWicketMatch(dc_dd,"Deccan Chargers", "Delhi Daredevils",plot=True)

print("\n\n")
rps_rcb=pd.read_csv(".\\Rising Pune Supergiant-Royal Challengers Bangalore-2017-04-29.csv")
a=yka.teamBowlingWicketMatch(rps_rcb,"Royal Challengers Bangalore", "Rising Pune Supergiant",plot=False)
print(a)
##               bowler      player_out  kind
## 0       DT Christian         V Kohli     1
## 1        Imran Tahir        AF Milne     1
## 2        Imran Tahir          P Negi     1
## 3        Imran Tahir        S Badree     1
## 4         JD Unadkat         TM Head     1
## 5        LH Ferguson  AB de Villiers     1
## 6        LH Ferguson       KM Jadhav     1
## 7        LH Ferguson       STR Binny     1
## 8  Washington Sundar     Sachin Baby     1

12. Bowler Vs Batsmen

The functions compute and display how the different bowlers of the IPL team performed against the batting opposition.

import pandas as pd
import yorkpy.analytics as yka
csk_kxip=pd.read_csv(".\\Chennai Super Kings-Kings XI Punjab-2014-05-30.csv")
yka.teamBowlersVsBatsmenMatch(csk_kxip,"Chennai Super Kings","Kings XI Punjab")

print("\n\n")
kkr_rr=pd.read_csv(".\\Kolkata Knight Riders-Rajasthan Royals-2010-04-17.csv")
m =yka.teamBowlersVsBatsmenMatch(kkr_rr,"Rajasthan Royals","Kolkata Knight Riders",plot=False)
print(m)
##        batsman      bowler  runs
## 0     AC Voges    AB Dinda     1
## 1     AC Voges  JD Unadkat     1
## 2     AC Voges   LR Shukla     1
## 3     AC Voges    M Kartik     5
## 4     AJ Finch    AB Dinda     3
## 5     AJ Finch  JD Unadkat     3
## 6     AJ Finch   LR Shukla    13
## 7     AJ Finch    M Kartik     2
## 8     AJ Finch     SE Bond     0
## 9      AS Raut    AB Dinda     1
## 10     AS Raut  JD Unadkat     1
## 11    FY Fazal    AB Dinda     1
## 12    FY Fazal   LR Shukla     3
## 13    FY Fazal    M Kartik     3
## 14    FY Fazal     SE Bond     6
## 15     NV Ojha    AB Dinda    10
## 16     NV Ojha  JD Unadkat     5
## 17     NV Ojha   LR Shukla     0
## 18     NV Ojha    M Kartik     1
## 19     NV Ojha     SE Bond     2
## 20     P Dogra  JD Unadkat     2
## 21     P Dogra   LR Shukla     5
## 22     P Dogra    M Kartik     1
## 23     P Dogra     SE Bond     0
## 24  SK Trivedi    AB Dinda     4
## 25    SK Warne    AB Dinda     2
## 26    SK Warne    M Kartik     1
## 27    SK Warne     SE Bond     0
## 28   SR Watson    AB Dinda     2
## 29   SR Watson  JD Unadkat    13
## 30   SR Watson   LR Shukla     1
## 31   SR Watson    M Kartik    18
## 32   SR Watson     SE Bond    10
## 33   YK Pathan  JD Unadkat     1
## 34   YK Pathan   LR Shukla     7

13. Match worm chart

The plots below provide the match worm graph for the IPL Twenty 20 matches

import pandas as pd
import yorkpy.analytics as yka
dc_dd=pd.read_csv(".\\Deccan Chargers-Delhi Daredevils-2012-05-10.csv")
yka.matchWormChart(dc_dd,"Deccan Chargers", "Delhi Daredevils")

gl_mi=pd.read_csv(".\\Gujarat Lions-Mumbai Indians-2017-04-29.csv")
yka.matchWormChart(gl_mi,"Mumbai Indians","Gujarat Lions")

Feel free to clone/download the code from Github yorkpy

Conclusion

This post included all functions between 2 IPL teams from the package yorkpy for IPL Twenty20 matches. As mentioned above the yaml match files have been already converted to dataframes and are available for download from Github at yorkpyData

After having used Python and R for analytics, Machine Learning and Deep Learning, I have now realized that neither language is superior or inferior. Both have, some good packages and some that are not so well suited.

To be continued. Watch this space!

Important note: Do check out my other posts using yorkpy at yorkpy-posts

You may also like
1.My book ‘Deep Learning from first principles:Second Edition’ now on Amazon
2.My book ‘Practical Machine Learning in R and Python: Second edition’ on Amazon
2. Cricpy takes a swing at the ODIs
3. Introducing cricket package yorkr: Part 1- Beaten by sheer pace!
4. Big Data-1: Move into the big league:Graduate from Python to Pyspark
5. Simulating an Edge Shape in Android

To see all posts click Index of posts

Using Linear Programming (LP) for optimizing bowling change or batting lineup in T20 cricket

In my recent post, My travels through the realms of Data Science, Machine Learning, Deep Learning and (AI), I had recounted my journey in the domains of of Data Science, Machine Learning (ML), and more recently Deep Learning (DL) all of which are useful while analyzing data. Of late, I have come to the realization that there are many facets to data. And to glean insights from data, Data Science, ML and DL alone are not sufficient and one needs to also have a good handle on linear programming and optimization. My colleague at IBM Research also concurred with this view and told me he had arrived at this conclusion several years ago.

If you are passionate about cricket, and love analyzing cricket performances, then check out my 2 racy books on cricket! In my books, I perform detailed yet compact analysis of performances of both batsmen, bowlers besides evaluating team & match performances in Tests , ODIs, T20s & IPL. You can buy my books on cricket from Amazon at $12.99 for the paperback and $4.99/$6.99 respectively for the kindle versions. The books can be accessed at Cricket analytics with cricketr  and Beaten by sheer pace-Cricket analytics with yorkr  A must read for any cricket lover! Check it out!!

1

While ML & DL are very useful and interesting to make inferences and predictions of outputs from input variables, optimization computes the choice of input which results in maximizing or minimizing the output. So I made a small course correction and started on a course from India’s own NPTEL Introduction to Linear Programming by Prof G. Srinivasan of IIT Madras (highly recommended!). The lectures are delivered with remarkable clarity by the Prof and I am just about halfway through the course (each lecture is of 50-55 min duration), when I decided that I needed to try to formulate and solve some real world Linear Programming problem.

As usual, I turned towards cricket for some appropriate situations, and sure enough it was there in the open. For this LP formulation I take International T20 and IPL, though International ODI will also work equally well.  You can download the associated code and data for this from Github at LP-cricket-analysis

In T20 matches the captain has to make choice of how to rotate bowlers with the aim of restricting the batting side. Conversely, the batsmen need to take advantage of the bowling strength to maximize the runs scored.

Note:
a) A simple and obvious strategy would be
– If the ith bowler’s economy rate is less than the economy rate of the jth bowler i.e.
er_{i} < er_{j} then have bowler ‘i’ to bowl more overs as his/her economy rate is better

b)A better strategy would be to consider the economy rate of each bowler against each batsman. How often  have we witnessed bowlers with a great bowling average get thrashed time and again by the same batsman, or a bowler who is generally very poor being very effective against a particular batsman. i.e. er_{ij} < er_{ik} where the jth bowler is more effective than the kth bowler against the ith batsman. This now becomes a linear optimization problem as we can have several combinations of number of overs X economy rate for different bowlers and we will have to solve this algorithmically to determine the lowest score for bowling performance or highest score for batting order.

This post uses the latter approach to optimize bowling change and batting lineup.

Let is take a hypothetical situation
Assume there are 3 bowlers – bwlr_{1},bwlr_{2},bwlr_{3}
and there are 4 batsmen – bman_{1},bman_{2},bman_{3},bman_{4}

Let the economy rate er_{ij} be the Economy Rate of the jth bowler to the ith batsman. Also if remaining overs for the bowlers are o_{1},o_{2},o_{3}
and the total number of overs left to be bowled are
o_{1}+o_{2}+o_{3} = N then the question is

a) Given the economy rate of each bowler per batsman, how many overs should each bowler bowl, so that the total runs scored by all the batsmen are minimum?

b) Alternatively, if the know the individual strike rate of a batsman against the individual bowlers, how many overs should each batsman face with a bowler so that the total runs scored is maximized?

1. LP Formulation for bowling order

Let the economy rate er_{ij} be the Economy Rate of the jth bowler to the ith batsman.
Objective function : Minimize –
er_{11}*o_{11} + er_{12}*o_{12} +..+er_{1n}*o_{1n}+ er_{21}*o_{21} + er_{22}*o_{22}+.. + er_{22}*o_{2n}+ er_{m1}*o_{m1}+..+ er_{mn}*o_{mn}
i.e.
\sum_{i=1}^{i=m}\sum_{j=1}^{i=n}er_{ij}*o_{ij}
Constraints
Where o_{j} is the number of overs remaining for the jth bowler against  ‘k’ batsmen
o_{j1} + o_{j2} + .. o_{jk} < o_{j}
and if the total number of overs remaining to be bowled is N then
o_{1} + o_{2} +...+ o_{k} = N or
\sum_{j=1}^{j=k} o_{j} =N
The overs that any bowler can bowl is o_{j} >=0

2. LP Formulation for batting lineup

Let the strike rate sr_{ij}  be the Strike Rate of the ith batsman to the jth bowler
Objective function : Maximize –
sr_{11}*o_{11} + sr_{12}*o_{12} +..+ sr_{1n}*o_{1n}+ sr_{21}*o_{21} + sr_{22}*o_{22}+.. sr_{2n}*o_{2n}+ sr_{m1}*o_{m1}+..+ sr_{mn}*o_{mn}
i.e.
\sum_{i=1}^{i=4}\sum_{j=1}^{i=3}sr_{ij}*o_{ij}
Constraints
Where o_{j} is the number of overs remaining for the jth bowler against  ‘k’ batsmen
o_{j1} + o_{j2} + .. o_{jk} < o_{j}
and the total number of overs remaining to be bowled is N then
o_{1} + o_{2} +...+ o_{k} = N or
\sum_{j=1}^{j=k} o_{j} =N
The overs that any bowler can bowl is
o_{j} >=0

lpSolveAPI– For this maximization and minimization problem I used lpSolveAPI.

Below I take 2 simple examples (example1 & 2)  to ensure that my LP formulation and solution is correct before applying it on real T20 cricket data (Intl. T20 and IPL)

3. LP formulation (Example 1)

Initially I created a test example to ensure that I get the LP formulation and solution correct. Here the er1=4 and er2=3 and o1 & o2 are the overs bowled by bowlers 1 & 2. Also o1+o2=4 In this example as below

o1 o2 Obj Fun(=4o1+3o2)
1    3      13
2    2      14
3    1      15

library(lpSolveAPI)
library(dplyr)
library(knitr)
lprec <- make.lp(0, 2)
a <-lp.control(lprec, sense="min")
set.objfn(lprec, c(4, 3))  # Economy Rate of 4 and 3 for er1 and er2
add.constraint(lprec, c(1, 1), "=",4)  # o1 + o2 =4
add.constraint(lprec, c(1, 0), ">",1)  # o1 > 1
add.constraint(lprec, c(0, 1), ">",1)  # o2 > 1
lprec
## Model name: 
##             C1    C2       
## Minimize     4     3       
## R1           1     1   =  4
## R2           1     0  >=  1
## R3           0     1  >=  1
## Kind       Std   Std       
## Type      Real  Real       
## Upper      Inf   Inf       
## Lower        0     0
b <-solve(lprec)
get.objective(lprec) # 13
## [1] 13
get.variables(lprec) # 1    3 
## [1] 1 3

Note 1: In the above example 13 runs is the minimum that can be scored and this requires

LP solution:
Minimum runs=13

  • o1=1
  • o2=3

Note 2:The numbers in the columns represent the number of overs that need to be bowled by a bowler to the corresponding batsman.

4. LP formulation (Example 2)

In this formulation there are 2 bowlers and 2 batsmen o11,o12 are the oves bowled by bowler 1 to batsmen 1 & 2 and o21, o22 are the overs bowled by bowler 2 to batsmen 1 & 2 er11=4, er12=2,er21=2,er22=5 o11+o12+o21+o22=5

The solution for this manually computed is o11, o12, o21, o22 Runs
where B11, B12 are the overs bowler 1 bowls to batsman 1 and B21 and B22 are overs bowler 2 bowls to batsman 2

o11     o12    o21    o22      Runs=(4*o11+2*o12+2*o21+5*o22)
1            1             1            2           18
1           2              1             1           15
2           1              1            1            17
1           1               2            1            15

lprec <- make.lp(0, 4)
a <-lp.control(lprec, sense="min")
set.objfn(lprec, c(4, 2,2,5))
add.constraint(lprec, c(1, 1,0,0), "<=",8)
add.constraint(lprec, c(0, 0,1,1), "<=",7)
add.constraint(lprec, c(1, 1,1,1), "=",5)
add.constraint(lprec, c(1, 0,0,0), ">",1)
add.constraint(lprec, c(0, 1,0,0), ">",1)
add.constraint(lprec, c(0, 0,1,0), ">",1)
add.constraint(lprec, c(0, 0,0,1), ">",1)
lprec
## Model name: 
##             C1    C2    C3    C4       
## Minimize     4     2     2     5       
## R1           1     1     0     0  <=  8
## R2           0     0     1     1  <=  7
## R3           1     1     1     1   =  5
## R4           1     0     0     0  >=  1
## R5           0     1     0     0  >=  1
## R6           0     0     1     0  >=  1
## R7           0     0     0     1  >=  1
## Kind       Std   Std   Std   Std       
## Type      Real  Real  Real  Real       
## Upper      Inf   Inf   Inf   Inf       
## Lower        0     0     0     0
b<-solve(lprec)
get.objective(lprec) 
## [1] 15
get.variables(lprec) 
## [1] 1 2 1 1

Note: In the above example 15 runs is the minimum that can be scored and this requires

LP Solution:
Minimum runs=15

  • o11=1
  • o12=2
  • o21=1
  • o22=1

It is possible to keep the minimum to other values and solves also.

5. LP formulation for International T20 India vs Australia (Batting lineup)

To analyze batting and bowling lineups in the cricket world I needed to get the ball-by-ball details of runs scored by each batsman against each of the bowlers. Fortunately I had already created this with my R package yorkr. yorkr processes yaml data from Cricsheet. So I copied the data of all matches between Australia and India in International T20s. You can download my processed data for International T20 at Inswinger

load("Australia-India-allMatches.RData")
dim(matches)
## [1] 3541   25

The following functions compute the ‘Strike Rate’ of a batsman as

SR=1/oversRunsScored

Also the Economy Rate is computed as

ER=1/oversRunsConceded

Incidentally the SR=ER

# Compute the Strike Rate of the batsman
computeSR <- function(batsman1,bowler1){
    a <- matches %>% filter(batsman==batsman1 & bowler==bowler1) 
    a1 <- a %>% summarize(totalRuns=sum(runs),count=n()) %>% mutate(SR=(totalRuns/count)*6)
    a1
}

# Compute the Economy Rate of the batsman
computeER <- function(batsman1,bowler1){
    a <- matches %>% filter(batsman==batsman1 & bowler==bowler1) 
    a1 <- a %>% summarize(totalRuns=sum(runs),count=n()) %>% mutate(ER=(totalRuns/count)*6)
    a1
}

Here I compute the Strike Rate of Virat Kohli, Yuvraj Singh and MS Dhoni against Shane Watson, Brett Lee and MA Starc

 # Kohli
kohliWatson<- computeSR("V Kohli","SR Watson")
kohliWatson
##   totalRuns count       SR
## 1        45    37 7.297297
kohliLee <- computeSR("V Kohli","B Lee")
kohliLee
##   totalRuns count       SR
## 1        10     7 8.571429
kohliStarc <- computeSR("V Kohli","MA Starc")
kohliStarc
##   totalRuns count       SR
## 1        11     9 7.333333
# Yuvraj
yuvrajWatson<- computeSR("Yuvraj Singh","SR Watson")
yuvrajWatson
##   totalRuns count       SR
## 1        24    22 6.545455
yuvrajLee <- computeSR("Yuvraj Singh","B Lee")
yuvrajLee
##   totalRuns count       SR
## 1        12     7 10.28571
yuvrajStarc <- computeSR("Yuvraj Singh","MA Starc")
yuvrajStarc
##   totalRuns count SR
## 1        12     8  9
# MS Dhoni
dhoniWatson<- computeSR("MS Dhoni","SR Watson")
dhoniWatson
##   totalRuns count       SR
## 1        33    28 7.071429
dhoniLee <- computeSR("MS Dhoni","B Lee")
dhoniLee
##   totalRuns count  SR
## 1        26    20 7.8
dhoniStarc <- computeSR("MS Dhoni","MA Starc")
dhoniStarc
##   totalRuns count   SR
## 1        11     8 8.25

When we consider the batting lineup, the problem is one of maximization. In the LP formulation below V Kohli has a SR of 7.29, 8.57, 7.33 against Watson, Lee & Starc
Yuvraj has a SR of 6.5, 10.28, 9 against Watson, Lee & Starc
and Dhoni has a SR of 7.07, 7.8,  8.25 against Watson, Lee and Starc

The constraints are Watson, Lee and Starc have 3, 4 & 3 overs remaining respectively. The total number of overs remaining to be bowled is 9.The other constraints could be that a bowler bowls at least 1 over etc.

Formulating and solving

# 3 batsman x 3 bowlers
lprec <- make.lp(0, 9)
# Maximization
a<-lp.control(lprec, sense="max")

# Set the objective function
set.objfn(lprec, c(kohliWatson$SR, kohliLee$SR,kohliStarc$SR,
                   yuvrajWatson$SR,yuvrajLee$SR,yuvrajStarc$SR,
                   dhoniWatson$SR,dhoniLee$SR,dhoniStarc$SR))

#Assume the  bowlers have 3,4,3 overs left respectively
add.constraint(lprec, c(1, 1,1,0,0,0, 0,0,0), "<=",3)
add.constraint(lprec, c(0,0,0,1,1,1,0,0,0), "<=",4)
add.constraint(lprec, c(0,0,0,0,0,0,1,1,1), "<=",3)
#o11+o12+o13+o21+o22+o23+o31+o32+o33=8 (overs remaining)
add.constraint(lprec, c(1,1,1,1,1,1,1,1,1), "=",9) 


add.constraint(lprec, c(1,0,0,0,0,0,0,0,0), ">=",1) #o11 >=1
add.constraint(lprec, c(0,1,0,0,0,0,0,0,0), ">=",0) #o12 >=0
add.constraint(lprec, c(0,0,1,0,0,0,0,0,0), ">=",0) #o13 >=0
add.constraint(lprec, c(0,0,0,1,0,0,0,0,0), ">=",1) #o21 >=1
add.constraint(lprec, c(0,0,0,0,1,0,0,0,0), ">=",1) #o22 >=1
add.constraint(lprec, c(0,0,0,0,0,1,0,0,0), ">=",0) #o23 >=0
add.constraint(lprec, c(0,0,0,0,0,0,1,0,0), ">=",1) #o31 >=1
add.constraint(lprec, c(0,0,0,0,0,0,0,1,0), ">=",0) #o32 >=0
add.constraint(lprec, c(0,0,0,0,0,0,0,0,1), ">=",0) #o33 >=0

lprec
## Model name: 
##   a linear program with 9 decision variables and 13 constraints
b <-solve(lprec)
get.objective(lprec) #  
## [1] 77.16418
get.variables(lprec) # 
## [1] 1 2 0 1 3 0 1 0 1

This shows that the maximum runs that can be scored for the current strike rate is 77.16   runs in 9 overs The breakup is as follows

This is also shown below

get.variables(lprec) # 
## [1] 1 2 0 1 3 0 1 0 1

This is also shown below

e <- as.data.frame(rbind(c(1,2,0,3),c(1,3,0,4),c(1,0,1,2)))
names(e) <- c("S Watson","B Lee","MA Starc","Overs")
rownames(e) <- c("Kohli","Yuvraj","Dhoni")
e

LP Solution:
Maximum runs that can be scored by India against Australia is:77.164 if the 9 overs to be faced by the batsman are as below

##        S Watson B Lee MA Starc Overs
## Kohli         1     2        0     3
## Yuvraj        1     3        0     4
## Dhoni         1     0        1     2
#Total overs=9

Note: This assumes that the batsmen perform at their current Strike Rate. Howvever anything can happen in a real game, but nevertheless this is a fairly reasonable estimate of the performance

Note 2:The numbers in the columns represent the number of overs that need to be bowled by a bowler to the corresponding batsman.

Note 3:You could try other combinations of overs for the above SR. For the above constraints 77.16 is the highest score for the given number of overs

6. LP formulation for International T20 India vs Australia (Bowling lineup)

For this I compute how the bowling should be rotated between R Ashwin, RA Jadeja and JJ Bumrah when taking into account their performance against batsmen like Shane Watson, AJ Finch and David Warner. For the bowling performance I take the Economy rate of the bowlers. The data is the same as above

computeSR <- function(batsman1,bowler1){
    a <- matches %>% filter(batsman==batsman1 & bowler==bowler1) 
    a1 <- a %>% summarize(totalRuns=sum(runs),count=n()) %>% mutate(SR=(totalRuns/count)*6)
    a1
}
# RA Jadeja
jadejaWatson<- computeER("SR Watson","RA Jadeja")
jadejaWatson
##   totalRuns count       ER
## 1        60    29 12.41379
jadejaFinch <- computeER("AJ Finch","RA Jadeja")
jadejaFinch
##   totalRuns count       ER
## 1        36    33 6.545455
jadejaWarner <- computeER("DA Warner","RA Jadeja")
jadejaWarner
##   totalRuns count       ER
## 1        23    11 12.54545
# Ashwin
ashwinWatson<- computeER("SR Watson","R Ashwin")
ashwinWatson
##   totalRuns count       ER
## 1        41    26 9.461538
ashwinFinch <- computeER("AJ Finch","R Ashwin")
ashwinFinch
##   totalRuns count   ER
## 1        63    36 10.5
ashwinWarner <- computeER("DA Warner","R Ashwin")
ashwinWarner
##   totalRuns count       ER
## 1        38    28 8.142857
# JJ Bunrah
bumrahWatson<- computeER("SR Watson","JJ Bumrah")
bumrahWatson
##   totalRuns count  ER
## 1        22    20 6.6
bumrahFinch <- computeER("AJ Finch","JJ Bumrah")
bumrahFinch
##   totalRuns count       ER
## 1        25    19 7.894737
bumrahWarner <- computeER("DA Warner","JJ Bumrah")
bumrahWarner
##   totalRuns count ER
## 1         2     4  3

As can be seen from above RA Jadeja has a ER of 12.4, 6.54, 12.54 against Watson, AJ Finch and Warner also Ashwin has a ER of 9.46, 10.5, 8.14 against Watson, Finch and Warner. Similarly Bumrah has an ER of 6.6,7.89, 3 against Watson, Finch and Warner
The constraints are Jadeja, Ashwin and Bumrah have 4, 3 & 4 overs remaining and the total overs remaining to be bowled is 10.

Formulating solving the bowling lineup is shown below

lprec <- make.lp(0, 9)
a <-lp.control(lprec, sense="min")

# Set the objective function
set.objfn(lprec, c(jadejaWatson$ER, jadejaFinch$ER,jadejaWarner$ER,
                   ashwinWatson$ER,ashwinFinch$ER,ashwinWarner$ER,
                   bumrahWatson$ER,bumrahFinch$ER,bumrahWarner$ER))

add.constraint(lprec, c(1, 1,1,0,0,0, 0,0,0), "<=",4) # Jadeja has 4 overs
add.constraint(lprec, c(0,0,0,1,1,1,0,0,0), "<=",3)   # Ashwin has 3 overs left
add.constraint(lprec, c(0,0,0,0,0,0,1,1,1), "<=",4)   # Bumrah has 4 overs left
add.constraint(lprec, c(1,1,1,1,1,1,1,1,1), "=",10) # Total overs = 10
add.constraint(lprec, c(1,0,0,0,0,0,0,0,0), ">=",1)
add.constraint(lprec, c(0,1,0,0,0,0,0,0,0), ">=",0)
add.constraint(lprec, c(0,0,1,0,0,0,0,0,0), ">=",1)
add.constraint(lprec, c(0,0,0,1,0,0,0,0,0), ">=",0)
add.constraint(lprec, c(0,0,0,0,1,0,0,0,0), ">=",1)
add.constraint(lprec, c(0,0,0,0,0,1,0,0,0), ">=",0)
add.constraint(lprec, c(0,0,0,0,0,0,1,0,0), ">=",0)
add.constraint(lprec, c(0,0,0,0,0,0,0,1,0), ">=",1)
add.constraint(lprec, c(0,0,0,0,0,0,0,0,1), ">=",0)

lprec
## Model name: 
##   a linear program with 9 decision variables and 13 constraints
b <-solve(lprec)
get.objective(lprec) #  
## [1] 73.58775
get.variables(lprec) # 
## [1] 1 2 1 0 1 1 0 1 3

The minimum runs that will be conceded by these 3 bowlers in 10 overs is 73.58 assuming the bowling is rotated as follows

e <- as.data.frame(rbind(c(1,0,0),c(2,1,1),c(1,1,3),c(4,2,4)))
names(e) <- c("RA Jadeja","R Ashwin","JJ Bumrah")
rownames(e) <- c("S Watson","AJ Finch","DA Warner","Overs")
e 

LP Solution:
Minimum runs that will be conceded by India against Australia is 73.58 in 10 overs if the overs bowled are as follows

##           RA Jadeja R Ashwin JJ Bumrah
## S Watson          1        0         0
## AJ Finch          2        1         1
## DA Warner         1        1         3
## Overs             4        2         4
#Total overs=10  

7. LP formulation for IPL (Mumbai Indians – Kolkata Knight Riders – Bowling lineup)

As in the case of International T20s I also have processed IPL data derived from my R package yorkr. yorkr. yorkr processes yaml data from Cricsheet. The processed data for all IPL matches can be downloaded from GooglyPlus

load("Mumbai Indians-Kolkata Knight Riders-allMatches.RData")
dim(matches)
## [1] 4237   25
# Compute the Economy Rate of the Mumbai Indian bowlers against Kolkata Knight Riders

# Gambhir
gambhirMalinga <- computeER("G Gambhir","SL Malinga")
gambhirHarbhajan <- computeER("G Gambhir","Harbhajan Singh")
gambhirPollard <- computeER("G Gambhir","KA Pollard")

#Yusuf Pathan
yusufMalinga <- computeER("YK Pathan","SL Malinga")
yusufHarbhajan <- computeER("YK Pathan","Harbhajan Singh")
yusufPollard <- computeER("YK Pathan","KA Pollard")

#JH Kallis
kallisMalinga <- computeER("JH Kallis","SL Malinga")
kallisHarbhajan <- computeER("JH Kallis","Harbhajan Singh")
kallisPollard <- computeER("JH Kallis","KA Pollard")

#RV Uthappa
uthappaMalinga <- computeER("RV Uthappa","SL Malinga")
uthappaHarbhajan <- computeER("RV Uthappa","Harbhajan Singh")
uthappaPollard <- computeER("RV Uthappa","KA Pollard")

Here

gambhirMalinga, yusufMalinga, kallisMalinga, uthappaMalinga is the ER of Malinga against Gambhir, Yusuf Pathan, Kallis and Uthappa
gambhirHarbhajan, yusufHarbhajan, kallisHarbhajan, uthappaHarbhajan is the ER of Harbhajan against Gambhir, Yusuf Pathan, Kallis and Uthappa
gambhirPollard, yusufPollard, kallisPollard, uthappaPollard is the ER of Kieron Pollard against Gambhir, Yusuf Pathan, Kallis and Uthappa

The constraints are Malinga, Harbhajan and Pollard have 4 overs each and remaining overs to be bowled is 10.

Formulating and solving this for the bowling lineup of Mumbai Indians against Kolkata Knight Riders

 library("lpSolveAPI")
 lprec <- make.lp(0, 12)
 a=lp.control(lprec, sense="min")
 
 set.objfn(lprec, c(gambhirMalinga$ER, yusufMalinga$ER,kallisMalinga$ER,uthappaMalinga$ER,
                    gambhirHarbhajan$ER,yusufHarbhajan$ER,kallisHarbhajan$ER,uthappaHarbhajan$ER,
                    gambhirPollard$ER,yusufPollard$ER,kallisPollard$ER,uthappaPollard$ER))
 
 add.constraint(lprec, c(1,1,1,1, 0,0,0,0, 0,0,0,0), "<=",4)
 add.constraint(lprec, c(0,0,0,0,1,1,1,1,0,0,0,0), "<=",4)
 add.constraint(lprec, c(0,0,0,0,0,0,0,0,1,1,1,1), "<=",4)
 add.constraint(lprec, c(1,1,1,1,1,1,1,1,1,1,1,1), "=",10)
 
 add.constraint(lprec, c(1,0,0,0,0,0,0,0,0,0,0,0), ">=",0)
 add.constraint(lprec, c(0,1,0,0,0,0,0,0,0,0,0,0), ">=",1)
 add.constraint(lprec, c(0,0,1,0,0,0,0,0,0,0,0,0), ">=",0)
 add.constraint(lprec, c(0,0,0,1,0,0,0,0,0,0,0,0), ">=",0)
 add.constraint(lprec, c(0,0,0,0,1,0,0,0,0,0,0,0), ">=",0)
 add.constraint(lprec, c(0,0,0,0,0,1,0,0,0,0,0,0), ">=",1)
 add.constraint(lprec, c(0,0,0,0,0,0,1,0,0,0,0,0), ">=",0)
 add.constraint(lprec, c(0,0,0,0,0,0,0,1,0,0,0,0), ">=",1)
 add.constraint(lprec, c(0,0,0,0,0,0,0,0,1,0,0,0), ">=",0)
 add.constraint(lprec, c(0,0,0,0,0,0,0,0,0,1,0,0), ">=",1)
 add.constraint(lprec, c(0,0,0,0,0,0,0,0,0,0,1,0), ">=",0)
 add.constraint(lprec, c(0,0,0,0,0,0,0,0,0,0,0,1), ">=",0)
 
 lprec
## Model name: 
##   a linear program with 12 decision variables and 16 constraints
 b=solve(lprec)
 get.objective(lprec) #  
## [1] 55.57887
 get.variables(lprec) # 
##  [1] 3 1 0 0 0 1 0 1 3 1 0 0
e <- as.data.frame(rbind(c(3,1,0,0,4),c(0, 1, 0,1,2),c(3, 1, 0,0,4)))
names(e) <- c("Gambhir","Yusuf","Kallis","Uthappa","Overs")
rownames(e) <- c("Malinga","Harbhajan","Pollard") 
e

LP Solution: Mumbai Indians can restrict Kolkata Knight Riders to 55.87 in 10 overs
if the overs are bowled as below

##           Gambhir Yusuf Kallis Uthappa Overs
## Malinga         3     1      0       0     4
## Harbhajan       0     1      0       1     2
## Pollard         3     1      0       0     4
#Total overs=10  

8. LP formulation for IPL (Mumbai Indians – Kolkata Knight Riders – Batting lineup)

As I mentioned it is possible to perform a maximation with the same formulation since computeSR<==>computeER

This just flips the problem around and computes the maximum runs that can be scored for the batsman’s Strike rate (this is same as the bowler’s Economy rate) i.e.

gambhirMalinga, yusufMalinga, kallisMalinga, uthappaMalinga is the SR of Gambhir, Yusuf Pathan, Kallis and Uthappa against Malinga
gambhirHarbhajan, yusufHarbhajan, kallisHarbhajan, uthappaHarbhajan is the SR of Gambhir, Yusuf Pathan, Kallis and Uthappa against Harbhajan
gambhirPollard, yusufPollard, kallisPollard, uthappaPollard is the SR of Gambhir, Yusuf Pathan, Kallis and Uthappa against Kieron Pollard.

The constraints are Malinga, Harbhajan and Pollard have 4 overs each and remaining overs to be bowled is 10.

 library("lpSolveAPI")
 lprec <- make.lp(0, 12)
 a=lp.control(lprec, sense="max")
 
 a <-set.objfn(lprec, c(gambhirMalinga$ER, yusufMalinga$ER,kallisMalinga$ER,uthappaMalinga$ER,
                    gambhirHarbhajan$ER,yusufHarbhajan$ER,kallisHarbhajan$ER,uthappaHarbhajan$ER,
                    gambhirPollard$ER,yusufPollard$ER,kallisPollard$ER,uthappaPollard$ER))
 
 
 add.constraint(lprec, c(1,1,1,1, 0,0,0,0, 0,0,0,0), "<=",4)
 add.constraint(lprec, c(0,0,0,0,1,1,1,1,0,0,0,0), "<=",4)
 add.constraint(lprec, c(0,0,0,0,0,0,0,0,1,1,1,1), "<=",4)
 add.constraint(lprec, c(1,1,1,1,1,1,1,1,1,1,1,1), "=",11)
 
 add.constraint(lprec, c(1,0,0,0,0,0,0,0,0,0,0,0), ">=",0)
 add.constraint(lprec, c(0,1,0,0,0,0,0,0,0,0,0,0), ">=",1)
 add.constraint(lprec, c(0,0,1,0,0,0,0,0,0,0,0,0), ">=",0)
 add.constraint(lprec, c(0,0,0,1,0,0,0,0,0,0,0,0), ">=",0)
 add.constraint(lprec, c(0,0,0,0,1,0,0,0,0,0,0,0), ">=",0)
 add.constraint(lprec, c(0,0,0,0,0,1,0,0,0,0,0,0), ">=",1)
 add.constraint(lprec, c(0,0,0,0,0,0,1,0,0,0,0,0), ">=",0)
 add.constraint(lprec, c(0,0,0,0,0,0,0,1,0,0,0,0), ">=",1)
 add.constraint(lprec, c(0,0,0,0,0,0,0,0,1,0,0,0), ">=",0)
 add.constraint(lprec, c(0,0,0,0,0,0,0,0,0,1,0,0), ">=",1)
 add.constraint(lprec, c(0,0,0,0,0,0,0,0,0,0,1,0), ">=",0)
 add.constraint(lprec, c(0,0,0,0,0,0,0,0,0,0,0,1), ">=",0)
 lprec
## Model name: 
##   a linear program with 12 decision variables and 16 constraints
 b=solve(lprec)
 get.objective(lprec) #  
## [1] 94.22649
 get.variables(lprec) # 
##  [1] 0 3 0 0 0 1 0 3 0 1 3 0
e <- as.data.frame(rbind(c(0,3,0,0,3),c(0, 1, 0,3,4),c(0, 1, 3,0,4)))
names(e) <- c("Gambhir","Yusuf","Kallis","Uthappa","Overs")
rownames(e) <- c("Malinga","Harbhajan","Pollard") 
e

LP Solution: Kolkata Knight Riders can score a maximum of 94.22 in 11 overs against Mumbai Indians
if the the number of overs KKR face is as below

##           Gambhir Yusuf Kallis Uthappa Overs
## Malinga         0     3      0       0     3
## Harbhajan       0     1      0       3     4
## Pollard         0     1      3       0     4
#Total overs=11  

Conclusion: It is possible to thus determine the optimum no of overs to give to a specific bowler based on his/her Economy Rate with a particular batsman. Similarly one can determine the maximum runs that can be scored by a batsmen based on their strike rate with bowlers. Cricket like many other games is a game of strategy, skill, talent and some amount of luck. So while the LP formulation can provide some direction,  one must be aware anything could happen in a game of cricket!

Thoughts, comments, suggestions welcome!

Also see
1. Inswinger: yorkr swings into International T20s
2. Working with Node.js and PostgreSQL
3. Simulating the domino effect in Android using Box2D and AndEngine
4. Introducing cricket package yorkr: Part 1- Beaten by sheer pace!
5. Introducing QCSimulator: A 5-qubit quantum computing simulator in R
6. A Cloud medley with IBM Bluemix, Cloudant DB and Node.js

To see all posts see Index of Posts

Analysis of International T20 matches with yorkr templates

Introduction

In this post I create yorkr templates for International T20 matches that are available on Cricsheet. With these templates you can convert all T20 data which is in yaml format to R dataframes. Further I create data and the necessary templates for analyzing. All of these templates can be accessed from Github at yorkrT20Template. The templates are

  1. Template for conversion and setup – T20Template.Rmd
  2. Any T20 match – T20Matchtemplate.Rmd
  3. T20 matches between 2 nations – T20Matches2TeamTemplate.Rmd
  4. A T20 nations performance against all other T20 nations – T20AllMatchesAllOppnTemplate.Rmd
  5. Analysis of T20 batsmen and bowlers of all T20 nations – T20BatsmanBowlerTemplate.Rmd

Besides the templates the repository also includes the converted data for all T20 matches I downloaded from Cricsheet in Dec 2016, You can recreate the files as more matches are added to Cricsheet site. This post contains all the steps needed for T20 analysis, as more matches are played around the World and more data is added to Cricsheet. This will also be my reference in future if I decide to analyze T20 in future!

If you are passionate about cricket, and love analyzing cricket performances, then check out my 2 racy books on cricket! In my books, I perform detailed yet compact analysis of performances of both batsmen, bowlers besides evaluating team & match performances in Tests , ODIs, T20s & IPL. You can buy my books on cricket from Amazon at $12.99 for the paperback and $4.99/$6.99 respectively for the kindle versions. The books can be accessed at Cricket analytics with cricketr  and Beaten by sheer pace-Cricket analytics with yorkr  A must read for any cricket lover! Check it out!!

1

 

Feel free to download/clone these templates  from Github yorkrT20Template and perform your own analysis

There will be 5 folders at the root

  1. T20data – Match files as yaml from Cricsheet
  2. T20Matches – Yaml match files converted to dataframes
  3. T20MatchesBetween2Teams – All Matches between any 2 T20 teams
  4. allMatchesAllOpposition – A T20 countries match data against all other teams
  5. BattingBowlingDetails – Batting and bowling details of all countries
library(yorkr)
library(dplyr)

The first few steps take care of the data setup. This needs to be done before any of the analysis of T20 batsmen, bowlers, any T20 match, matches between any 2 T20 countries or analysis of a teams performance against all other countries

There will be 5 folders at the root

  1. T20data
  2. T20Matches
  3. T20MatchesBetween2Teams
  4. allMatchesAllOpposition
  5. BattingBowlingDetails

The source YAML files will be in T20Data folder

1.Create directory T20Matches

Some files may give conversions errors. You could try to debug the problem or just remove it from the T20data folder. At most 2-4 file will have conversion problems and I usally remove then from the files to be converted.

Also take a look at my Inswinger shiny app which was created after performing the same conversion on the Dec 16 data .

convertAllYaml2RDataframesT20("T20Data","T20Matches")

2.Save all matches between all combinations of T20 nations

This function will create the set of all matches between every T20 country against every other T20 country. This uses the data that was created in T20Matches, with the convertAllYaml2RDataframesT20() function.

setwd("./T20MatchesBetween2Teams")
saveAllMatchesBetweenTeams("../T20Matches")

3.Save all matches against all opposition

This will create a consolidated dataframe of all matches played by every T20 playing nation against all other nattions. This also uses the data that was created in T20Matches, with the convertAllYaml2RDataframesT20() function.

setwd("../allMatchesAllOpposition")
saveAllMatchesAllOpposition("../T20Matches")

4. Create batting and bowling details for each T20 country

These are the current T20 playing nations. You can add to this vector as more countries start playing T20. You will get to know all T20 nations by also look at the directory created above namely allMatchesAllOpposition. his also uses the data that was created in T20Matches, with the convertAllYaml2RDataframesT20() function.

setwd("../BattingBowlingDetails")
teams <-c("Australia","India","Pakistan","West Indies", 'Sri Lanka',
          "England", "Bangladesh","Netherlands","Scotland", "Afghanistan",
          "Zimbabwe","Ireland","New Zealand","South Africa","Canada",
          "Bermuda","Kenya","Hong Kong","Nepal","Oman","Papua New Guinea",
          "United Arab Emirates")

for(i in seq_along(teams)){
    print(teams[i])
    val <- paste(teams[i],"-details",sep="")
    val <- getTeamBattingDetails(teams[i],dir="../T20Matches", save=TRUE)

}

for(i in seq_along(teams)){
    print(teams[i])
    val <- paste(teams[i],"-details",sep="")
    val <- getTeamBowlingDetails(teams[i],dir="../T20Matches", save=TRUE)

}

5. Get the list of batsmen for a particular country

For e.g. if you wanted to get the batsmen of Canada you would do the following. By replacing Canada for any other country you can get the batsmen of that country. These batsmen names can then be used in the batsmen analysis

country="Canada"
teamData <- paste(country,"-BattingDetails.RData",sep="")
load(teamData)
countryDF <- battingDetails
bmen <- countryDF %>% distinct(batsman) 
bmen <- as.character(bmen$batsman)
batsmen <- sort(bmen)
batsmen

6. Get the list of bowlers for a particular country

The method below can get the list of bowler names for any T20 nation. These names can then be used in the bowler analysis below

country="Netherlands"
teamData <- paste(country,"-BowlingDetails.RData",sep="")
load(teamData)
countryDF <- bowlingDetails
bwlr <- countryDF %>% distinct(bowler) 
bwlr <- as.character(bwlr$bowler)
bowler <- sort(bwlr)
bowler

Now we are all set

A)  International T20 Match Analysis

Load any match data from the ./T20Matches folder for e.g. Afganistan-England-2016-03-23.RData

setwd("./T20Matches")
load("Afghanistan-England-2016-03-23.RData")
afg_eng<- overs
#The steps are
load("Country1-Country2-Date.Rdata")
country1_country2 <- overs

All analysis for this match can be done now

2. Scorecard

teamBattingScorecardMatch(country1_country2,"Country1")
teamBattingScorecardMatch(country1_country2,"Country2")

3.Batting Partnerships

teamBatsmenPartnershipMatch(country1_country2,"Country1","Country2")
teamBatsmenPartnershipMatch(country1_country2,"Country2","Country1")

4. Batsmen vs Bowler Plot

teamBatsmenVsBowlersMatch(country1_country2,"Country1","Country2",plot=TRUE)
teamBatsmenVsBowlersMatch(country1_country2,"Country1","Country2",plot=FALSE)

5. Team bowling scorecard

teamBowlingScorecardMatch(country1_country2,"Country1")
teamBowlingScorecardMatch(country1_country2,"Country2")

6. Team bowling Wicket kind match

teamBowlingWicketKindMatch(country1_country2,"Country1","Country2")
m <-teamBowlingWicketKindMatch(country1_country2,"Country1","Country2",plot=FALSE)
m

7. Team Bowling Wicket Runs Match

teamBowlingWicketRunsMatch(country1_country2,"Country1","Country2")
m <-teamBowlingWicketRunsMatch(country1_country2,"Country1","Country2",plot=FALSE)
m

8. Team Bowling Wicket Match

m <-teamBowlingWicketMatch(country1_country2,"Country1","Country2",plot=FALSE)
m
teamBowlingWicketMatch(country1_country2,"Country1","Country2")

9. Team Bowler vs Batsmen

teamBowlersVsBatsmenMatch(country1_country2,"Country1","Country2")
m <- teamBowlersVsBatsmenMatch(country1_country2,"Country1","Country2",plot=FALSE)
m

10. Match Worm chart

matchWormGraph(country1_country2,"Country1","Country2")

B)  International T20 Matches between 2 teams

Load match data between any 2 teams from ./T20MatchesBetween2Teams for e.g.Australia-India-allMatches

setwd("./T20MatchesBetween2Teams")
load("Australia-India-allMatches.RData")
aus_ind_matches <- matches
#Replace below with your own countries
country1<-"England"
country2 <- "South Africa"
country1VsCountry2 <- paste(country1,"-",country2,"-allMatches.RData",sep="")
load(country1VsCountry2)
country1_country2_matches <- matches

2.Batsmen partnerships

m<- teamBatsmenPartnershiOppnAllMatches(country1_country2_matches,"country1",report="summary")
m
m<- teamBatsmenPartnershiOppnAllMatches(country1_country2_matches,"country2",report="summary")
m
m<- teamBatsmenPartnershiOppnAllMatches(country1_country2_matches,"country1",report="detailed")
m
teamBatsmenPartnershipOppnAllMatchesChart(country1_country2_matches,"country1","country2")

3. Team batsmen vs bowlers

teamBatsmenVsBowlersOppnAllMatches(country1_country2_matches,"country1","country2")

4. Bowling scorecard

a <-teamBattingScorecardOppnAllMatches(country1_country2_matches,main="country1",opposition="country2")
a

5. Team bowling performance

teamBowlingPerfOppnAllMatches(country1_country2_matches,main="country1",opposition="country2")

6. Team bowler wickets

teamBowlersWicketsOppnAllMatches(country1_country2_matches,main="country1",opposition="country2")
m <-teamBowlersWicketsOppnAllMatches(country1_country2_matches,main="country1",opposition="country2",plot=FALSE)
teamBowlersWicketsOppnAllMatches(country1_country2_matches,"country1","country2",top=3)
m

7. Team bowler vs batsmen

teamBowlersVsBatsmenOppnAllMatches(country1_country2_matches,"country1","country2",top=5)

8. Team bowler wicket kind

teamBowlersWicketKindOppnAllMatches(country1_country2_matches,"country1","country2",plot=TRUE)
m <- teamBowlersWicketKindOppnAllMatches(country1_country2_matches,"country1","country2",plot=FALSE)
m[1:30,]

9. Team bowler wicket runs

teamBowlersWicketRunsOppnAllMatches(country1_country2_matches,"country1","country2")

10. Plot wins and losses

setwd("./T20Matches")
plotWinLossBetweenTeams("country1","country2")

C)  International T20 Matches for a team against all other teams

Load the data between for a T20 team against all other countries ./allMatchesAllOpposition for e.g all matches of India

load("allMatchesAllOpposition-India.RData")
india_matches <- matches
country="country1"
allMatches <- paste("allMatchesAllOposition-",country,".RData",sep="")
load(allMatches)
country1AllMatches <- matches

2. Team’s batting scorecard all Matches

m <-teamBattingScorecardAllOppnAllMatches(country1AllMatches,theTeam="country1")
m

3. Batting scorecard of opposing team

m <-teamBattingScorecardAllOppnAllMatches(matches=country1AllMatches,theTeam="country2")

4. Team batting partnerships

m <- teamBatsmenPartnershipAllOppnAllMatches(country1AllMatches,theTeam="country1")
m
m <- teamBatsmenPartnershipAllOppnAllMatches(country1AllMatches,theTeam='country1',report="detailed")
head(m,30)
m <- teamBatsmenPartnershipAllOppnAllMatches(country1AllMatches,theTeam='country1',report="summary")
m

5. Team batting partnerships plot

teamBatsmenPartnershipAllOppnAllMatchesPlot(country1AllMatches,"country1",main="country1")
teamBatsmenPartnershipAllOppnAllMatchesPlot(country1AllMatches,"country1",main="country2")

6, Team batsmen vs bowlers report

m <-teamBatsmenVsBowlersAllOppnAllMatchesRept(country1AllMatches,"country1",rank=0)
m
m <-teamBatsmenVsBowlersAllOppnAllMatchesRept(country1AllMatches,"country1",rank=1,dispRows=30)
m
m <-teamBatsmenVsBowlersAllOppnAllMatchesRept(matches=country1AllMatches,theTeam="country2",rank=1,dispRows=25)
m

7. Team batsmen vs bowler plot

d <- teamBatsmenVsBowlersAllOppnAllMatchesRept(country1AllMatches,"country1",rank=1,dispRows=50)
d
teamBatsmenVsBowlersAllOppnAllMatchesPlot(d)
d <- teamBatsmenVsBowlersAllOppnAllMatchesRept(country1AllMatches,"country1",rank=2,dispRows=50)
teamBatsmenVsBowlersAllOppnAllMatchesPlot(d)

8. Team bowling scorecard

teamBowlingScorecardAllOppnAllMatchesMain(matches=country1AllMatches,theTeam="country1")
teamBowlingScorecardAllOppnAllMatches(country1AllMatches,'country2')

9. Team bowler vs batsmen

teamBowlersVsBatsmenAllOppnAllMatchesMain(country1AllMatches,theTeam="country1",rank=0)
teamBowlersVsBatsmenAllOppnAllMatchesMain(country1AllMatches,theTeam="country1",rank=2)
teamBowlersVsBatsmenAllOppnAllMatchesRept(matches=country1AllMatches,theTeam="country1",rank=0)

10. Team Bowler vs bastmen

df <- teamBowlersVsBatsmenAllOppnAllMatchesRept(country1AllMatches,theTeam="country1",rank=1)
teamBowlersVsBatsmenAllOppnAllMatchesPlot(df,"country1","country1")

11. Team bowler wicket kind

teamBowlingWicketKindAllOppnAllMatches(country1AllMatches,t1="country1",t2="All")
teamBowlingWicketKindAllOppnAllMatches(country1AllMatches,t1="country1",t2="country2")

12.

teamBowlingWicketRunsAllOppnAllMatches(country1AllMatches,t1="country1",t2="All",plot=TRUE)
teamBowlingWicketRunsAllOppnAllMatches(country1AllMatches,t1="country1",t2="country2",plot=TRUE)

D) Batsman functions

Get the batsman’s details for a batsman

setwd("../BattingBowlingDetails")
kohli <- getBatsmanDetails(team="India",name="Kohli",dir=".")
batsmanDF <- getBatsmanDetails(team="country1",name="batsmanName",dir=".")

2. Runs vs deliveries

batsmanRunsVsDeliveries(batsmanDF,"batsmanName")

3. Batsman 4s & 6s

batsman46 <- select(batsmanDF,batsman,ballsPlayed,fours,sixes,runs)
p1 <- batsmanFoursSixes(batsman46,"batsmanName")

4. Batsman dismissals

batsmanDismissals(batsmanDF,"batsmanName")

5. Runs vs Strike rate

batsmanRunsVsStrikeRate(batsmanDF,"batsmanName")

6. Batsman Moving Average

batsmanMovingAverage(batsmanDF,"batsmanName")

7. Batsman cumulative average

batsmanCumulativeAverageRuns(batsmanDF,"batsmanName")

8. Batsman cumulative strike rate

batsmanCumulativeStrikeRate(batsmanDF,"batsmanName")

9. Batsman runs against oppositions

batsmanRunsAgainstOpposition(batsmanDF,"batsmanName")

10. Batsman runs vs venue

batsmanRunsVenue(batsmanDF,"batsmanName")

11. Batsman runs predict

batsmanRunsPredict(batsmanDF,"batsmanName")

12. Bowler functions

For example to get Ravicahnder Ashwin’s bowling details

setwd("../BattingBowlingDetails")
ashwin <- getBowlerWicketDetails(team="India",name="Ashwin",dir=".")
bowlerDF <- getBatsmanDetails(team="country1",name="bowlerName",dir=".")

13. Bowler Mean Economy rate

bowlerMeanEconomyRate(bowlerDF,"bowlerName")

14. Bowler mean runs conceded

bowlerMeanRunsConceded(bowlerDF,"bowlerName")

15. Bowler Moving Average

bowlerMovingAverage(bowlerDF,"bowlerName")

16. Bowler cumulative average wickets

bowlerCumulativeAvgWickets(bowlerDF,"bowlerName")

17. Bowler cumulative Economy Rate (ER)

bowlerCumulativeAvgEconRate(bowlerDF,"bowlerName")

18. Bowler wicket plot

bowlerWicketPlot(bowlerDF,"bowlerName")

19. Bowler wicket against opposition

bowlerWicketsAgainstOpposition(bowlerDF,"bowlerName")

20. Bowler wicket at cricket grounds

bowlerWicketsVenue(bowlerDF,"bowlerName")

21. Predict number of deliveries to wickets

setwd("./T20Matches")
bowlerDF1 <- getDeliveryWickets(team="country1",dir=".",name="bowlerName",save=FALSE)
bowlerWktsPredict(bowlerDF1,"bowlerName")

Inswinger: yorkr swings into International T20s

In this post I introduce ‘Inswinger’ an interactive Shiny app to analyze International T20 players, matches and teams. This app was a natural consequence to my earlier Shiny app ‘GooglyPlus’. Most of the structure for this app remained the same, I only had to work with a different dataset, so to speak.

The Googly Shiny app is based on my R package ‘yorkr’ which is now available in CRAN. The R package and hence this Shiny app is based on data from Cricsheet. Inswinger is based on the latest data dump from Cricsheet (Dec 2016) and includes all International T20 till then. There are a lot of new Internationation teams like Oman, Hong Kong, UAE, etc. In total there are 22 different International T20 teams in my Inswinger app.

The countries are a) Afghanistan b) Australia c) Bangladesh d) Bermuda e) Canada f) England g) Hong Kong h) India i) Ireland j) Kenya k) Nepal l) Netherlands m) New Zealand n) Oman o) Pakistan p) Papua New Guinea q) Scotland r) South Africa s) Sri Lanka t) United Arab Emirates u) West Indies v) Zimbabwe

If you are passionate about cricket, and love analyzing cricket performances, then check out my 2 racy books on cricket! In my books, I perform detailed yet compact analysis of performances of both batsmen, bowlers besides evaluating team & match performances in Tests , ODIs, T20s & IPL. You can buy my books on cricket from Amazon at $12.99 for the paperback and $4.99/$6.99 respectively for the kindle versions. The books can be accessed at Cricket analytics with cricketr  and Beaten by sheer pace-Cricket analytics with yorkr  A must read for any cricket lover! Check it out!!

1

 

My R package ‘yorkr’,  on which both these Shiny apps are based, has the ability to output either a dataframe or plot, depending on a parameter plot=TRUE or FALSE. Hence in the Inswinger Shiny app results can be displayed both as table or a plot depending on the choice of function.

Inswinger can do detailed analyses of a) Individual T20 batsman b) Individual T20 bowler c) Any T20 match d) Head to head confrontation between 2 T20 teams e) All matches of a T20 team against all other teams.

The Shiny app can be accessed at Inswinger

The code for Inswinger is available at Github. Feel free to clone/download/fork  the code from Inswinger

Based on the 5 detailed analysis domains there are 5 tabs
A) T20 Batsman: This tab can be used to perform analysis of all T20 batsman. If a batsman has played in more than 1 team, then the overall performance is considered. There are 10 functions for the T20 Batsman. They are shown below
– Batsman Runs vs. Deliveries
– Batsman’s Fours & Sixes
– Dismissals of batsman
– Batsman’s Runs vs Strike Rate
– Batsman’s Moving Average
– Batsman’s Cumulative Average Run
– Batsman’s Cumulative Strike Rate
– Batsman’s Runs against Opposition
– Batsman’s Runs at Venue
– Predict Runs of batsman

B) T20 Bowler: This tab can be used to analyze individual T20 bowlers. The functions handle T20 bowlers who have played in more than 1 T20 team.
– Mean Economy Rate of bowler
– Mean runs conceded by bowler
– Bowler’s Moving Average
– Bowler’s Cumulative Avg. Wickets
– Bowler’s Cumulative Avg. Economy Rate
– Bowler’s Wicket Plot
– Bowler’s Wickets against opposition
– Bowler’s Wickets at Venues
– Bowler’s wickets prediction

C) T20 match: This tab can be used for analyzing individual T20 matches. The available functions are
– Match Batting Scorecard – Table
– Batting Partnerships – Plot, Table
– Batsmen vs Bowlers – Plot, Table
– Match Bowling Scorecard   – Table
– Bowling Wicket Kind – Plot, Table
– Bowling Wicket Runs – Plot, Table
– Bowling Wicket Match – Plot, Table
– Bowler vs Batsmen – Plot, Table
– Match Worm Graph – Plot

D) Head to head: This tab can be used for analyzing head-to-head confrontations, between any 2 T20 teams for e.g. all matches between India vs Australia or West Indies vs Sri Lanka . The available functions are
-Team Batsmen Batting Partnerships All Matches – Plot, Table {Summary and Detailed}
-Team Batting Scorecard All Matches – Table
-Team Batsmen vs Bowlers all Matches – Plot, Table
-Team Wickets Opposition All Matches – Plot, Table
-Team Bowling Scorecard All Matches – Table
-Team Bowler vs Batsmen All Matches – Plot, Table
-Team Bowlers Wicket Kind All Matches – Plot, Table
-Team Bowler Wicket Runs All Matches – Plot, Table
– Win Loss All Matches – Plot

E) T20 team’s overall performance: this tab can be used analyze the overall performance of any T20 team. For this analysis all matches played by this team is considered. The available functions are
-Team Batsmen Partnerships Overall – Plot, Table {Summary and Detailed)}
-Team Batting Scorecard Overall –Table
-Team Batsmen vs Bowlers Overall – Plot, Table
-Team Bowler vs Batsmen Overall – Plot, Table
-Team Bowling Scorecard Overall – Table
-Team Bowler Wicket Kind Overall – Plot, Table

Below I include a random set of charts that are generated in each of the 5 tabs
A. IPL Batsman
a. Shakib-al-Hassan (Bangladesh) :  Runs vs Deliveries
untitled

b. Virat Kohli (India) – Cumulative Average
untitled

c.  AB Devilliers (South Africa) – Runs at venues
untitled

d. Glenn Maxwell (Australia)  – Predict runs vs deliveries faces
untitled

B. IPL Bowler
a. TG Southee (New Zealand) – Mean Economy Rate vs overs
untitled

b) DJ Bravo – Moving Average of wickets
untitled

c) AC Evans (Scotland) – Bowler Wickets Against Opposition
untitled

C.T20 Match
a. Match Score (Afghanistan vs Canada, 2012-03-18)
untitled

b)  Match batting partnerships (Plot) Hong Kong vs Oman (2015-11-21), Hong Kong
Hong Kong Partnerships
untitled

c) Match batting partnerships (Table) – Ireland vs Scotland(2012-03-18, Ireland)
Batting partnership can also be displayed as a table
untitled

d) Batsmen vs Bowlers (Plot) – India vs England (2012-12-22)
untitled

e) Match Worm Chart – Sri Lanka vs Pakistan (2015-08-01)
untitled

D.Head to head
a) Team Batsmen Partnership (Plot) – India vs Australia (all matches)
Virat Kohli has the highest total runs in partnerships against Australia
untitled

b)  Team Batsmen Partnership (Summary – Table) – Kenya vs Bangladesh
untitled

c) Team Bowling Scorecard (Table only) India vs South Africa all Matches
untitled

d) Wins- Losses New Zealand vs West Indies all Matches
untitled

C) Overall performances
a) Batting Scorecard All Matches  (Table only) – England’s overall batting performance
Eoin Morgan, Kevin Pieterson  & SJ Taylor have the best performance
untitled

b) Batsman vs Bowlers all Matches (Plot)
India’s best performing batsman (Rank=1) is Virat Kohli
untitled

c)  Batsman vs Bowlers all Matches (Table)
The plot above for Virat Kohli can also be displayed as a table. Kohli has score most runs DJ Bravo, SR Watson & Shahid Afridi
untitled

The Inswinger Shiny app can be accessed at Inswinger. Give it a swing!

The code for Inswinger is available at Github. Feel free to clone/download/fork  the code from Inswinger

Also see my other Shiny apps
1.GooglyPlus
2.What would Shakespeare say?
3.Sixer
4.Revisiting crimes against women in India

You may also like
1. Neural Networks: The mechanics of backpropagation
A primer on Qubits, Quantum gates and Quantum Operation
2. Re-working the Lucy Richardson algorithm in OpenCV
3.Design Principles of Scalable, Distributed Systems
4.Spicing up a IBM Bluemix cloud app with MongoDB and NodeExpress
5.Programming languages in layman’s language
7.Re-introducing cricketr! : An R package to analyze performances of cricketers

To see all posts take at a look at Index of Posts

GooglyPlus: yorkr analyzes IPL players, teams, matches with plots and tables

In this post I introduce my new Shiny app,“GooglyPlus”, which is a  more evolved version of my earlier Shiny app “Googly”. My R package ‘yorkr’,  on which both these Shiny apps are based, has the ability to output either a dataframe or plot, depending on a parameter plot=TRUE or FALSE. My initial version of the app only included plots, and did not exercise the yorkr package fully. Moreover, I am certain, there may be a set of cricket aficionados who would prefer, numbers to charts. Hence I have created this enhanced version of the Googly app and appropriately renamed it as GooglyPlus. GooglyPlus is based on the yorkr package which uses data from Cricsheet. The app is based on IPL data from  all IPL matches from 2008 up to 2016. Feel free to clone/fork or download the code from Github at GooglyPlus.

If you are passionate about cricket, and love analyzing cricket performances, then check out my 2 racy books on cricket! In my books, I perform detailed yet compact analysis of performances of both batsmen, bowlers besides evaluating team & match performances in Tests , ODIs, T20s & IPL. You can buy my books on cricket from Amazon at $12.99 for the paperback and $4.99/$6.99 respectively for the kindle versions. The books can be accessed at Cricket analytics with cricketr  and Beaten by sheer pace-Cricket analytics with yorkr  A must read for any cricket lover! Check it out!!

1

 

Click  GooglyPlus to access the Shiny app!

The changes for GooglyPlus over the earlier Googly app is only in the following 3 tab panels

  • IPL match
  • Head to head
  • Overall Performance

The analysis of IPL batsman and IPL bowler tabs are unchanged. These charts are as they were before.

The changes are only in  tabs i) IPL match ii) Head to head and  iii) Overall Performance. New functionality has been added and existing functions now have the dual option of either displaying a plot or a table.

The changes are

A) IPL Match
The following additions/enhancements have been done

-Match Batting Scorecard – Table
-Batting Partnerships – Plot, Table (New)
-Batsmen vs Bowlers – Plot, Table(New)
-Match Bowling Scorecard   – Table (New)
-Bowling Wicket Kind – Plot, Table (New)
-Bowling Wicket Runs – Plot, Table (New)
-Bowling Wicket Match – Plot, Table (New)
-Bowler vs Batsmen – Plot, Table (New)
-Match Worm Graph – Plot

B) Head to head
The following functions have been added/enhanced

-Team Batsmen Batting Partnerships All Matches – Plot, Table {Summary (New) and Detailed (New)}
-Team Batting Scorecard All Matches – Table (New)
-Team Batsmen vs Bowlers all Matches – Plot, Table (New)
-Team Wickets Opposition All Matches – Plot, Table (New)
-Team Bowling Scorecard All Matches – Table (New)
-Team Bowler vs Batsmen All Matches – Plot, Table (New)
-Team Bowlers Wicket Kind All Matches – Plot, Table (New)
-Team Bowler Wicket Runs All Matches – Plot, Table (New)
-Win Loss All Matches – Plot

C) Overall Performance
The following additions/enhancements have been done in this tab

-Team Batsmen Partnerships Overall – Plot, Table {Summary (New) and Detailed (New)}
-Team Batting Scorecard Overall –Table (New)
-Team Batsmen vs Bowlers Overall – Plot, Table (New)
-Team Bowler vs Batsmen Overall – Plot, Table (New)
-Team Bowling Scorecard Overall – Table (New)
-Team Bowler Wicket Kind Overall – Plot, Table (New)

Included below are some random charts and tables. Feel free to explore the Shiny app further

1) IPL Match
a) Match Batting Scorecard (Table only)
This is the batting score card for the Chennai Super Kings & Deccan Chargers 2011-05-11

untitled

b)  Match batting partnerships (Plot)
Delhi Daredevils vs Kings XI Punjab – 2011-04-23

untitled

c) Match batting partnerships (Table)
The same batting partnership  Delhi Daredevils vs Kings XI Punjab – 2011-04-23 as a table

untitled

d) Batsmen vs Bowlers (Plot)
Kolkata Knight Riders vs Mumbai Indians 2010-04-19

Untitled.png

e)  Match Bowling Scorecard (Table only)
untitled

B) Head to head

a) Team Batsmen Partnership (Plot)
Deccan Chargers vs Kolkata Knight Riders all matches

untitled

b)  Team Batsmen Partnership (Summary – Table)
In the following tables it can be seen that MS Dhoni has performed better that SK Raina  CSK against DD matches, whereas SK Raina performs better than Dhoni in CSK vs  KKR matches

i) Chennai Super Kings vs Delhi Daredevils (Summary – Table)

untitled

ii) Chennai Super Kings vs Kolkata Knight Riders (Summary – Table)
untitled

iii) Rising Pune Supergiants vs Gujarat Lions (Detailed – Table)
This table provides the detailed partnership for RPS vs GL all matches

untitled

c) Team Bowling Scorecard (Table only)
This table gives the bowling scorecard of Pune Warriors vs Deccan Chargers in all matches

untitled

C) Overall performances
a) Batting Scorecard All Matches  (Table only)

This is the batting scorecard of Royal Challengers Bangalore. The top 3 batsmen are V Kohli, C Gayle and AB Devilliers in that order

untitled

b) Batsman vs Bowlers all Matches (Plot)
This gives the performance of Mumbai Indian’s batsman of Rank=1, which is Rohit Sharma, against bowlers of all other teams

untitled

c)  Batsman vs Bowlers all Matches (Table)
The above plot as a table. It can be seen that Rohit Sharma has scored maximum runs against M Morkel, then Shakib Al Hasan and then UT Yadav.

untitled

d) Bowling scorecard (Table only)
The table below gives the bowling scorecard of CSK. R Ashwin leads with a tally of 98 wickets followed by DJ Bravo who has 88 wickets and then JA Morkel who has 83 wickets in all matches against all teams

Untitled.png

This is just a random selection of functions. Do play around with the app and checkout how the different IPL batsmen, bowlers and teams stack against each other. Do read my earlier post Googly: An interactive app for analyzing IPL players, matches and teams using R package yorkr  for more details about the app and other functions available.

Click GooglyPlus to access the Shiny app!

You can clone/fork/download the code from Github at GooglyPlus

Hope you have fun playing around with the Shiny app!

Note: In the tabs, for some of the functions, not all controls  are required. It is possible to enable the controls selectively but this has not been done in this current version. I may make the changes some time in the future.

Take a look at my other Shiny apps
a.Revisiting crimes against women in India
b. Natural language processing: What would Shakespeare say?

Check out some of my other posts
1. Analyzing World Bank data with WDI, googleVis Motion Charts
2. Video presentation on Machine Learning, Data Science, NLP and Big Data – Part 1
3. Singularity
4. Design principles of scalable, distributed systems
5. Simulating an Edge shape in Android
6. Dabbling with Wiener filter in OpenCV

To see all posts click Index of Posts