Using Reinforcement Learning to solve Gridworld

“Take up one idea. Make that one idea your life — think of it, dream of it, live on that idea. Let the brain, muscles, nerves, every part of your body, be full of that idea, and just leave every other idea alone. This is the way to success.”

– Swami Vivekananda

“Be the change you want to see in the world”

– Mahatma Gandhi

“If you want to shine like the sun, first burn like the sun”

-Shri A.P.J Abdul Kalam

 

Reinforcement Learning

Reinforcement Learning (RL) involves decision making under uncertainty which tries to maximize return over successive states.There are four main elements of a Reinforcement Learning system: a policy, a reward signal, a value function. The policy is a mapping from the states to actions or a probability distribution of actions. Every action the agent takes results in a numerical reward. The agent’s sole purpose is to maximize the reward in the long run.

Reinforcement Learning is very different from Supervised, Unsupervised and Semi-supervised learning where the data is either labeled, unlabeled or partially labeled and the learning algorithm tries to learn the target values from the input features which is then used either for inference or prediction. In unsupervised the intention is to extract patterns from the data. In Reinforcement Learning the agent/robot takes action in each state based on the reward it would get for a particular action in a specific state with the goal of maximizing the reward. In many ways Reinforcement Learning is similar to how human beings and animals learn. Every action we take is with the goal of increasing our overall happiness, contentment, money,fame, power over the opposite!

RL has been used very effectively in many situations, the most famous is AlphaGo from Deep Mind, the first computer program to defeat a professional Go player in the Go game, which is supposed to be extremely complex. Also AlphaZero, from DeepMind has a higher ELO rating than that of Stockfish and was able to beat Stockfish 800+ times in 1000 chess matches. Take a look at DeepMind

In this post, I use some of the basic concepts of Reinforcment Learning to solve Grids (mazes). With this we can solve mazes, with arbitrary size, shape and complexity fairly easily. The RL algorithm can find the optimal path through the maze. Incidentally, I recollect recursive algorithms in Data Structures book which take a much more complex route with a lot of back tracking to solve maze problems

Reinforcement Learning involves decision making under uncertainty which tries to maximize return over successive states.There are four main elements of a Reinforcement Learning system: a policy, a reward signal, a value function. The policy is a mapping from the states to actions or a probability distribution of actions. Every action the agent takes results in a numerical reward. The agent’s sole purpose is to maximize the reward in the long run.

The reward indicates the immediate return, a value function specifies the return in the long run. Value of a state is the expected reward that an agent can accrue.

The agent/robot takes an action in At in state St and moves to state S’t anf gets a reward Rt+1 as shown

An agent will seek to maximize the overall return as it transition across states
The expected return can be expressed as
G_{t} = R_{t+1} + \gamma G_{t+1} where G_{t} is the expected return in time t and the discounted expected return G_{t+1} in time t+1

A policy is a mapping from states to probabilities of selecting each possible action. If the agent is following policy \pi at time t, then \pi(a|s) is the probability that A_{t} = a if S_{t} = s.

The value function of a state s under a policy \pi, denoted v_{\pi}(s), is the expected return when starting in s and following \pi thereafter

This can be written as

v_{\pi}(s) = E_{\pi}[G_{t} |S_{t}=s] = E_{\pi}[\sum_{k=0}^{k=Inf} \gamma^{k}R_{t+k+1}|S_{t}=s]

= E_{\pi}[R_{t+1} + \gamma G_{t+1} |S_{t}=s]

v_{\pi}(s)=\sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a)[r+\gamma*v_{\pi}(s')]

Similarly the action value function gives the expected return when taking an action ‘a’ in state ‘s’
q_{\pi}(s,a)= \sum_{s',r} p(s',r|s,a)[r+\gamma*\pi(a|s)q_{\pi}(s',a')]

These are Bellman’s equation for the state value function

The Bellman equations give the equation for each of the state

The Bellman optimality equations give the optimal policy of choosing specific actions in specific states to achieve the maximum reward and reach the goal efficiently. They are given as

v_{*}(s)=max_{a}\sum_{s',r} p(s',r|s,a)[r+\gamma*v_{*}(s')]

q_{*}(s,a)=\sum_{s',r} p(s',r|s,a)[r+\gamma*max_{a}q_{*}(s',a')]

The Bellman equations cannot be used directly in goal directed problems and dynamic programming is used instead where the value functions are computed iteratively

n this post I solve Grids using Reinforcement Learning. In the problem below the Maze has 2 end states as shown in the corner. There are four possible actions in each state up, down, right and left. If an action in a state takes it out of the grid then the agent remains in the same state. All actions have a reward of -1 while the end states have a reward of 0

This is shown as

where the reward for any transition is Rt=1Rt=−1 except the transition to the end states at the corner which have a reward of 0. The policy is a uniform policy with all actions being equi-probable with a probability of 1/4 or 0.25

You can fork/clone the code from my Github repository – Gridworld
Note: This post shows 3 different grids each with slightly more complexity and uses 3 methods
a) Bellman Update
b) Greedification
c) Bellman Optimality Update
with dynamic programming to solve the Grids

1. Gridworld-1

In [1]:
import numpy as np
import random
In [2]:
gamma = 1 # discounting rate
gridSize = 4
rewardValue = -1
terminationStates = [[0,0], [gridSize-1, gridSize-1]]
actions = [[-1, 0], [1, 0], [0, 1], [0, -1]]
numIterations = 1000

The action value provides the next state for a given action in a state and the accrued reward

In [3]:
def actionValue(initialPosition,action):
    if initialPosition in terminationStates:
        finalPosition = initialPosition
        reward=0
    else:
        #Compute final position
        finalPosition = np.array(initialPosition) + np.array(action)
        reward= rewardValue
    # If the action moves the finalPosition out of the grid, stay in same cell
    if -1 in finalPosition or gridSize in finalPosition:
        finalPosition = initialPosition
        reward= rewardValue
    
    #print(finalPosition)
    return finalPosition, reward

1a. Bellman Update

In [4]:
# Initialize valueMap and valueMap1
valueMap = np.zeros((gridSize, gridSize))
valueMap1 = np.zeros((gridSize, gridSize))
states = [[i, j] for i in range(gridSize) for j in range(gridSize)]
In [5]:
def policy_evaluation(numIterations,gamma,theta,valueMap):
    for i in range(numIterations):
        delta=0
        for state in states:
            weightedRewards=0
            for action in actions:
                finalPosition,reward = actionValue(state,action)
                weightedRewards += 1/4* (reward + gamma * valueMap[finalPosition[0],finalPosition][1])
            valueMap1[state[0],state[1]]=weightedRewards
            delta =max(delta,abs(weightedRewards-valueMap[state[0],state[1]]))
        valueMap = np.copy(valueMap1)
        if(delta < 0.01):                                                
            print(valueMap)
            break
In [6]:
valueMap = np.zeros((gridSize, gridSize))
valueMap1 = np.zeros((gridSize, gridSize))
states = [[i, j] for i in range(gridSize) for j in range(gridSize)]
policy_evaluation(1000,1,0.001,valueMap)
[[  0.         -13.89528403 -19.84482978 -21.82635535]
 [-13.89528403 -17.86330422 -19.84586777 -19.84482978]
 [-19.84482978 -19.84586777 -17.86330422 -13.89528403]
 [-21.82635535 -19.84482978 -13.89528403   0.        ]]

Findings

The valueMap is the result of several sweeps through all the states. It can be seen that the cells in the corner state have a higher value. We can start on any cell in the grid and move in the direction which is greater than the current state and we will reach the end state

1b. Greedify

The previous alogirthm while it works is somewhat inefficient as we have to sweep over the states to compute the state value function. The approach below works on the same problem but after each computation of the value function, a greedifications takes place to ensure that the action with the highest return is selected after which the policy ππ is followed

To make the transitions clearer I also create another grid which shows the path from any cell to the end states as

‘u’ – up

‘d’ – down

‘r’ – right

‘l’ – left

Important note: If there are several alternative actions with equal value then the algorithm will break the tie randomly

In [7]:
valueMap = np.zeros((gridSize, gridSize))
valueMap1 = np.zeros((gridSize, gridSize))
states = [[i, j] for i in range(gridSize) for j in range(gridSize)]
pi = np.ones((gridSize,gridSize))/4
pi1 = np.chararray((gridSize, gridSize))
pi1[:] = 'a'
In [8]:
# Compute the value state function for the Grid
def policy_evaluate(states,actions,gamma,valueMap):
    #print("iterations=",i)
    for state in states:
        weightedRewards=0
        for action in actions:
            finalPosition,reward = actionValue(state,action)
            weightedRewards += 1/4* (reward + gamma * valueMap[finalPosition[0],finalPosition][1])
        # Set the computed weighted rewards to valueMap1
        valueMap1[state[0],state[1]]=weightedRewards
    # Copy to original valueMap
    valueMap = np.copy(valueMap1)
    return(valueMap)
In [9]:
def argmax(q_values):
    idx=np.argmax(q_values)
    return(np.random.choice(np.where(a==a[idx])[0].tolist()))


# Compute the best action in each state
def greedify_policy(state,pi,pi1,gamma,valueMap):  
        q_values=np.zeros(len(actions))
        for idx,action in enumerate(actions):
            finalPosition,reward = actionValue(state,action)
            q_values[idx] += 1/4* (reward + gamma * valueMap[finalPosition[0],finalPosition][1])
        # Find the index of the action for which the q_value is 
        idx=q_values.argmax()
        pi[state[0],state[1]]=idx 
        if(idx == 0):
            pi1[state[0],state[1]]='u'
        elif(idx == 1):
            pi1[state[0],state[1]]='d'
        elif(idx == 2):
            pi1[state[0],state[1]]='r'
        elif(idx == 3):
            pi1[state[0],state[1]]='l'

        
In [10]:
def improve_policy(pi, pi1,gamma,valueMap):
    policy_stable = True
    for state in states:
        old = pi[state].copy()
        # Greedify policy for state
        greedify_policy(state,pi,pi1,gamma,valueMap)
        if not np.array_equal(pi[state], old):
            policy_stable = False
    print(pi)
    print(pi1)
    return pi, pi1, policy_stable
In [11]:
def policy_iteration(gamma, theta):
    valueMap = np.zeros((gridSize, gridSize))
    pi = np.ones((gridSize,gridSize))/4
    pi1 = np.chararray((gridSize, gridSize))
    pi1[:] = 'a'
    policy_stable = False
    print("here")
    while not policy_stable:
        valueMap = policy_evaluate(states,actions,gamma,valueMap)
        pi,pi1, policy_stable = improve_policy(pi,pi1,  gamma,valueMap)
    return valueMap, pi,pi1
In [12]:
theta=0.1
valueMap, pi,pi1 = policy_iteration(gamma, theta)
[[0. 3. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 1.]
 [0. 0. 2. 0.]]
[[b'u' b'l' b'u' b'u']
 [b'u' b'u' b'u' b'u']
 [b'u' b'u' b'u' b'd']
 [b'u' b'u' b'r' b'u']]
[[0. 3. 3. 0.]
 [0. 0. 0. 1.]
 [0. 0. 1. 1.]
 [0. 2. 2. 0.]]
[[b'u' b'l' b'l' b'u']
 [b'u' b'u' b'u' b'd']
 [b'u' b'u' b'd' b'd']
 [b'u' b'r' b'r' b'u']]
[[0. 3. 3. 1.]
 [0. 0. 1. 1.]
 [0. 0. 1. 1.]
 [0. 2. 2. 0.]]
[[b'u' b'l' b'l' b'd']
 [b'u' b'u' b'd' b'd']
 [b'u' b'u' b'd' b'd']
 [b'u' b'r' b'r' b'u']]
[[0. 3. 3. 1.]
 [0. 0. 1. 1.]
 [0. 0. 1. 1.]
 [0. 2. 2. 0.]]
[[b'u' b'l' b'l' b'd']
 [b'u' b'u' b'd' b'd']
 [b'u' b'u' b'd' b'd']
 [b'u' b'r' b'r' b'u']]

Findings

From the above valueMap we can see that greedification solves this much faster as below

1c. Bellman Optimality update

The Bellman optimality update directly updates the value state function for the action that results in the maximum return in a state

In [13]:
gamma = 1 # discounting rate
rewardValue = -1
gridSize = 4
terminationStates = [[0,0], [gridSize-1, gridSize-1]]
actions = [[-1, 0], [1, 0], [0, 1], [0, -1]]
numIterations = 1000
In [14]:
valueMap = np.zeros((gridSize, gridSize))
valueMap1 = np.zeros((gridSize, gridSize))
states = [[i, j] for i in range(gridSize) for j in range(gridSize)]
pi = np.ones((gridSize,gridSize))/4
pi1 = np.chararray((gridSize, gridSize))
pi1[:] = 'a'
In [15]:
def bellman_optimality_update(valueMap, state, gamma):

    q_values=np.zeros(len(actions))
    
    for idx,action in enumerate(actions):
        finalPosition,reward = actionValue(state,action)
        q_values[idx] += 1/4* (reward + gamma * valueMap[finalPosition[0],finalPosition][1])
    # Find the index of the action for which the q_value is 
    idx=q_values.argmax()
            
    max = np.argmax(q_values)
    valueMap[state[0],state[1]] = q_values[max]    
    #print(q_values[max])
In [16]:
def value_iteration(gamma, theta):
    valueMap = np.zeros((gridSize, gridSize))
    while True:
        delta = 0
        for state in states:
            v_old=valueMap[state[0],state[1]]
            bellman_optimality_update(valueMap, state, gamma)
            delta = max(delta, abs(v_old - valueMap[state[0],state[1]]))
        if delta < theta:
            break
    pi = np.ones((gridSize,gridSize))/4
    for state in states:
        greedify_policy(state,pi,pi1,gamma,valueMap)
    print(pi)
    print(pi1)
    return valueMap, pi,pi1
In [17]:
gamma = 1
theta = 0.01
valueMap,pi,pi1=value_iteration(gamma, theta)
pi
pi1
[[0. 3. 3. 1.]
 [0. 0. 0. 1.]
 [0. 0. 1. 1.]
 [0. 2. 2. 0.]]
[[b'u' b'l' b'l' b'd']
 [b'u' b'u' b'u' b'd']
 [b'u' b'u' b'd' b'd']
 [b'u' b'r' b'r' b'u']]
Out[17]:
chararray([[b'u', b'l', b'l', b'd'],
           [b'u', b'u', b'u', b'd'],
           [b'u', b'u', b'd', b'd'],
           [b'u', b'r', b'r', b'u']], dtype='|S1')

Findings

The above valueMap shows the optimal path from any state

2.Gridworld 2

To make the problem more interesting, I created a 2nd grid which has more interesting structure as shown below <img src=”fig5.png”

The end state is the grey cell. Transitions to the black cells have a negative reward of -10. All other transitions have a reward of -1, while the end state has a reward of 0

In [2]:

##2a. Bellman Update

In [3]:
gamma = 1 # discounting rate
gridSize = 4

terminationStates = [[0,0]]
#terminationStates = [[0,0]]
actions = [[-1, 0], [1, 0], [0, 1], [0, -1]]
numIterations = 1000
In [4]:
rewardValue = np.zeros((gridSize,gridSize)) -1
rewardValue[0]=np.array([-1,-10,-10,-10])
rewardValue[2]=np.array([-10,-10,-10,-1])
rewardValue
Out[4]:
array([[ -1., -10., -10., -10.],
       [ -1.,  -1.,  -1.,  -1.],
       [-10., -10., -10.,  -1.],
       [ -1.,  -1.,  -1.,  -1.]])
In [5]:
def actionValue(initialPosition,action):
    if initialPosition in terminationStates:
        finalPosition = initialPosition
        reward=0
    else:
        #Compute final position
        finalPosition = np.array(initialPosition) + np.array(action)
        
        # If the action moves the finalPosition out of the grid, stay in same cell
        if -1 in finalPosition or gridSize in finalPosition:
                finalPosition = initialPosition
                reward= rewardValue[finalPosition[0],finalPosition[1]]
        else:
                reward= rewardValue[finalPosition[0],finalPosition[1]]
    
    #print(finalPosition)
    return finalPosition, reward
In [6]:
valueMap = np.zeros((gridSize, gridSize))
valueMap1 = np.zeros((gridSize, gridSize))
states = [[i, j] for i in range(gridSize) for j in range(gridSize)]
In [7]:
def policy_evaluation(numIterations,gamma,theta,valueMap):
    for i in range(numIterations):
        delta=0
        #print("iterations=",i)
        for state in states:
            weightedRewards=0
            for action in actions:
                finalPosition,reward = actionValue(state,action)
                #print("reward=",reward,"valueMap=",valueMap[finalPosition[0],finalPosition][1])
                weightedRewards += 1/4* (reward + gamma * valueMap[finalPosition[0],finalPosition][1])
            #print(weightedRewards)
            valueMap1[state[0],state[1]]=weightedRewards
            #print("wr=",weightedRewards,"va=",valueMap[state[0],state[1]]) 
            delta =max(delta,abs(weightedRewards-valueMap[state[0],state[1]]))
        valueMap = np.copy(valueMap1)
        #print(valueMap1)
        if(delta < 0.01):
            print(delta)                                                   
            print(valueMap)
            break
In [8]:
valueMap = np.zeros((gridSize, gridSize))
valueMap1 = np.zeros((gridSize, gridSize))
states = [[i, j] for i in range(gridSize) for j in range(gridSize)]
policy_evaluation(1000,1,0.0001,valueMap)
0.009862596190146178
[[   0.         -137.28514189 -209.19560831 -239.01378395]
 [-129.2494276  -180.67825796 -220.31626448 -237.86482779]
 [-194.08846546 -213.88769305 -231.5579035  -241.29920147]
 [-217.15664109 -227.25768494 -237.76348718 -241.51200989]]

2b. Greedify

In [9]:
valueMap = np.zeros((gridSize, gridSize))
valueMap1 = np.zeros((gridSize, gridSize))
states = [[i, j] for i in range(gridSize) for j in range(gridSize)]
pi = np.ones((gridSize,gridSize))/4
pi1 = np.chararray((gridSize, gridSize))
pi1[:] = 'a'
In [10]:
# Compute the value state function for the Grid
def policy_evaluate(states,actions,gamma,valueMap):
    #print("iterations=",i)
    for state in states:
        weightedRewards=0
        for action in actions:
            finalPosition,reward = actionValue(state,action)
            weightedRewards += 1/4* (reward + gamma * valueMap[finalPosition[0],finalPosition][1])
        # Set the computed weighted rewards to valueMap1
        valueMap1[state[0],state[1]]=weightedRewards
    # Copy to original valueMap
    valueMap = np.copy(valueMap1)
    return(valueMap)
In [11]:
def argmax(q_values):
    idx=np.argmax(q_values)
    return(np.random.choice(np.where(a==a[idx])[0].tolist()))


# Compute the best action in each state
def greedify_policy(state,pi,pi1,gamma,valueMap):  
        q_values=np.zeros(len(actions))
        for idx,action in enumerate(actions):
            finalPosition,reward = actionValue(state,action)
            q_values[idx] += 1/4* (reward + gamma * valueMap[finalPosition[0],finalPosition][1])
        # Find the index of the action for which the q_value is 
        idx=q_values.argmax()
        pi[state[0],state[1]]=idx 
        if(idx == 0):
            pi1[state[0],state[1]]='u'
        elif(idx == 1):
            pi1[state[0],state[1]]='d'
        elif(idx == 2):
            pi1[state[0],state[1]]='r'
        elif(idx == 3):
            pi1[state[0],state[1]]='l'

        
In [12]:
def improve_policy(pi, pi1,gamma,valueMap):
    policy_stable = True
    for state in states:
        old = pi[state].copy()
        # Greedify policy for state
        greedify_policy(state,pi,pi1,gamma,valueMap)
        if not np.array_equal(pi[state], old):
            policy_stable = False
    print(pi)
    print(pi1)
    return pi, pi1, policy_stable
In [13]:
def policy_iteration(gamma, theta):
    valueMap = np.zeros((gridSize, gridSize))
    pi = np.ones((gridSize,gridSize))/4
    pi1 = np.chararray((gridSize, gridSize))
    pi1[:] = 'a'
    policy_stable = False
    print("here")
    while not policy_stable:
        valueMap = policy_evaluate(states,actions,gamma,valueMap)
        pi,pi1, policy_stable = improve_policy(pi,pi1,  gamma,valueMap)
    return valueMap, pi,pi1
In [14]:
theta=0.1
valueMap, pi,pi1 = policy_iteration(gamma, theta)
here
[[0. 3. 1. 1.]
 [0. 3. 2. 1.]
 [0. 1. 1. 1.]
 [1. 1. 2. 1.]]
[[b'u' b'l' b'd' b'd']
 [b'u' b'l' b'r' b'd']
 [b'u' b'd' b'd' b'd']
 [b'd' b'd' b'r' b'd']]
[[0. 3. 1. 1.]
 [0. 3. 2. 1.]
 [0. 1. 1. 1.]
 [1. 2. 2. 1.]]
[[b'u' b'l' b'd' b'd']
 [b'u' b'l' b'r' b'd']
 [b'u' b'd' b'd' b'd']
 [b'd' b'r' b'r' b'd']]
[[0. 3. 1. 1.]
 [0. 3. 2. 1.]
 [0. 1. 1. 1.]
 [2. 2. 2. 1.]]
[[b'u' b'l' b'd' b'd']
 [b'u' b'l' b'r' b'd']
 [b'u' b'd' b'd' b'd']
 [b'r' b'r' b'r' b'd']]
[[0. 3. 1. 1.]
 [0. 3. 2. 1.]
 [0. 1. 1. 1.]
 [2. 2. 2. 1.]]
[[b'u' b'l' b'd' b'd']
 [b'u' b'l' b'r' b'd']
 [b'u' b'd' b'd' b'd']
 [b'r' b'r' b'r' b'd']]
In [15]:
## 2c. Bellman Optimality update
In [16]:
gamma = 1 # discounting rate
rewardValue = np.zeros((gridSize,gridSize)) -1
rewardValue[0]=np.array([-1,-10,-10,-10])
rewardValue[2]=np.array([-10,-10,-10,-1])
rewardValue
gridSize = 4
terminationStates = [[0,0]]
actions = [[-1, 0], [1, 0], [0, 1], [0, -1]]
numIterations = 1000
In [17]:
valueMap = np.zeros((gridSize, gridSize))
valueMap1 = np.zeros((gridSize, gridSize))
states = [[i, j] for i in range(gridSize) for j in range(gridSize)]
pi = np.ones((gridSize,gridSize))/4
pi1 = np.chararray((gridSize, gridSize))
pi1[:] = 'a'
In [18]:

2c. Bellman Optimality Update

def bellman_optimality_update(valueMap, state, gamma):

    q_values=np.zeros(len(actions))
    
    for idx,action in enumerate(actions):
        finalPosition,reward = actionValue(state,action)
        q_values[idx] += 1/4* (reward + gamma * valueMap[finalPosition[0],finalPosition][1])
    # Find the index of the action for which the q_value is 
    idx=q_values.argmax()
            
    max = np.argmax(q_values)
    valueMap[state[0],state[1]] = q_values[max]    
    #print(q_values[max])
In [19]:
def value_iteration(gamma, theta):
    valueMap = np.zeros((gridSize, gridSize))
    while True:
        delta = 0
        for state in states:
            v_old=valueMap[state[0],state[1]]
            bellman_optimality_update(valueMap, state, gamma)
            delta = max(delta, abs(v_old - valueMap[state[0],state[1]]))
        if delta < theta:
            break
    pi = np.ones((gridSize,gridSize))/4
    for state in states:
        greedify_policy(state,pi,pi1,gamma,valueMap)
    print(pi)
    print(pi1)
    return valueMap, pi,pi1
In [20]:
gamma = 1
theta = 0.000001
valueMap,pi,pi1=value_iteration(gamma, theta)
pi
pi1
[[0. 3. 1. 1.]
 [0. 3. 3. 3.]
 [0. 0. 0. 0.]
 [2. 2. 2. 0.]]
[[b'u' b'l' b'd' b'd']
 [b'u' b'l' b'l' b'l']
 [b'u' b'u' b'u' b'u']
 [b'r' b'r' b'r' b'u']]
Out[20]:
chararray([[b'u', b'l', b'd', b'd'],
           [b'u', b'l', b'l', b'l'],
           [b'u', b'u', b'u', b'u'],
           [b'r', b'r', b'r', b'u']], dtype='|S1')

Findings

The above shows the path from any cell to the stop cell as


3. Another maze

This is the third grid world which I create where the green cell is the end state and has a reward of 0. Transitions to the black cell will receive a reward of -10 and all other transitions will receive a reward of -1

In [2]:
gamma = 1 # discounting rate
gridSize = 5
terminationStates = [[2,2]]
actions = [[-1, 0], [1, 0], [0, 1], [0, -1]]
numIterations = 1000
In [3]:
rewardValue = np.zeros((gridSize,gridSize)) -1
rewardValue[1]=np.array([-1,-10,-1,-10,-1])
rewardValue[3]=np.array([-1,-10,-1,-10,-1])
rewardValue
Out[3]:
array([[ -1.,  -1.,  -1.,  -1.,  -1.],
       [ -1., -10.,  -1., -10.,  -1.],
       [ -1.,  -1.,  -1.,  -1.,  -1.],
       [ -1., -10.,  -1., -10.,  -1.],
       [ -1.,  -1.,  -1.,  -1.,  -1.]])
In [4]:

3a. Bellman Update

def actionValue(initialPosition,action):
    if initialPosition in terminationStates:
        finalPosition = initialPosition
        reward=0
    else:
        #Compute final position
        finalPosition = np.array(initialPosition) + np.array(action)
        
        # If the action moves the finalPosition out of the grid, stay in same cell
        if -1 in finalPosition or gridSize in finalPosition:
                finalPosition = initialPosition
                reward= rewardValue[finalPosition[0],finalPosition[1]]
        else:
                reward= rewardValue[finalPosition[0],finalPosition[1]]
    
    #print(finalPosition)
    return finalPosition, reward
In [5]:
valueMap = np.zeros((gridSize, gridSize))
valueMap1 = np.zeros((gridSize, gridSize))
states = [[i, j] for i in range(gridSize) for j in range(gridSize)]
In [6]:
def policy_evaluation(numIterations,gamma,theta,valueMap):
    for i in range(numIterations):
        delta=0
        #print("iterations=",i)
        for state in states:
            weightedRewards=0
            for action in actions:
                finalPosition,reward = actionValue(state,action)
                #print("reward=",reward,"valueMap=",valueMap[finalPosition[0],finalPosition][1])
                weightedRewards += 1/4* (reward + gamma * valueMap[finalPosition[0],finalPosition][1])
            #print(weightedRewards)
            valueMap1[state[0],state[1]]=weightedRewards
            #print("wr=",weightedRewards,"va=",valueMap[state[0],state[1]]) 
            delta =max(delta,abs(weightedRewards-valueMap[state[0],state[1]]))
        valueMap = np.copy(valueMap1)
        #print(valueMap1)
        if(delta < 0.01):
            print(delta)                                                   
            print(valueMap)
            break
In [7]:
valueMap = np.zeros((gridSize, gridSize))
valueMap1 = np.zeros((gridSize, gridSize))
states = [[i, j] for i in range(gridSize) for j in range(gridSize)]
policy_evaluation(1000,1,0.0001,valueMap)
0.009697101372182715
[[-82.49768079 -80.51647225 -74.9345659  -80.51647225 -82.49768079]
 [-80.51647225 -71.15241689 -59.80375072 -71.15241689 -80.51647225]
 [-74.9345659  -59.80375072   0.         -59.80375072 -74.9345659 ]
 [-80.51647225 -71.15241689 -59.80375072 -71.15241689 -80.51647225]
 [-82.49768079 -80.51647225 -74.9345659  -80.51647225 -82.49768079]]

3b. Greedify

In [8]:
valueMap = np.zeros((gridSize, gridSize))
valueMap1 = np.zeros((gridSize, gridSize))
states = [[i, j] for i in range(gridSize) for j in range(gridSize)]
pi = np.ones((gridSize,gridSize))/4
pi1 = np.chararray((gridSize, gridSize))
pi1[:] = 'a'
In [9]:
# Compute the value state function for the Grid
def policy_evaluate(states,actions,gamma,valueMap):
    #print("iterations=",i)
    for state in states:
        weightedRewards=0
        for action in actions:
            finalPosition,reward = actionValue(state,action)
            weightedRewards += 1/4* (reward + gamma * valueMap[finalPosition[0],finalPosition][1])
        # Set the computed weighted rewards to valueMap1
        valueMap1[state[0],state[1]]=weightedRewards
    # Copy to original valueMap
    valueMap = np.copy(valueMap1)
    return(valueMap)
In [10]:
def argmax(q_values):
    idx=np.argmax(q_values)
    return(np.random.choice(np.where(a==a[idx])[0].tolist()))


# Compute the best action in each state
def greedify_policy(state,pi,pi1,gamma,valueMap):  
        q_values=np.zeros(len(actions))
        for idx,action in enumerate(actions):
            finalPosition,reward = actionValue(state,action)
            q_values[idx] += 1/4* (reward + gamma * valueMap[finalPosition[0],finalPosition][1])
        # Find the index of the action for which the q_value is 
        idx=q_values.argmax()
        pi[state[0],state[1]]=idx 
        if(idx == 0):
            pi1[state[0],state[1]]='u'
        elif(idx == 1):
            pi1[state[0],state[1]]='d'
        elif(idx == 2):
            pi1[state[0],state[1]]='r'
        elif(idx == 3):
            pi1[state[0],state[1]]='l'

        
In [11]:
def improve_policy(pi, pi1,gamma,valueMap):
    policy_stable = True
    for state in states:
        old = pi[state].copy()
        # Greedify policy for state
        greedify_policy(state,pi,pi1,gamma,valueMap)
        if not np.array_equal(pi[state], old):
            policy_stable = False
    print(pi)
    print(pi1)
    return pi, pi1, policy_stable
In [12]:
def policy_iteration(gamma, theta):
    valueMap = np.zeros((gridSize, gridSize))
    pi = np.ones((gridSize,gridSize))/4
    pi1 = np.chararray((gridSize, gridSize))
    pi1[:] = 'a'
    policy_stable = False
    print("here")
    while not policy_stable:
        valueMap = policy_evaluate(states,actions,gamma,valueMap)
        pi,pi1, policy_stable = improve_policy(pi,pi1,  gamma,valueMap)
    return valueMap, pi,pi1
In [13]:
theta=0.1
valueMap, pi,pi1 = policy_iteration(gamma, theta)
here
[[0. 2. 0. 2. 0.]
 [0. 0. 1. 0. 0.]
 [3. 2. 0. 3. 2.]
 [0. 1. 0. 1. 0.]
 [1. 2. 1. 2. 1.]]
[[b'u' b'r' b'u' b'r' b'u']
 [b'u' b'u' b'd' b'u' b'u']
 [b'l' b'r' b'u' b'l' b'r']
 [b'u' b'd' b'u' b'd' b'u']
 [b'd' b'r' b'd' b'r' b'd']]
[[0. 3. 0. 2. 0.]
 [0. 0. 1. 0. 0.]
 [3. 2. 0. 3. 2.]
 [1. 1. 0. 1. 1.]
 [1. 3. 1. 2. 1.]]
[[b'u' b'l' b'u' b'r' b'u']
 [b'u' b'u' b'd' b'u' b'u']
 [b'l' b'r' b'u' b'l' b'r']
 [b'd' b'd' b'u' b'd' b'd']
 [b'd' b'l' b'd' b'r' b'd']]
[[0. 3. 0. 2. 0.]
 [0. 0. 1. 0. 0.]
 [3. 2. 0. 3. 2.]
 [1. 1. 0. 1. 1.]
 [1. 3. 1. 2. 1.]]
[[b'u' b'l' b'u' b'r' b'u']
 [b'u' b'u' b'd' b'u' b'u']
 [b'l' b'r' b'u' b'l' b'r']
 [b'd' b'd' b'u' b'd' b'd']
 [b'd' b'l' b'd' b'r' b'd']]
In [14]:
gamma = 1 # discounting rate
gridSize=5
rewardValue = np.zeros((gridSize,gridSize)) -1
rewardValue = np.zeros((gridSize,gridSize)) -1
rewardValue[1]=np.array([-1,-10,-1,-10,-1])
rewardValue[3]=np.array([-1,-10,-1,-10,-1])
print(rewardValue)


terminationStates = [[2,2]]
actions = [[-1, 0], [1, 0], [0, 1], [0, -1]]
numIterations = 1000
[[ -1.  -1.  -1.  -1.  -1.]
 [ -1. -10.  -1. -10.  -1.]
 [ -1.  -1.  -1.  -1.  -1.]
 [ -1. -10.  -1. -10.  -1.]
 [ -1.  -1.  -1.  -1.  -1.]]
In [15]:

3c. Bellman Optimality Update

valueMap = np.zeros((gridSize, gridSize))
valueMap1 = np.zeros((gridSize, gridSize))
states = [[i, j] for i in range(gridSize) for j in range(gridSize)]
pi = np.ones((gridSize,gridSize))/4
pi1 = np.chararray((gridSize, gridSize))
pi1[:] = 'a'
In [16]:
def bellman_optimality_update(valueMap, state, gamma):

    q_values=np.zeros(len(actions))
    
    for idx,action in enumerate(actions):
        finalPosition,reward = actionValue(state,action)
        q_values[idx] += 1/4* (reward + gamma * valueMap[finalPosition[0],finalPosition][1])
    # Find the index of the action for which the q_value is 
    idx=q_values.argmax()
            
    max = np.argmax(q_values)
    valueMap[state[0],state[1]] = q_values[max]    
    #print(q_values[max])
In [17]:
def value_iteration(gamma, theta):
    valueMap = np.zeros((gridSize, gridSize))
    while True:
        delta = 0
        for state in states:
            v_old=valueMap[state[0],state[1]]
            bellman_optimality_update(valueMap, state, gamma)
            delta = max(delta, abs(v_old - valueMap[state[0],state[1]]))
        if delta < theta:
            break
    pi = np.ones((gridSize,gridSize))/4
    for state in states:
        greedify_policy(state,pi,pi1,gamma,valueMap)
    print(pi)
    print(pi1)
    return valueMap, pi,pi1
In [18]:
gamma = 1
theta = 0.000001
valueMap,pi,pi1=value_iteration(gamma, theta)
pi
pi1
[[1. 2. 1. 3. 1.]
 [1. 1. 1. 1. 1.]
 [2. 2. 0. 3. 3.]
 [0. 0. 0. 0. 0.]
 [0. 2. 0. 3. 0.]]
[[b'd' b'r' b'd' b'l' b'd']
 [b'd' b'd' b'd' b'd' b'd']
 [b'r' b'r' b'u' b'l' b'l']
 [b'u' b'u' b'u' b'u' b'u']
 [b'u' b'r' b'u' b'l' b'u']]
Out[18]:
chararray([[b'd', b'r', b'd', b'l', b'd'],
           [b'd', b'd', b'd', b'd', b'd'],
           [b'r', b'r', b'u', b'l', b'l'],
           [b'u', b'u', b'u', b'u', b'u'],
           [b'u', b'r', b'u', b'l', b'u']], dtype='|S1')


Findings

We can see that the Bellman Optimality Update correctly finds the path the to end node which we can see from the valueMap1 above which is

Conclusion:

We can see how with the Bellman equations implemented iteratively with dynamic programming we can solve mazes of arbitrary shapes and complexities as long as we correctly choose the reward for the transitions

References
1. Reinforcement Learning – An introduction by Richard S. Sutton and Andrew G Barto
2. Reinforcement learning (RL) 101 with Python Blog by Gerard Martinez
3. Reinforcement Learning Demystified: Solving MDPs with Dynamic Programming Blog by Mohammed Ashraf

You may also like

1. My book ‘Deep Learning from first principles:Second Edition’ now on Amazon
2. Big Data-4: Webserver log analysis with RDDs, Pyspark, SparkR and SparklyR
3. Practical Machine Learning with R and Python – Part 3
3. Pitching yorkpy…on the middle and outside off-stump to IPL – Part 2
4. Sixer – R package cricketr’s new Shiny avatar
5. Natural language processing: What would Shakespeare say?
6. Getting started with Tensorflow, Keras in Python and R

To see all posts click Index of posts

Cricpy performs granular analysis of players

“Gold medals aren’t really made of gold. They’re made of sweat, determination, & a hard-to-find alloy called guts.” Dan Gable

“It doesn’t matter whether you are pursuing success in business, sports, the arts, or life in general: The bridge between wishing and accomplishing is discipline” Harvey Mackay

“I won’t predict anything historic. But nothing is impossible.” Michael Phelps

Introduction

In this post, I introduce 2 new functions in my Python package ‘cricpy’ (cricpy v0.20) see Introducing cricpy:A python package to analyze performances of cricketers which enable granular analysis of batsmen and bowlers. They are

  1. Step 1: getPlayerDataHA – This function is a wrapper around getPlayerData(), getPlayerDataOD() and getPlayerDataTT(), and adds an extra column ‘homeOrAway’ which says whether the match was played at home/away/neutral venues. A CSV file is created with this new column.
  2. Step 2: getPlayerDataOppnHA – This function allows you to slice & dice the data for batsmen and bowlers against specific oppositions, at home/away/neutral venues and between certain periods. This reducedsubset of data can be used to perform analyses. A CSV file is created as an output based on the parameters of opposition, home or away and the interval of time

Note All the existing cricpy functions can be used on this smaller fine-grained data set for a closer analysis of players

This post has been published in Rpubs and can be accessed at Cricpy performs granular analysis of players

You can download a PDF version of this post at Cricpy performs granular analysis of players

I have also updated the cricpy template with these lastest changes. See cricpy-template

1. Analyzing Rahul Dravid at 3 different stages of his career

The following functions analyze Rahul Dravid during 3 different periods of his illustrious career. a) 1st Jan 2001-1st Jan 2002 b) 1st Jan 2004-1st Jan 2005 c) 1st Jan 2009-1st Jan 2010

import cricpy.analytics as ca
# Get the homeOrAway dataset for Dravid in matches
# Note:Since I have already got the data I reuse the CSV file
#df=ca.getPlayerDataHA(28114,tfile="dravidTestHA.csv",matchType="Test")

# Get Dravid's data for 2001-02
df1=ca.getPlayerDataOppnHA(infile="dravidTestHA.csv",outfile="dravidTest2001.csv",startDate="2001-01-01",endDate="2002-01-01")

# Get Dravid's data for 2004-05
df2=ca.getPlayerDataOppnHA(infile="dravidTestHA.csv",outfile="dravidTest2004.csv", startDate="2004-01-01",endDate="2005-01-01")

# Get Dravid's data for 2009-10
df3=ca.getPlayerDataOppnHA(infile="dravidTestHA.csv",outfile="dravidTest2009.csv",startDate="2009-01-01",endDate="2010-01-01")

1a. Plot the performance of Dravid at venues during 2001,2004,2009

Note: Any of the cricpy functions can be used on the fine-grained subset of data as below.

import cricpy.analytics as ca
ca.batsmanAvgRunsGround("dravidTest2001.csv","Dravid-2001")

ca.batsmanAvgRunsGround("dravidTest2004.csv","Dravid-2004")

ca.batsmanAvgRunsGround("dravidTest2009.csv","Dravid-2009")


1b. Plot the performance of Dravid against different oppositions during 2001,2004,2009

import cricpy.analytics as ca
ca.batsmanAvgRunsOpposition("dravidTest2001.csv","Dravid-2001")

ca.batsmanAvgRunsOpposition("dravidTest2004.csv","Dravid-2004")


ca.batsmanAvgRunsOpposition("dravidTest2009.csv","Dravid-2009")


1c. Plot the relative cumulative average and relative strike rate of Dravid in 2001,2004,2009

The plot below compares Dravid’s cumulative strike rate and cumulative average during 3 different stages of his career

import cricpy.analytics as ca
frames=["dravidTest2001.csv","dravidTest2004.csv","dravidTest2009.csv"]
names=["Dravid-2001","Dravid-2004","Dravid-2009"]
ca.relativeBatsmanCumulativeAvgRuns(frames,names)

 

ca.relativeBatsmanCumulativeStrikeRate(frames,names)

2. Analyzing Virat Kohli’s performance against England in England in 2014 and 2018

The analysis below looks at Kohli’s performance against England in ‘away’ venues (England) in 2014 and 2018

import cricpy.analytics as ca
# Get the homeOrAway data for Kohli in Test matches
#df=ca.getPlayerDataHA(253802,tfile="kohliTestHA.csv",type="batting",matchType="Test")

# Get the homeOrAway data for Kohli in Test matches
df=ca.getPlayerDataHA(253802,tfile="kohliTestHA.csv",type="batting",matchType="Test")

# Get the subset if data of Kohli's performance against England in England in 2014
df=ca.getPlayerDataOppnHA(infile="kohliTestHA.csv",outfile="kohliTestEng2014.csv",  opposition=["England"],homeOrAway=["away"],startDate="2014-01-01",endDate="2015-01-01")

# Get the subset if data of Kohli's performance against England in England in 2018
df1=ca.getPlayerDataOppnHA(infile="kohliTestHA.csv",outfile="kohliTestEng2018.csv",
   opposition=["England"],homeOrAway=["away"],startDate="2018-01-01",endDate="2019-01-01")

2a. Kohli’s performance at England grounds in 2014 & 2018

Kohli had a miserable outing to England in 2014 with a string of low scores. In 2018 Kohli pulls himself out of the morass

import cricpy.analytics as ca
ca.batsmanAvgRunsGround("kohliTestEng2014.csv","Kohli-Eng-2014")
ca.batsmanAvgRunsGround("kohliTestEng2018.csv","Kohli-Eng-2018")


2a. Kohli’s cumulative average runs in 2014 & 2018

Kohli’s cumulative average runs in 2014 is in the low 15s, while in 2018 it is 70+. Kohli stamps his class back again and undoes the bad memories of 2014

import cricpy.analytics as ca
ca.batsmanCumulativeAverageRuns("kohliTestEng2014.csv", "Kohli-Eng-2014")

ca.batsmanCumulativeAverageRuns("kohliTestEng2018.csv", "Kohli-Eng-2018")

3a. Compare the performances of Ganguly, Dravid and VVS Laxman against opposition in ‘away’ matches in Tests

The analyses below compares the performances of Sourav Ganguly, Rahul Dravid and VVS Laxman against Australia, South Africa, and England in ‘away’ venues between 01 Jan 2002 to 01 Jan 2008

import cricpy.analytics as ca
#Get the HA data for Ganguly, Dravid and Laxman
#df=ca.getPlayerDataHA(28779,tfile="gangulyTestHA.csv",type="batting",matchType="Test")
#df=ca.getPlayerDataHA(28114,tfile="dravidTestHA.csv",type="batting",matchType="Test")
#df=ca.getPlayerDataHA(30750,tfile="laxmanTestHA.csv",type="batting",matchType="Test")

# Slice the data 
df=ca.getPlayerDataOppnHA(infile="gangulyTestHA.csv",outfile="gangulyTestAES2002-08.csv" ,opposition=["Australia", "England", "South Africa"],                        homeOrAway=["away"],startDate="2002-01-01",endDate="2008-01-01")
df=ca.getPlayerDataOppnHA(infile="dravidTestHA.csv",outfile="dravidTestAES2002-08.csv" ,opposition=["Australia", "England", "South Africa"],                        homeOrAway=["away"],startDate="2002-01-01",endDate="2008-01-01")
df=ca.getPlayerDataOppnHA(infile="laxmanTestHA.csv",outfile="laxmanTestAES2002-08.csv",opposition=["Australia", "England", "South Africa"],                       homeOrAway=["away"],startDate="2002-01-01",endDate="2008-01-01")

3b Plot the relative cumulative average runs and relative cumative strike rate

Plot the relative cumulative average runs and relative cumative strike rate of Ganguly, Dravid and Laxman

-Dravid towers over Laxman and Ganguly with respect to cumulative average runs. – Ganguly has a superior strike rate followed by Laxman and then Dravid

import cricpy.analytics as ca
frames=["gangulyTestAES2002-08.csv","dravidTestAES2002-08.csv","laxmanTestAES2002-08.csv"]
names=["GangulyAusEngSA2002-08","DravidAusEngSA2002-08","LaxmanAusEngSA2002-08"]
ca.relativeBatsmanCumulativeAvgRuns(frames,names)

ca.relativeBatsmanCumulativeStrikeRate(frames,names)

4. Compare the ODI performances of Rohit Sharma, Joe Root and Kane Williamson against opposition

Compare the performances of Rohit Sharma, Joe Root and Kane williamson in away & neutral venues against Australia, West Indies and Soouth Africa

  • Joe Root piles us the runs in about 15 matches. Rohit has played far more ODIs than the other two and averages a steady 35+
import cricpy.analytics as ca
# Get the ODI HA data for Rohit, Root and Williamson
#df=ca.getPlayerDataHA(34102,tfile="rohitODIHA.csv",type="batting",matchType="ODI")
#df=ca.getPlayerDataHA(303669,tfile="joerootODIHA.csv",type="batting",matchType="ODI")
#df=ca.getPlayerDataHA(277906,tfile="williamsonODIHA.csv",type="batting",matchType="ODI")

# Subset the data for specific opposition in away and neutral venues
## C:\Users\Ganesh\ANACON~1\lib\site-packages\statsmodels\compat\pandas.py:56: FutureWarning: The pandas.core.datetools module is deprecated and will be removed in a future version. Please use the pandas.tseries module instead.
##   from pandas.core import datetools
df=ca.getPlayerDataOppnHA(infile="rohitODIHA.csv",outfile="rohitODIAusWISA.csv"
                       ,opposition=["Australia", "West Indies", "South Africa"],
                      homeOrAway=["away","neutral"])
df=ca.getPlayerDataOppnHA(infile="joerootODIHA.csv",outfile="joerootODIAusWISA.csv"
                       ,opposition=["Australia", "West Indies", "South Africa"],
                       homeOrAway=["away","neutral"])
df=ca.getPlayerDataOppnHA(infile="williamsonODIHA.csv",outfile="williamsonODIAusWiSA.csv",opposition=["Australia", "West Indies", "South Africa"],                    homeOrAway=["away","neutral"])

4a. Compare cumulative strike rates and cumulative average runs of Rohit, Root and Williamson

The relative cumulative strike rate of all 3 are comparable

import cricpy.analytics as ca
frames=["rohitODIAusWISA.csv","joerootODIAusWISA.csv","williamsonODIAusWiSA.csv"]
names=["Rohit-ODI-AusWISA","Joe Root-ODI-AusWISA","Williamson-ODI-AusWISA"]
ca.relativeBatsmanCumulativeAvgRuns(frames,names)

ca.relativeBatsmanCumulativeStrikeRate(frames,names)

5. Plot the performance of Dhoni in T20s against specific opposition at all venues

Plot the performances of Dhoni against Australia, West Indies, South Africa and England

import cricpy.analytics as ca
# Get the HA T20 data for Dhoni
#df=ca.getPlayerDataHA(28081,tfile="dhoniT20HA.csv",type="batting",matchType="T20")
#Subset the data
df=ca.getPlayerDataOppnHA(infile="dhoniT20HA.csv",outfile="dhoniT20AusWISAEng.csv",opposition=["Australia", "West Indies", "South Africa","England"],                homeOrAway=["all"])

5a. Plot Dhoni’s performances in T20

Note You can use any of cricpy’s functions against the fine grained data

import cricpy.analytics as ca
ca.batsmanAvgRunsOpposition("dhoniT20AusWISAEng.csv","Dhoni")

ca.batsmanAvgRunsGround("dhoniT20AusWISAEng.csv","Dhoni")

ca.batsmanCumulativeStrikeRate("dhoniT20AusWISAEng.csv","Dhoni")

ca.batsmanCumulativeAverageRuns("dhoniT20AusWISAEng.csv","Dhoni")

6. Compute and performances of Anil Kumble, Muralitharan and Warne in ‘away’ test matches

Compute the performances of Kumble, Warne and Maralitharan against New Zealand, West Indies, South Africa and England in pitches that are not ‘home’ pithes

import cricpy.analytics as ca
# Get the bowling data for Kumble, Warne and Muralitharan in Test matches
#df=ca.getPlayerDataHA(30176,tfile="kumbleTestHA.csv",type="bowling",matchType="Test")
#df=ca.getPlayerDataHA(8166,tfile="warneTestHA.csv",type="bowling",matchType="Test")
#df=ca.getPlayerDataHA(49636,tfile="muraliTestHA.csv",type="bowling",matchType="Test")

# Subset the data
df=ca.getPlayerDataOppnHA(infile="kumbleTestHA.csv",outfile="kumbleTest-NZWISAEng.csv",opposition=["New Zealand", "West Indies", "South Africa","England"],
                       homeOrAway=["away"])

df=ca.getPlayerDataOppnHA(infile="warneTestHA.csv",outfile="warneTest-NZWISAEng.csv"
                       ,opposition=["New Zealand", "West Indies", "South Africa","England"], homeOrAway=["away"])

df=ca.getPlayerDataOppnHA(infile="muraliTestHA.csv",outfile="muraliTest-NZWISAEng.csv"
                       ,opposition=["New Zealand", "West Indies", "South Africa","England"], homeOrAway=["away"])

6a. Plot the average wickets of Kumble, Warne and Murali

import cricpy.analytics as ca
ca.bowlerAvgWktsOpposition("kumbleTest-NZWISAEng.csv","Kumble-NZWISAEng-AN")

ca.bowlerAvgWktsOpposition("warneTest-NZWISAEng.csv","Warne-NZWISAEng-AN")

ca.bowlerAvgWktsOpposition("muraliTest-NZWISAEng.csv","Murali-NZWISAEng-AN")

6b. Plot the average wickets in different grounds of Kumble, Warne and Murali

import cricpy.analytics as ca
ca.bowlerAvgWktsGround("kumbleTest-NZWISAEng.csv","Kumble")

ca.bowlerAvgWktsGround("warneTest-NZWISAEng.csv","Warne")

ca.bowlerAvgWktsGround("muraliTest-NZWISAEng.csv","Murali")

6c. Plot the cumulative average wickets and cumulative economy rate of Kumble, Warne and Murali

  • Murali has the best economy rate followed by Kumble and then Warne
  • Again Murali has the best cumulative average wickets followed by Warne and then Kumble
import cricpy.analytics as ca
frames=["kumbleTest-NZWISAEng.csv","warneTest-NZWISAEng.csv","muraliTest-NZWISAEng.csv"]
names=["Kumble","Warne","Murali"]
ca.relativeBowlerCumulativeAvgEconRate(frames,names)

ca.relativeBowlerCumulativeAvgWickets(frames,names)

7. Compute and plot the performances of Bumrah in 2016, 2017 and 2018 in ODIs

import cricpy.analytics as ca
# Get the HA data for Bumrah in ODI in bowling
#df=ca.getPlayerDataHA(625383,tfile="bumrahODIHA.csv",type="bowling",matchType="ODI")

# Slice the data for periods 2016, 2017 and 2018
df=ca.getPlayerDataOppnHA(infile="bumrahODIHA.csv",outfile="bumrahODI2016.csv",
                       startDate="2016-01-01",endDate="2017-01-01")

df=ca.getPlayerDataOppnHA(infile="bumrahODIHA.csv",outfile="bumrahODI2017.csv",
                       startDate="2017-01-01",endDate="2018-01-01")

df=ca.getPlayerDataOppnHA(infile="bumrahODIHA.csv",outfile="bumrahODI2018.csv",
                       startDate="2018-01-01",endDate="2019-01-01")

7a. Compute the performances of Bumrah in 2016, 2017 and 2018

  • Very clearly Bumrah is getting better at his art. His economy rate in 2018 is the best!!!
  • Bumrah has had a very prolific year in 2017. However all the years he seems to be quite effective
import cricpy.analytics as ca
frames=["bumrahODI2016.csv","bumrahODI2017.csv","bumrahODI2018.csv"]
names=["Bumrah-2016","Bumrah-2017","Bumrah-2018"]
ca.relativeBowlerCumulativeAvgEconRate(frames,names)

ca.relativeBowlerCumulativeAvgWickets(frames,names)

8. Compute and plot the performances of Shakib, Bumrah and Jadeja in T20 matches for bowling

import cricpy.analytics as ca
# Get the HA bowling data for Shakib, Bumrah and Jadeja
#df=ca.getPlayerDataHA(56143,tfile="shakibT20HA.csv",type="bowling",matchType="T20")
#df=ca.getPlayerDataHA(625383,tfile="bumrahT20HA.csv",type="bowling",matchType="T20")
#df=ca.getPlayerDataHA(234675,tfile="jadejaT20HA.csv",type="bowling",matchType="T20")

# Slice the data for performances against Sri Lanka, Australia, South Africa and England
df=ca.getPlayerDataOppnHA(infile="shakibT20HA.csv",outfile="shakibT20-SLAusSAEng.csv" ,opposition=["Sri Lanka","Australia", "South Africa","England"],
                       homeOrAway=["all"])
df=ca.getPlayerDataOppnHA(infile="bumrahT20HA.csv",outfile="bumrahT20-SLAusSAEng.csv",opposition=["Sri Lanka","Australia", "South Africa","England"],
                       homeOrAway=["all"])

df=ca.getPlayerDataOppnHA(infile="jadejaT20HA.csv",outfile="jadejaT20-SLAusSAEng.csv"                      ,opposition=["Sri Lanka","Australia", "South Africa","England"],   homeOrAway=["all"])

8a. Compare the relative performances of Shakib, Bumrah and Jadeja

  • Jadeja and Bumrah have comparable economy rates. Shakib is more expensive
  • Shakib pips Bumrah in number of cumulative wickets, though Bumrah is close behind
import cricpy.analytics as ca
frames=["shakibT20-SLAusSAEng.csv","bumrahT20-SLAusSAEng.csv","jadejaT20-SLAusSAEng.csv"]
names=["Shakib-SLAusSAEng","Bumrah-SLAusSAEng","Jadeja-SLAusSAEng"]
ca.relativeBowlerCumulativeAvgEconRate(frames,names)

ca.relativeBowlerCumulativeAvgWickets(frames,names)

Conclusion

By getting the homeOrAway data for players using the profileNo, you can slice and dice the data based on your choice of opposition, whether you want matches that were played at home/away/neutral venues. Finally by specifying the period for which the data has to be subsetted you can create fine grained analysis.

Hope you have a great time with cricpy!!!

Also see
1. My book ‘Cricket analytics with cricketr and cricpy’ is now on Amazon
2. The 3rd paperback & kindle editions of my books on Cricket, now on Amazon
3. Exploring Quantum Gate operations with QCSimulator
4. Deep Learning from first principles in Python, R and Octave – Part 6
5. Natural selection of database technology through the years
6. Pitching yorkpy … short of good length to IPL – Part 1
7. Using Linear Programming (LP) for optimizing bowling change or batting lineup in T20 cricket
8. Practical Machine Learning with R and Python – Part 3

To see all posts click Index of posts

Getting started with Tensorflow, Keras in Python and R

The Pale Blue Dot

“From this distant vantage point, the Earth might not seem of any particular interest. But for us, it’s different. Consider again that dot. That’s here, that’s home, that’s us. On it everyone you love, everyone you know, everyone you ever heard of, every human being who ever was, lived out their lives. The aggregate of our joy and suffering, thousands of confident religions, ideologies, and economic doctrines, every hunter and forager, every hero and coward, every creator and destroyer of civilization, every king and peasant, every young couple in love, every mother and father, hopeful child, inventor and explorer, every teacher of morals, every corrupt politician, every “superstar,” every “supreme leader,” every saint and sinner in the history of our species lived there—on the mote of dust suspended in a sunbeam.”

Carl Sagan

Tensorflow and Keras are Deep Learning frameworks that really simplify a lot of things to the user. If you are familiar with Machine Learning and Deep Learning concepts then Tensorflow and Keras are really a playground to realize your ideas.  In this post I show how you can get started with Tensorflow in both Python and R

 

Tensorflow in Python

For tensorflow in Python, I found Google’s Colab an ideal environment for running your Deep Learning code. This is an Google’s research project  where you can execute your code  on GPUs, TPUs etc

Tensorflow in R (RStudio)

To execute tensorflow in R (RStudio) you need to install tensorflow and keras as shown below
In this post I show how to get started with Tensorflow and Keras in R.

# Install Tensorflow in RStudio
#install_tensorflow()
# Install Keras
#install_packages("keras")
library(tensorflow)
libary(keras)

This post takes 3 different Machine Learning problems and uses the
Tensorflow/Keras framework to solve it

Note:
You can view the Google Colab notebook at Tensorflow in Python
The RMarkdown file has been published at RPubs and can be accessed
at Getting started with Tensorflow in R

Checkout my book ‘Deep Learning from first principles: Second Edition – In vectorized Python, R and Octave’. My book starts with the implementation of a simple 2-layer Neural Network and works its way to a generic L-Layer Deep Learning Network, with all the bells and whistles. The derivations have been discussed in detail. The code has been extensively commented and included in its entirety in the Appendix sections. My book is available on Amazon as paperback ($14.99) and in kindle version($9.99/Rs449).

1. Multivariate regression with Tensorflow – Python

This code performs multivariate regression using Tensorflow and keras on the advent of Parkinson disease through sound recordings see Parkinson Speech Dataset with Multiple Types of Sound Recordings Data Set . The clinician’s motorUPDRS score has to be predicted from the set of features

In [0]:
# Import tensorflow
import tensorflow as tf
from tensorflow import keras
In [2]:
#Get the data rom the UCI Machine Learning repository
dataset = keras.utils.get_file("parkinsons_updrs.data", "https://archive.ics.uci.edu/ml/machine-learning-databases/parkinsons/telemonitoring/parkinsons_updrs.data")
Downloading data from https://archive.ics.uci.edu/ml/machine-learning-databases/parkinsons/telemonitoring/parkinsons_updrs.data
917504/911261 [==============================] - 0s 0us/step
In [3]:
# Read the CSV file 
import pandas as pd
parkinsons = pd.read_csv(dataset, na_values = "?", comment='\t',
                      sep=",", skipinitialspace=True)
print(parkinsons.shape)
print(parkinsons.columns)
#Check if there are any NAs in the rows
parkinsons.isna().sum()
(5875, 22)
Index(['subject#', 'age', 'sex', 'test_time', 'motor_UPDRS', 'total_UPDRS',
       'Jitter(%)', 'Jitter(Abs)', 'Jitter:RAP', 'Jitter:PPQ5', 'Jitter:DDP',
       'Shimmer', 'Shimmer(dB)', 'Shimmer:APQ3', 'Shimmer:APQ5',
       'Shimmer:APQ11', 'Shimmer:DDA', 'NHR', 'HNR', 'RPDE', 'DFA', 'PPE'],
      dtype='object')
Out[3]:
subject#         0
age              0
sex              0
test_time        0
motor_UPDRS      0
total_UPDRS      0
Jitter(%)        0
Jitter(Abs)      0
Jitter:RAP       0
Jitter:PPQ5      0
Jitter:DDP       0
Shimmer          0
Shimmer(dB)      0
Shimmer:APQ3     0
Shimmer:APQ5     0
Shimmer:APQ11    0
Shimmer:DDA      0
NHR              0
HNR              0
RPDE             0
DFA              0
PPE              0
dtype: int64
Note: To see how to create dummy variables see my post Practical Machine Learning with R and Python – Part 2
In [4]:
# Drop the columns subject number as it is not relevant
parkinsons1=parkinsons.drop(['subject#'],axis=1)

# Create dummy variables for sex (M/F)
parkinsons2=pd.get_dummies(parkinsons1,columns=['sex'])
parkinsons2.head()

Out[4]
age test_time motor_UPDRS total_UPDRS Jitter(%) Jitter(Abs) Jitter:RAP Jitter:PPQ5 Jitter:DDP Shimmer Shimmer(dB) Shimmer:APQ3 Shimmer:APQ5 Shimmer:APQ11 Shimmer:DDA NHR HNR RPDE DFA PPE sex_0 sex_1
0 72 5.6431 28.199 34.398 0.00662 0.000034 0.00401 0.00317 0.01204 0.02565 0.230 0.01438 0.01309 0.01662 0.04314 0.014290 21.640 0.41888 0.54842 0.16006 1 0
1 72 12.6660 28.447 34.894 0.00300 0.000017 0.00132 0.00150 0.00395 0.02024 0.179 0.00994 0.01072 0.01689 0.02982 0.011112 27.183 0.43493 0.56477 0.10810 1 0
2 72 19.6810 28.695 35.389 0.00481 0.000025 0.00205 0.00208 0.00616 0.01675 0.181 0.00734 0.00844 0.01458 0.02202 0.020220 23.047 0.46222 0.54405 0.21014 1 0
3 72 25.6470 28.905 35.810 0.00528 0.000027 0.00191 0.00264 0.00573 0.02309 0.327 0.01106 0.01265 0.01963 0.03317 0.027837 24.445 0.48730 0.57794 0.33277 1 0
4 72 33.6420 29.187 36.375 0.00335 0.000020 0.00093 0.00130 0.00278 0.01703 0.176 0.00679 0.00929 0.01819 0.02036 0.011625 26.126 0.47188 0.56122 0.19361 1 0

# Create a training and test data set with 80%/20%
train_dataset = parkinsons2.sample(frac=0.8,random_state=0)
test_dataset = parkinsons2.drop(train_dataset.index)

# Select columns
train_dataset1= train_dataset[['age', 'test_time', 'Jitter(%)', 'Jitter(Abs)',
       'Jitter:RAP', 'Jitter:PPQ5', 'Jitter:DDP', 'Shimmer', 'Shimmer(dB)',
       'Shimmer:APQ3', 'Shimmer:APQ5', 'Shimmer:APQ11', 'Shimmer:DDA', 'NHR',
       'HNR', 'RPDE', 'DFA', 'PPE', 'sex_0', 'sex_1']]
test_dataset1= test_dataset[['age','test_time', 'Jitter(%)', 'Jitter(Abs)',
       'Jitter:RAP', 'Jitter:PPQ5', 'Jitter:DDP', 'Shimmer', 'Shimmer(dB)',
       'Shimmer:APQ3', 'Shimmer:APQ5', 'Shimmer:APQ11', 'Shimmer:DDA', 'NHR',
       'HNR', 'RPDE', 'DFA', 'PPE', 'sex_0', 'sex_1']]
In [7]:
# Generate the statistics of the columns for use in normalization of the data
train_stats = train_dataset1.describe()
train_stats = train_stats.transpose()
train_stats
Out[7]:
count mean std min 25% 50% 75% max
age 4700.0 64.792766 8.870401 36.000000 58.000000 65.000000 72.000000 85.000000
test_time 4700.0 93.399490 53.630411 -4.262500 46.852250 93.405000 139.367500 215.490000
Jitter(%) 4700.0 0.006136 0.005612 0.000830 0.003560 0.004900 0.006770 0.099990
Jitter(Abs) 4700.0 0.000044 0.000036 0.000002 0.000022 0.000034 0.000053 0.000396
Jitter:RAP 4700.0 0.002969 0.003089 0.000330 0.001570 0.002235 0.003260 0.057540
Jitter:PPQ5 4700.0 0.003271 0.003760 0.000430 0.001810 0.002480 0.003460 0.069560
Jitter:DDP 4700.0 0.008908 0.009267 0.000980 0.004710 0.006705 0.009790 0.172630
Shimmer 4700.0 0.033992 0.025922 0.003060 0.019020 0.027385 0.039810 0.268630
Shimmer(dB) 4700.0 0.310487 0.231016 0.026000 0.175000 0.251000 0.363250 2.107000
Shimmer:APQ3 4700.0 0.017125 0.013275 0.001610 0.009190 0.013615 0.020562 0.162670
Shimmer:APQ5 4700.0 0.020151 0.016848 0.001940 0.010750 0.015785 0.023733 0.167020
Shimmer:APQ11 4700.0 0.027508 0.020270 0.002490 0.015630 0.022685 0.032713 0.275460
Shimmer:DDA 4700.0 0.051375 0.039826 0.004840 0.027567 0.040845 0.061683 0.488020
NHR 4700.0 0.032116 0.060206 0.000304 0.010827 0.018403 0.031452 0.748260
HNR 4700.0 21.704631 4.288853 1.659000 19.447750 21.973000 24.445250 37.187000
RPDE 4700.0 0.542549 0.100212 0.151020 0.471235 0.543490 0.614335 0.966080
DFA 4700.0 0.653015 0.070446 0.514040 0.596470 0.643285 0.710618 0.865600
PPE 4700.0 0.219559 0.091506 0.021983 0.156470 0.205340 0.264017 0.731730
sex_0 4700.0 0.681489 0.465948 0.000000 0.000000 1.000000 1.000000 1.000000
sex_1 4700.0 0.318511 0.465948 0.000000 0.000000 0.000000 1.000000 1.000000
In [0]:
# Create the target variable
train_labels = train_dataset.pop('motor_UPDRS')
test_labels = test_dataset.pop('motor_UPDRS')
In [0]:
# Normalize the data by subtracting the mean and dividing by the standard deviation
def normalize(x):
  return (x - train_stats['mean']) / train_stats['std']

# Create normalized training and test data
normalized_train_data = normalize(train_dataset1)
normalized_test_data = normalize(test_dataset1)
In [0]:
# Create a Deep Learning model with keras
model = tf.keras.Sequential([
    keras.layers.Dense(6, activation=tf.nn.relu, input_shape=[len(train_dataset1.keys())]),
    keras.layers.Dense(9, activation=tf.nn.relu),
    keras.layers.Dense(6,activation=tf.nn.relu),
    keras.layers.Dense(1)
  ])

# Use the Adam optimizer with a learning rate of 0.01
optimizer=keras.optimizers.Adam(lr=.01, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False)

# Set the metrics required to be Mean Absolute Error and Mean Squared Error.For regression, the loss is mean_squared_error
model.compile(loss='mean_squared_error',
                optimizer=optimizer,
                metrics=['mean_absolute_error', 'mean_squared_error'])
In [0]:
# Create a model
history=model.fit(
  normalized_train_data, train_labels,
  epochs=1000, validation_data = (normalized_test_data,test_labels), verbose=0)
In [26]:
hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch
hist.tail()
Out[26]:
loss mean_absolute_error mean_squared_error val_loss val_mean_absolute_error val_mean_squared_error epoch
995 15.773989 2.936990 15.773988 16.980803 3.028168 16.980803 995
996 15.238623 2.873420 15.238622 17.458752 3.101033 17.458752 996
997 15.437594 2.895500 15.437593 16.926016 2.971508 16.926018 997
998 15.867891 2.943521 15.867892 16.950249 2.985036 16.950249 998
999 15.846878 2.938914 15.846880 17.095623 3.014504 17.095625 999
In [30]:
def plot_history(history):
  hist = pd.DataFrame(history.history)
  hist['epoch'] = history.epoch

  plt.figure()
  plt.xlabel('Epoch')
  plt.ylabel('Mean Abs Error')
  plt.plot(hist['epoch'], hist['mean_absolute_error'],
           label='Train Error')
  plt.plot(hist['epoch'], hist['val_mean_absolute_error'],
           label = 'Val Error')
  plt.ylim([2,5])
  plt.legend()

  plt.figure()
  plt.xlabel('Epoch')
  plt.ylabel('Mean Square Error ')
  plt.plot(hist['epoch'], hist['mean_squared_error'],
           label='Train Error')
  plt.plot(hist['epoch'], hist['val_mean_squared_error'],
           label = 'Val Error')
  plt.ylim([10,40])
  plt.legend()
  plt.show()


plot_history(history)

Observation

It can be seen that the mean absolute error is on an average about +/- 4.0. The validation error also is about the same. This can be reduced by playing around with the hyperparamaters and increasing the number of iterations

1a. Multivariate Regression in Tensorflow – R

# Install Tensorflow in RStudio
#install_tensorflow()
# Install Keras
#install_packages("keras")
library(tensorflow)
library(keras)
library(dplyr)
library(dummies)
## dummies-1.5.6 provided by Decision Patterns
library(tensorflow)
library(keras)

Multivariate regression

This code performs multivariate regression using Tensorflow and keras on the advent of Parkinson disease through sound recordings see Parkinson Speech Dataset with Multiple Types of Sound Recordings Data Set. The clinician’s motorUPDRS score has to be predicted from the set of features.

Read the data

# Download the Parkinson's data from UCI Machine Learning repository
dataset <- read.csv("https://archive.ics.uci.edu/ml/machine-learning-databases/parkinsons/telemonitoring/parkinsons_updrs.data")

# Set the column names
names(dataset) <- c("subject","age", "sex", "test_time","motor_UPDRS","total_UPDRS","Jitter","Jitter.Abs",
                 "Jitter.RAP","Jitter.PPQ5","Jitter.DDP","Shimmer", "Shimmer.dB", "Shimmer.APQ3",
                 "Shimmer.APQ5","Shimmer.APQ11","Shimmer.DDA", "NHR","HNR", "RPDE", "DFA","PPE")

# Remove the column 'subject' as it is not relevant to analysis
dataset1 <- subset(dataset, select = -c(subject))

# Make the column 'sex' as a factor for using dummies
dataset1$sex=as.factor(dataset1$sex)
# Add dummy variables for categorical cariable 'sex'
dataset2 <- dummy.data.frame(dataset1, sep = ".")
## Warning in model.matrix.default(~x - 1, model.frame(~x - 1), contrasts =
## FALSE): non-list contrasts argument ignored
dataset3 <- na.omit(dataset2)

Split the data as training and test in 80/20

## Split data 80% training and 20% test
sample_size <- floor(0.8 * nrow(dataset3))

## set the seed to make your partition reproducible
set.seed(12)
train_index <- sample(seq_len(nrow(dataset3)), size = sample_size)

train_dataset <- dataset3[train_index, ]
test_dataset <- dataset3[-train_index, ]

train_data <- train_dataset %>% select(sex.0,sex.1,age, test_time,Jitter,Jitter.Abs,Jitter.PPQ5,Jitter.DDP,
                              Shimmer, Shimmer.dB,Shimmer.APQ3,Shimmer.APQ11,
                              Shimmer.DDA,NHR,HNR,RPDE,DFA,PPE)

train_labels <- select(train_dataset,motor_UPDRS)
test_data <- test_dataset %>% select(sex.0,sex.1,age, test_time,Jitter,Jitter.Abs,Jitter.PPQ5,Jitter.DDP,
                              Shimmer, Shimmer.dB,Shimmer.APQ3,Shimmer.APQ11,
                              Shimmer.DDA,NHR,HNR,RPDE,DFA,PPE)
test_labels <- select(test_dataset,motor_UPDRS)

Normalize the data

 # Normalize the data by subtracting the mean and dividing by the standard deviation
normalize<-function(x) {
  y<-(x - mean(x)) / sd(x)
  return(y)
}

normalized_train_data <-apply(train_data,2,normalize)
# Convert to matrix
train_labels <- as.matrix(train_labels)
normalized_test_data <- apply(test_data,2,normalize)
test_labels <- as.matrix(test_labels)

Create the Deep Learning Model

model <- keras_model_sequential()
model %>% 
  layer_dense(units = 6, activation = 'relu', input_shape = dim(normalized_train_data)[2]) %>% 
  layer_dense(units = 9, activation = 'relu') %>%
  layer_dense(units = 6, activation = 'relu') %>%
  layer_dense(units = 1)

# Set the metrics required to be Mean Absolute Error and Mean Squared Error.For regression, the loss is 
# mean_squared_error
model %>% compile(
  loss = 'mean_squared_error',
  optimizer = optimizer_rmsprop(),
  metrics = c('mean_absolute_error','mean_squared_error')
)

# Fit the model
# Use the test data for validation
history <- model %>% fit(
  normalized_train_data, train_labels, 
  epochs = 30, batch_size = 128, 
  validation_data = list(normalized_test_data,test_labels)
)

Plot mean squared error, mean absolute error and loss for training data and test data

plot(history)

Fig1

2. Binary classification in Tensorflow – Python

This is a simple binary classification problem from UCI Machine Learning repository and deals with data on Breast cancer from the Univ. of Wisconsin Breast Cancer Wisconsin (Diagnostic) Data Set bold text

In [31]:
import tensorflow as tf
from tensorflow import keras
import pandas as pd
# Read the data set from UCI ML site
dataset_path = keras.utils.get_file("breast-cancer-wisconsin.data", "https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data")
raw_dataset = pd.read_csv(dataset_path, sep=",", na_values = "?", skipinitialspace=True,)
dataset = raw_dataset.copy()

#Check for Null and drop
dataset.isna().sum()
dataset = dataset.dropna()
dataset.isna().sum()

# Set the column names
dataset.columns = ["id","thickness",	"cellsize",	"cellshape","adhesion","epicellsize",
                    "barenuclei","chromatin","normalnucleoli","mitoses","class"]
dataset.head()
Downloading data from https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data
24576/19889 [=====================================] - 0s 1us/step
id	thickness	cellsize	cellshape	adhesion	epicellsize	barenuclei	chromatin	normalnucleoli	mitoses	class
0	1002945	5	4	4	5	7	10.0	3	2	1	2
1	1015425	3	1	1	1	2	2.0	3	1	1	2
2	1016277	6	8	8	1	3	4.0	3	7	1	2
3	1017023	4	1	1	3	2	1.0	3	1	1	2
4	1017122	8	10	10	8	7	10.0	9	7	1	4
# Create a training/test set in the ratio 80/20
train_dataset = dataset.sample(frac=0.8,random_state=0)
test_dataset = dataset.drop(train_dataset.index)

# Set the training and test set
train_dataset1= train_dataset[['thickness','cellsize','cellshape','adhesion',
                'epicellsize', 'barenuclei', 'chromatin', 'normalnucleoli','mitoses']]
test_dataset1=test_dataset[['thickness','cellsize','cellshape','adhesion',
                'epicellsize', 'barenuclei', 'chromatin', 'normalnucleoli','mitoses']]
In [34]:
# Generate the stats for each column to be used for normalization
train_stats = train_dataset1.describe()
train_stats = train_stats.transpose()
train_stats
Out[34]:
count mean std min 25% 50% 75% max
thickness 546.0 4.430403 2.812768 1.0 2.0 4.0 6.0 10.0
cellsize 546.0 3.179487 3.083668 1.0 1.0 1.0 5.0 10.0
cellshape 546.0 3.225275 3.005588 1.0 1.0 1.0 5.0 10.0
adhesion 546.0 2.921245 2.937144 1.0 1.0 1.0 4.0 10.0
epicellsize 546.0 3.261905 2.252643 1.0 2.0 2.0 4.0 10.0
barenuclei 546.0 3.560440 3.651946 1.0 1.0 1.0 7.0 10.0
chromatin 546.0 3.483516 2.492687 1.0 2.0 3.0 5.0 10.0
normalnucleoli 546.0 2.875458 3.064305 1.0 1.0 1.0 4.0 10.0
mitoses 546.0 1.609890 1.736762 1.0 1.0 1.0 1.0 10.0
In [0]:
# Create target variables
train_labels = train_dataset.pop('class')
test_labels = test_dataset.pop('class')
In [0]:
# Set the target variables as 0 or 1
train_labels[train_labels==2] =0 # benign
train_labels[train_labels==4] =1 # malignant

test_labels[test_labels==2] =0 # benign
test_labels[test_labels==4] =1 # malignant
In [0]:
# Normalize by subtracting mean and dividing by standard deviation
def normalize(x):
  return (x - train_stats['mean']) / train_stats['std']

# Convert columns to numeric
train_dataset1 = train_dataset1.apply(pd.to_numeric)
test_dataset1 = test_dataset1.apply(pd.to_numeric)

# Normalize
normalized_train_data = normalize(train_dataset1)
normalized_test_data = normalize(test_dataset1)
In [0]:
# Create a model
model = tf.keras.Sequential([
    keras.layers.Dense(6, activation=tf.nn.relu, input_shape=[len(train_dataset1.keys())]),
    keras.layers.Dense(9, activation=tf.nn.relu),
    keras.layers.Dense(6,activation=tf.nn.relu),
    keras.layers.Dense(1)
  ])

# Use the RMSProp optimizer
optimizer = tf.keras.optimizers.RMSprop(0.01)

# Since this is binary classification use binary_crossentropy
model.compile(loss='binary_crossentropy',
                optimizer=optimizer,
                metrics=['acc'])


# Fit a model
history=model.fit(
  normalized_train_data, train_labels,
  epochs=1000, validation_data=(normalized_test_data,test_labels), verbose=0)
In [55]:
hist = pd.DataFrame(history.history)
hist['epoch'] = history.epoch
hist.tail()
loss acc val_loss val_acc epoch
995 0.112499 0.992674 0.454739 0.970588 995
996 0.112499 0.992674 0.454739 0.970588 996
997 0.112499 0.992674 0.454739 0.970588 997
998 0.112499 0.992674 0.454739 0.970588 998
999 0.112499 0.992674 0.454739 0.970588 999
In [58]:
# Plot training and test accuracy 
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.ylim([0.9,1])
plt.show()












# Plot training and test loss
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.ylim([0,0.5])
plt.show()


2a. Binary classification in Tensorflow -R

This is a simple binary classification problem from UCI Machine Learning repository and deals with data on Breast cancer from the Univ. of Wisconsin Breast Cancer Wisconsin (Diagnostic) Data Set

# Read the data for Breast cancer (Wisconsin)
dataset <- read.csv("https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data")

# Rename the columns
names(dataset) <- c("id","thickness",   "cellsize", "cellshape","adhesion","epicellsize",
                    "barenuclei","chromatin","normalnucleoli","mitoses","class")

# Remove the columns id and class
dataset1 <- subset(dataset, select = -c(id, class))
dataset2 <- na.omit(dataset1)

# Convert the column to numeric
dataset2$barenuclei <- as.numeric(dataset2$barenuclei)

Normalize the data

train_data <-apply(dataset2,2,normalize)
train_labels <- as.matrix(select(dataset,class))

# Set the target variables as 0 or 1 as it binary classification
train_labels[train_labels==2,]=0
train_labels[train_labels==4,]=1

Create the Deep Learning model

model <- keras_model_sequential()
model %>% 
  layer_dense(units = 6, activation = 'relu', input_shape = dim(train_data)[2]) %>% 
  layer_dense(units = 9, activation = 'relu') %>%
  layer_dense(units = 6, activation = 'relu') %>%
  layer_dense(units = 1)

# Since this is a binary classification we use binary cross entropy
model %>% compile(
  loss = 'binary_crossentropy',
  optimizer = optimizer_rmsprop(),
  metrics = c('accuracy')  # Metrics is accuracy
)

Fit the model. Use 20% of data for validation

history <- model %>% fit(
  train_data, train_labels, 
  epochs = 30, batch_size = 128, 
  validation_split = 0.2
)

Plot the accuracy and loss for training and validation data

plot(history)

3. MNIST in Tensorflow – Python

This takes the famous MNIST handwritten digits . It ca be seen that Tensorflow and Keras make short work of this famous problem of the late 1980s

# Download MNIST data
mnist=tf.keras.datasets.mnist
# Set training and test data and labels
(training_images,training_labels),(test_images,test_labels)=mnist.load_data()

print(training_images.shape)
print(test_images.shape)
(60000, 28, 28)
(10000, 28, 28)
In [61]:
# Plot a sample image from MNIST and show contents
import matplotlib.pyplot as plt
plt.imshow(training_images[1])
print(training_images[1])
[[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 51 159 253
159 50 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48 238 252 252
252 237 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 54 227 253 252 239
233 252 57 6 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0 10 60 224 252 253 252 202
84 252 253 122 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0 163 252 252 252 253 252 252
96 189 253 167 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 51 238 253 253 190 114 253 228
47 79 255 168 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 48 238 252 252 179 12 75 121 21
0 0 253 243 50 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 38 165 253 233 208 84 0 0 0 0
0 0 253 252 165 0 0 0 0 0]
[ 0 0 0 0 0 0 0 7 178 252 240 71 19 28 0 0 0 0
0 0 253 252 195 0 0 0 0 0]
[ 0 0 0 0 0 0 0 57 252 252 63 0 0 0 0 0 0 0
0 0 253 252 195 0 0 0 0 0]
[ 0 0 0 0 0 0 0 198 253 190 0 0 0 0 0 0 0 0
0 0 255 253 196 0 0 0 0 0]
[ 0 0 0 0 0 0 76 246 252 112 0 0 0 0 0 0 0 0
0 0 253 252 148 0 0 0 0 0]
[ 0 0 0 0 0 0 85 252 230 25 0 0 0 0 0 0 0 0
7 135 253 186 12 0 0 0 0 0]
[ 0 0 0 0 0 0 85 252 223 0 0 0 0 0 0 0 0 7
131 252 225 71 0 0 0 0 0 0]
[ 0 0 0 0 0 0 85 252 145 0 0 0 0 0 0 0 48 165
252 173 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 86 253 225 0 0 0 0 0 0 114 238 253
162 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 85 252 249 146 48 29 85 178 225 253 223 167
56 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 85 252 252 252 229 215 252 252 252 196 130 0
0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 28 199 252 252 253 252 252 233 145 0 0 0
0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 25 128 252 253 252 141 37 0 0 0 0
0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0]]


# Normalize the images by dividing by 255.0
training_images = training_images/255.0
test_images = test_images/255.0

# Create a Sequential Keras model
model = tf.keras.models.Sequential([tf.keras.layers.Flatten(),
                                   tf.keras.layers.Dense(1024,activation=tf.nn.relu),
                                   tf.keras.layers.Dense(10,activation=tf.nn.softmax)])
model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])
In [68]:
history=model.fit(training_images,training_labels,validation_data=(test_images, test_labels), epochs=5, verbose=1)
Train on 60000 samples, validate on 10000 samples
Epoch 1/5
60000/60000 [==============================] - 17s 291us/sample - loss: 0.0020 - acc: 0.9999 - val_loss: 0.0719 - val_acc: 0.9810
Epoch 2/5
60000/60000 [==============================] - 17s 284us/sample - loss: 0.0021 - acc: 0.9998 - val_loss: 0.0705 - val_acc: 0.9821
Epoch 3/5
60000/60000 [==============================] - 17s 286us/sample - loss: 0.0017 - acc: 0.9999 - val_loss: 0.0729 - val_acc: 0.9805
Epoch 4/5
60000/60000 [==============================] - 17s 284us/sample - loss: 0.0014 - acc: 0.9999 - val_loss: 0.0762 - val_acc: 0.9804
Epoch 5/5
60000/60000 [==============================] - 17s 280us/sample - loss: 0.0015 - acc: 0.9999 - val_loss: 0.0735 - val_acc: 0.9812

Fig 1

Fig 2

 

 

 

 

 

 

 

 

MNIST in Tensorflow – R

The following code uses Tensorflow to learn MNIST’s handwritten digits ### Load MNIST data

mnist <- dataset_mnist()
x_train <- mnist$train$x
y_train <- mnist$train$y
x_test <- mnist$test$x
y_test <- mnist$test$y

Reshape and rescale

# Reshape the array
x_train <- array_reshape(x_train, c(nrow(x_train), 784))
x_test <- array_reshape(x_test, c(nrow(x_test), 784))
# Rescale
x_train <- x_train / 255
x_test <- x_test / 255

Convert out put to One Hot encoded format

y_train <- to_categorical(y_train, 10)
y_test <- to_categorical(y_test, 10)

Fit the model

Use the softmax activation for recognizing 10 digits and categorical cross entropy for loss

model <- keras_model_sequential() 
model %>% 
  layer_dense(units = 256, activation = 'relu', input_shape = c(784)) %>% 
  layer_dense(units = 128, activation = 'relu') %>%
  layer_dense(units = 10, activation = 'softmax') # Use softmax

model %>% compile(
  loss = 'categorical_crossentropy',
  optimizer = optimizer_rmsprop(),
  metrics = c('accuracy')
)

Fit the model

Note: A smaller number of epochs has been used. For better performance increase number of epochs

history <- model %>% fit(
  x_train, y_train, 
  epochs = 5, batch_size = 128, 
  validation_data = list(x_test,y_test)
)

Cricketr learns new tricks : Performs fine-grained analysis of players

“He felt that his whole life was some kind of dream and he sometimes wondered whose it was and whether they were enjoying it.”

“The ships hung in the sky in much the same way that bricks don’t.”

“We demand rigidly defined areas of doubt and uncertainty!”

“For a moment, nothing happened. Then, after a second or so, nothing continued to happen.”

“The Answer to the Great Question… Of Life, the Universe and Everything… Is… Forty-two,’ said Deep Thought, with infinite majesty and calm.”

                 The Hitchhiker's Guide to the Galaxy - Douglas Adams

Introduction

In this post, I introduce 2 new functions in my R package ‘cricketr’ (cricketr v0.22) see Re-introducing cricketr! : An R package to analyze performances of cricketers which enable granular analysis of batsmen and bowlers. They are

  1. Step 1: getPlayerDataHA – This function is a wrapper around getPlayerData(), getPlayerDataOD() and getPlayerDataTT(), and adds an extra column ‘homeOrAway’ which says whether the match was played at home/away/neutral venues. A CSV file is created with this new column.
  2. Setp 2: getPlayerDataOppnHA – This function allows you to slice & dice the data for batsmen and bowlers against specific oppositions, at home/away/neutral venues and between certain periods. This reduced subset of data can be used to perform analyses. A CSV file is created as an output based on the parameters of opposition, home or away and the interval of time

Note All the existing cricketr functions can be used on this smaller fine-grained data set for a closer analysis of players

Note 1: You have to call the above functions only once. You can reuse the CSV files in other functions

Important note: Don’t go too fine-grained by choosing just one opposition, in one of home/away/neutral and for too short a period. Too small a dataset may defeat the purpose of the analysis!

This post has been published in Rpubs and can be accessed at Cricketr learns new tricks

You can download a PDF version of this post at Cricketr learns new tricks

If you are passionate about cricket, and love analyzing cricket performances, then check out my racy book on cricket ‘Cricket analytics with cricketr and cricpy – Analytics harmony with R & Python’! This book discusses and shows how to use my R package ‘cricketr’ and my Python package ‘cricpy’ to analyze batsmen and bowlers in all formats of the game (Test, ODI and T20). The paperback is available on Amazon at $21.99 and  the kindle version at $9.99/Rs 449/-. A must read for any cricket lover! Check it out!!

Untitled

1. Analyzing Tendulkar at 3 different stages of his career

The following functions analyze Sachin Tendulkar during 3 different periods of his illustrious career. a) 1st Jan 2001-1st Jan 2002 b) 1st Jan 2005-1st Jan 2006 c) 1st Jan 2012-1st Jan 2013

# Get the homeOrAway dataset for Tendulkar in matches
#Note: I have commented the lines to getPlayerDataHA() as I already have 
# CSV file
#df=getPlayerDataHA(35320,tfile="tendulkarTestHA.csv",matchType="Test")

# Get Tendulkar's data for 2001-02
df1=getPlayerDataOppnHA(infile="tendulkarHA.csv",outfile="tendulkarTest2001.csv",
                         startDate="2001-01-01",endDate="2002-01-01")

# Get Tendulkar's data for 2005-06
df2=getPlayerDataOppnHA(infile="tendulkarHA.csv",outfile="tendulkarTest2005.csv",

                                               startDate="2005-01-01",endDate="2006-01-01")

# Get Tendulkar's data for 20012-13
#df3=getPlayerDataOppnHA(infile="tendulkarHA.csv",outfile="tendulkarTest2012.csv",
#                        startDate="2012-01-01",endDate="2013-01-01")

`

1a Mean strike rate of Tendulkar in 2001,2005,2012

Note: Any of the cricketr R functions can be used on the fine-grained subset of data as below. The mean strike rate of Tendulkar is of the order of 60+ in 2001 which decreases to 50 and later to around 45

# Compute and plot mean strike rate of Tendulkar in the 3 periods
batsmanMeanStrikeRate ("./tendulkarTest2001.csv","Tendulkar-2001")

batsmanMeanStrikeRate ("./tendulkarTest2005.csv","Tendulkar-2005")

batsmanMeanStrikeRate ("./tendulkarTest2012.csv","Tendulkar-2012")

1b. Plot the performance of Tendulkar at venues during 2001,2005,2012

On an average Tendulkar score 60+ in 2001 and is really blazing. This performance decreases in 2005 and later in 2012

par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
batsmanAvgRunsGround("tendulkarTest2001.csv","Tendulkar-2001")
batsmanAvgRunsGround("tendulkarTest2005.csv","Tendulkar-2005")
batsmanAvgRunsGround("tendulkarTest2012.csv","Tendulkar-2012")

dev.off()

 

 

1c. Plot the performance of Tendulkar against different oppositions during 2001,2005,2012

Sachin uniformly scores 50+ against formidable oppositions in 2001. In 2005 this decreases to 40 in 2005 and in 2012 it is around 25

batsmanAvgRunsOpposition("tendulkarTest2001.csv","Tendulkar-2001")
batsmanAvgRunsOpposition("tendulkarTest2005.csv","Tendulkar-2005")

batsmanAvgRunsOpposition("tendulkarTest2012.csv","Tendulkar-2012")

1d. Plot the relative cumulative average and relative strike rate of Tendulkar in 2001,2005,2012

The plot below compares Tendulkar’s cumulative strike rate and cumulative average during 3 different stages of his career

  1. The cumulative average runs of Tendulkar is in the high 60+ in 2001, which drops to ~50 in 2005 and later plummets to the low 25s in 2012
  2. The strike rate in 2001 for Tendulkar is amazing 60+
frames=list("tendulkarTest2001.csv","tendulkarTest2005.csv","tendulkarTest2012.csv")
names=list("Tendulkar-2001","Tendulkar-2005","Tendulkar-2012")
relativeBatsmanCumulativeAvgRuns(frames,names)

relativeBatsmanCumulativeStrikeRate(frames,names)

2. Analyzing Virat Kohli’s performance against England in England in 2014 and 2018

The analysis below looks at Kohli’s performance against England in ‘away’ venues (England) in 2014 and 2018

# Get the homeOrAway data for Kohli in Test matches
#df=getPlayerDataHA(253802,tfile="kohliTestHA.csv",type="batting",matchType="Test")

# Get the subset if data of Kohli's performance against England in England in 2014
df=getPlayerDataOppnHA(infile="kohliTestHA.csv",outfile="kohliTestEng2014.csv",
   opposition=c("England"),homeOrAway=c("away"),startDate="2014-01-01",endDate="2015-01-01")

# Get the subset if data of Kohli's performance against England in England in 2018
df1=getPlayerDataOppnHA(infile="kohliHA.csv",outfile="kohliTestEng2018.csv",
   opposition=c("England"),homeOrAway=c("away"),startDate="2018-01-01",endDate="2019-01-01")

2a. Kohli’s performance at England grounds in 2014 & 2018

Kohli had a miserable outing to England in 2014 with a string of low scores. In 2018 Kohli pulls himself out of the morass

batsmanAvgRunsGround("kohliTestEng2014.csv","Kohli-Eng-2014")

batsmanAvgRunsGround("kohliTestEng2018.csv","Kohli-Eng-2018")

2a. Kohli’s cumulative average runs in 2014 & 2018

Kohli’s cumulative average runs in 2014 is in the low 15s, while in 2018 it is 70+. Kohli stamps his class back again and undoes the bad memories of 2014

batsmanCumulativeAverageRuns("kohliTestEng2014.csv", "Kohli-Eng-2014")

batsmanCumulativeAverageRuns("kohliTestEng2018.csv", "Kohli-Eng-2018")

3a. Compare the performances of Ganguly, Dravid and VVS Laxman against opposition in ‘away’ matches in Tests

The analyses below compares the performances of Sourav Ganguly, Rahul Dravid and VVS Laxman against Australia, South Africa, and England in ‘away’ venues between 01 Jan 2002 to 01 Jan 2008

#Get the HA data for Ganguly, Dravid and Laxman
#df=getPlayerDataHA(28779,tfile="gangulyTestHA.csv",type="batting",matchType="Test")
#df=getPlayerDataHA(28114,tfile="dravidTestHA.csv",type="batting",matchType="Test")
#df=getPlayerDataHA(30750,tfile="laxmanTestHA.csv",type="batting",matchType="Test")


# Slice the data 
df=getPlayerDataOppnHA(infile="gangulyTestHA.csv",outfile="gangulyTestAES2002-08.csv"
                       ,opposition=c("Australia", "England", "South Africa"),
                       homeOrAway=c("away"),startDate="2002-01-01",endDate="2008-01-01")


df=getPlayerDataOppnHA(infile="dravidTestHA.csv",outfile="dravidTestAES2002-08.csv"
                       ,opposition=c("Australia", "England", "South Africa"),
                       homeOrAway=c("away"),startDate="2002-01-01",endDate="2008-01-01")


df=getPlayerDataOppnHA(infile="laxmanTestHA.csv",outfile="laxmanTestAES2002-08.csv"
                       ,opposition=c("Australia", "England", "South Africa"),
                       homeOrAway=c("away"),startDate="2002-01-01",endDate="2008-01-01")

3b Plot the relative cumulative average runs and relative cumative strike rate

Plot the relative cumulative average runs and relative cumative strike rate of Ganguly, Dravid and Laxman

-Dravid towers over Laxman and Ganguly with respect to cumulative average runs. – Ganguly has a superior strike rate followed by Laxman and then Dravid

frames=list("gangulyTestAES2002-08.csv","dravidTestAES2002-08.csv","laxmanTestAES2002-08.csv")
names=list("GangulyAusEngSA2002-08","DravidAusEngSA2002-08","LaxmanAusEngSA2002-08")
relativeBatsmanCumulativeAvgRuns(frames,names)

relativeBatsmanCumulativeStrikeRate(frames,names)

4. Compare the ODI performances of Rohit Sharma, Joe Root and Kane Williamson against opposition

Compare the performances of Rohit Sharma, Joe Root and Kane williamson in away & neutral venues against Australia, West Indies and Soouth Africa

  • Joe Root piles us the runs in about 15 matches. Rohit has played far more ODIs than the other two and averages a steady 35+
# Get the ODI HA data for Rohit, Root and Williamson
#df=getPlayerDataHA(34102,tfile="rohitODIHA.csv",type="batting",matchType="ODI")
#df=getPlayerDataHA(303669,tfile="joerootODIHA.csv",type="batting",matchType="ODI")
#df=getPlayerDataHA(277906,tfile="williamsonODIHA.csv",type="batting",matchType="ODI")

# Subset the data for specific opposition in away and neutral venues
df=getPlayerDataOppnHA(infile="rohitODIHA.csv",outfile="rohitODIAusWISA.csv"
                       ,opposition=c("Australia", "West Indies", "South Africa"),
                      homeOrAway=c("away","neutral"))

df=getPlayerDataOppnHA(infile="joerootODIHA.csv",outfile="joerootODIAusWISA.csv"
                       ,opposition=c("Australia", "West Indies", "South Africa"),
                       homeOrAway=c("away","neutral"))

df=getPlayerDataOppnHA(infile="williamsonODIHA.csv",outfile="williamsonODIAusWiSA.csv"
                       ,opposition=c("Australia", "West Indies", "South Africa"),
                       homeOrAway=c("away","neutral"))

4a. Compare cumulative strike rates and cumulative average runs of Rohit, Root and Williamson

The relative cumulative strike rate of all 3 are comparable

frames=list("rohitODIAusWISA.csv","joerootODIAusWISA.csv","williamsonODIAusWiSA.csv")
names=list("Rohit-ODI-AusWISA","Joe Root-ODI-AusWISA","Williamson-ODI-AusWISA")
relativeBatsmanCumulativeAvgRuns(frames,names)

relativeBatsmanCumulativeStrikeRate(frames,names)

5. Plot the performance of Dhoni in T20s against specific opposition at all venues

Plot the performances of Dhoni against Australia, West Indies, South Africa and England

# Get the HA T20 data for Dhoni
#df=getPlayerDataHA(28081,tfile="dhoniT20HA.csv",type="batting",matchType="T20")

#Subset the data
df=getPlayerDataOppnHA(infile="dhoniT20HA.csv",outfile="dhoniT20AusWISAEng.csv"
                       ,opposition=c("Australia", "West Indies", "South Africa","England"),
                       homeOrAway=c("all"))

5a. Plot Dhoni’s performances in T20

Note You can use any of cricketr’s functions against the fine grained data

batsmanAvgRunsOpposition("dhoniT20AusWISAEng.csv","Dhoni")

batsmanAvgRunsGround("dhoniT20AusWISAEng.csv","Dhoni")

batsmanCumulativeStrikeRate("dhoniT20AusWISAEng.csv","Dhoni")

batsmanCumulativeAverageRuns("dhoniT20AusWISAEng.csv","Dhoni")

6. Compute and performances of Anil Kumble, Muralitharan and Warne in ‘away’ test matches

Compute the performances of Kumble, Warne and Maralitharan against New Zealand, West Indies, South Africa and England in pitches that are not ‘home’ pithes

# Get the bowling data for Kumble, Warne and Muralitharan in Test matches
#df=getPlayerDataHA(30176,tfile="kumbleTestHA.csv",type="bowling",matchType="Test")
#df=getPlayerDataHA(8166,tfile="warneTestHA.csv",type="bowling",matchType="Test")
#df=getPlayerDataHA(49636,tfile="muraliTestHA.csv",type="bowling",matchType="Test")


# Subset the data
df=getPlayerDataOppnHA(infile="kumbleTestHA.csv",outfile="kumbleTest-NZWISAEng.csv"
                       ,opposition=c("New Zealand", "West Indies", "South Africa","England"),
                       homeOrAway=c("away"))

df=getPlayerDataOppnHA(infile="warneTestHA.csv",outfile="warneTest-NZWISAEng.csv"
                       ,opposition=c("New Zealand", "West Indies", "South Africa","England"),
                       homeOrAway=c("away"))

df=getPlayerDataOppnHA(infile="muraliTestHA.csv",outfile="muraliTest-NZWISAEng.csv"
                       ,opposition=c("New Zealand", "West Indies", "South Africa","England"),
                       homeOrAway=c("away"))

6a. Plot the average wickets of Kumble, Warne and Murali

bowlerAvgWktsOpposition("kumbleTest-NZWISAEng.csv","Kumble-NZWISAEng-AN")

bowlerAvgWktsOpposition("warneTest-NZWISAEng.csv","Warne-NZWISAEng-AN")

bowlerAvgWktsOpposition("muraliTest-NZWISAEng.csv","Murali-NZWISAEng-AN")

6b. Plot the average wickets in different grounds of Kumble, Warne and Murali

bowlerAvgWktsGround("kumbleTest-NZWISAEng.csv","Kumblew")

bowlerAvgWktsGround("warneTest-NZWISAEng.csv","Warne")

bowlerAvgWktsGround("muraliTest-NZWISAEng.csv","murali")

6c. Plot the cumulative average wickets and cumulative economy rate of Kumble, Warne and Murali

  • Murali has the best economy rate followed by Kumble and then Warne
  • Again Murali has the best cumulative average wickets followed by Warne and then Kumble
frames=list("kumbleTest-NZWISAEng.csv","warneTest-NZWISAEng.csv","muraliTest-NZWISAEng.csv")
names=list("Kumble","Warne","Murali")
relativeBowlerCumulativeAvgEconRate(frames,names)

relativeBowlerCumulativeAvgWickets(frames,names)

7. Compute and plot the performances of Bumrah in 2016, 2017 and 2018 in ODIs

# Get the HA data for Bumrah in ODI in bowling
df=getPlayerDataHA(625383,tfile="bumrahODIHA.csv",type="bowling",matchType="ODI")
## [1] "Working..."
# Slice the data for periods 2016, 2017 and 2018
df=getPlayerDataOppnHA(infile="bumrahODIHA.csv",outfile="bumrahODI2016.csv",
                       startDate="2016-01-01",endDate="2017-01-01")

df=getPlayerDataOppnHA(infile="bumrahODIHA.csv",outfile="bumrahODI2017.csv",
                       startDate="2017-01-01",endDate="2018-01-01")

df=getPlayerDataOppnHA(infile="bumrahODIHA.csv",outfile="bumrahODI2018.csv",
                       startDate="2018-01-01",endDate="2019-01-01")

7a. Compute the performances of Bumrah in 2016, 2017 and 2018

  • Very clearly Bumrah is getting better at his art. His economy rate in 2018 is the best!!!
  • Bumrah has had a very prolific year in 2017. However all the years he seems to be quite effective
frames=list("bumrahODI2016.csv","bumrahODI2017.csv","bumrahODI2018.csv")
names=list("Bumrah-2016","Bumrah-2017","Bumrah-2018")
relativeBowlerCumulativeAvgEconRate(frames,names)

relativeBowlerCumulativeAvgWickets(frames,names)

8. Compute and plot the performances of Shakib, Bumrah and Jadeja in T20 matches for bowling

# Get the HA bowling data for Shakib, Bumrah and Jadeja
df=getPlayerDataHA(56143,tfile="shakibT20HA.csv",type="bowling",matchType="T20")
## [1] "Working..."
df=getPlayerDataHA(625383,tfile="bumrahT20HA.csv",type="bowling",matchType="T20")
## [1] "Working..."
df=getPlayerDataHA(234675,tfile="jadejaT20HA.csv",type="bowling",matchType="T20")
## [1] "Working..."
# Slice the data for performances against Sri Lanka, Australia, South Africa and England
df=getPlayerDataOppnHA(infile="shakibT20HA.csv",outfile="shakibT20-SLAusSAEng.csv"
                       ,opposition=c("Sri Lanka","Australia", "South Africa","England"),
                       homeOrAway=c("all"))
df=getPlayerDataOppnHA(infile="bumrahT20HA.csv",outfile="bumrahT20-SLAusSAEng.csv"
                       ,opposition=c("Sri Lanka","Australia", "South Africa","England"),
                       homeOrAway=c("all"))

df=getPlayerDataOppnHA(infile="jadejaT20HA.csv",outfile="jadejaT20-SLAusSAEng.csv"
                       ,opposition=c("Sri Lanka","Australia", "South Africa","England"),
                       homeOrAway=c("all"))

8a. Compare the relative performances of Shakib, Bumrah and Jadeja

  • Jadeja and Bumrah have comparable economy rates. Shakib is more expensive
  • Shakib pips Bumrah in number of cumulative wickets, though Bumrah is close behind
frames=list("shakibT20-SLAusSAEng.csv","bumrahT20-SLAusSAEng.csv","jadejaT20-SLAusSAEng.csv")
names=list("Shakib-SLAusSAEng","Bumrah-SLAusSAEng","Jadeja-SLAusSAEng")
relativeBowlerCumulativeAvgEconRate(frames,names)

relativeBowlerCumulativeAvgWickets(frames,names)

Conclusion

By getting the homeOrAway data for players using the profileNo, you can slice and dice the data based on your choice of opposition, whether you want matches that were played at home/away/neutral venues. Finally by specifying the period for which the data has to be subsetted you can create fine grained analysis.

Hope you have a great time with cricketr!!!

Also see

1. My book ‘Deep Learning from first principles:Second Edition’ now on Amazon
2. Cricpy takes a swing at the ODIs
3. My book ‘Practical Machine Learning in R and Python: Third edition’ on Amazon
4. Googly: An interactive app for analyzing IPL players, matches and teams using R package yorkr
5. Big Data-2: Move into the big league:Graduate from R to SparkR
6. Rock N’ Roll with Bluemix, Cloudant & NodeExpress
7. A method to crowd source pothole marking on (Indian) roads
8. De-blurring revisited with Wiener filter using OpenCV

To see all posts click Index of posts

Analyze cricket players and cricket teams with cricpy template

Introduction

This post shows how you can analyze batsmen, bowlers see Introducing cricpy:A python package to analyze performances of cricketers and cricket teams see Cricpy adds team analytics to its arsenal! in Test, ODI and T20s using cricpy templates, with data from ESPN Cricinfo.

The cricpy package

A. Analyzing batsmen and bowlers in Test, ODI and T20s

The data for a particular player can be obtained with the getPlayerData() function. To do you will need to go to ESPN CricInfo Player and type in the name of the player for e.g Rahul Dravid, Virat Kohli, Alastair Cook etc. This will bring up a page which have the profile number for the player e.g. for Rahul Dravid this would be http://www.espncricinfo.com/india/content/player/28114.html. Hence, Dravid’s profile is 28114. This can be used to get the data for Rahul Dravid as shown below

and select the player you want Please mindful of the ESPN Cricinfo Terms of Use

My posts on Cripy were

  1. Introducing cricpy:A python package to analyze performances of cricketers
  2. Cricpy takes a swing at the ODIs
  3. Cricpy takes guard for the Twenty20s

You can clone/download this cricpy template for your own analysis of players. This can be done using RStudio or IPython notebooks

The cricpy package is now available with pip install cricpy!!!

1 Importing cricpy – Python

# Install the package
# Do a pip install cricpy
# Import cricpy
import cricpy.analytics as ca 
## C:\Users\Ganesh\ANACON~1\lib\site-packages\statsmodels\compat\pandas.py:56: FutureWarning: The pandas.core.datetools module is deprecated and will be removed in a future version. Please use the pandas.tseries module instead.
##   from pandas.core import datetools

2. Invoking functions with Python package cricpy

import cricpy.analytics as ca 
#ca.batsman4s("aplayer.csv","A Player")

3. Getting help from cricpy – Python

import cricpy.analytics as ca
#help(ca.getPlayerData)

The details below will introduce the different functions that are available in cricpy.

4. Get the player data for a player using the function getPlayerData()

Important Note This needs to be done only once for a player. This function stores the player’s data in the specified CSV file (for e.g. dravid.csv as above) which can then be reused for all other functions). Once we have the data for the players many analyses can be done. This post will use the stored CSV file obtained with a prior getPlayerData for all subsequent analyses

4a. For Test players

import cricpy.analytics as ca
#player1 =ca.getPlayerData(profileNo1,dir="..",file="player1.csv",type="batting",homeOrAway=[1,2], result=[1,2,4])
#player1 =ca.getPlayerData(profileNo2,dir="..",file="player2.csv",type="batting",homeOrAway=[1,2], result=[1,2,4])

4b. For ODI players

import cricpy.analytics as ca
#player1 =ca.getPlayerDataOD(profileNo1,dir="..",file="player1.csv",type="batting")
#player1 =ca.getPlayerDataOD(profileNo2,dir="..",file="player2.csv",type="batting"")

4c For T20 players

import cricpy.analytics as ca
#player1 =ca.getPlayerDataTT(profileNo1,dir="..",file="player1.csv",type="batting")
#player1 =ca.getPlayerDataTT(profileNo2,dir="..",file="player2.csv",type="batting"")

5 A Player’s performance – Basic Analyses

The 3 plots below provide the following for Rahul Dravid

  1. Frequency percentage of runs in each run range over the whole career
  2. Mean Strike Rate for runs scored in the given range
  3. A histogram of runs frequency percentages in runs ranges

import cricpy.analytics as ca
import matplotlib.pyplot as plt


#ca.batsmanRunsFreqPerf("aplayer.csv","A Player")
#ca.batsmanMeanStrikeRate("aplayer.csv","A Player")
#ca.batsmanRunsRanges("aplayer.csv","A Player") 

6. More analyses

This gives details on the batsmen’s 4s, 6s and dismissals

import cricpy.analytics as ca

#ca.batsman4s("aplayer.csv","A Player")
#ca.batsman6s("aplayer.csv","A Player") 
#ca.batsmanDismissals("aplayer.csv","A Player")

# The below function is for ODI and T20 only
#ca.batsmanScoringRateODTT("./kohli.csv","Virat Kohli")  

7. 3D scatter plot and prediction plane

The plots below show the 3D scatter plot of Runs versus Balls Faced and Minutes at crease. A linear regression plane is then fitted between Runs and Balls Faced + Minutes at crease

import cricpy.analytics as ca
#ca.battingPerf3d("aplayer.csv","A Player")

8. Average runs at different venues

The plot below gives the average runs scored at different grounds. The plot also the number of innings at each ground as a label at x-axis.

import cricpy.analytics as ca
#ca.batsmanAvgRunsGround("aplayer.csv","A Player")

9. Average runs against different opposing teams

This plot computes the average runs scored against different countries.

import cricpy.analytics as ca

#ca.batsmanAvgRunsOpposition("aplayer.csv","A Player")

10. Highest Runs Likelihood

The plot below shows the Runs Likelihood for a batsman.

import cricpy.analytics as ca

#ca.batsmanRunsLikelihood("aplayer.csv","A Player")

11. A look at the Top 4 batsman

Choose any number of players

1.Player1 2.Player2 3.Player3 …

The following plots take a closer at their performances. The box plots show the median the 1st and 3rd quartile of the runs

12. Box Histogram Plot

This plot shows a combined boxplot of the Runs ranges and a histogram of the Runs Frequency

import cricpy.analytics as ca

#ca.batsmanPerfBoxHist("aplayer001.csv","A Player001")
#ca.batsmanPerfBoxHist("aplayer002.csv","A Player002")
#ca.batsmanPerfBoxHist("aplayer003.csv","A Player003")
#ca.batsmanPerfBoxHist("aplayer004.csv","A Player004")

13. get Player Data special

import cricpy.analytics as ca

#player1sp = ca.getPlayerDataSp(profile1,tdir=".",tfile="player1sp.csv",ttype="batting")
#player2sp = ca.getPlayerDataSp(profile2,tdir=".",tfile="player2sp.csv",ttype="batting")
#player3sp = ca.getPlayerDataSp(profile3,tdir=".",tfile="player3sp.csv",ttype="batting")
#player4sp = ca.getPlayerDataSp(profile4,tdir=".",tfile="player4sp.csv",ttype="batting")

14. Contribution to won and lost matches

Note:This can only be used for Test matches

import cricpy.analytics as ca

#ca.batsmanContributionWonLost("player1sp.csv","A Player001")
#ca.batsmanContributionWonLost("player2sp.csv","A Player002")
#ca.batsmanContributionWonLost("player3sp.csv","A Player003")
#ca.batsmanContributionWonLost("player4sp.csv","A Player004")

15. Performance at home and overseas

Note:This can only be used for Test matches This function also requires the use of getPlayerDataSp() as shown above

import cricpy.analytics as ca
#ca.batsmanPerfHomeAway("player1sp.csv","A Player001")
#ca.batsmanPerfHomeAway("player2sp.csv","A Player002")
#ca.batsmanPerfHomeAway("player3sp.csv","A Player003")
#ca.batsmanPerfHomeAway("player4sp.csv","A Player004")

16 Moving Average of runs in career

import cricpy.analytics as ca

#ca.batsmanMovingAverage("aplayer001.csv","A Player001")
#ca.batsmanMovingAverage("aplayer002.csv","A Player002")
#ca.batsmanMovingAverage("aplayer003.csv","A Player003")
#ca.batsmanMovingAverage("aplayer004.csv","A Player004")

17 Cumulative Average runs of batsman in career

This function provides the cumulative average runs of the batsman over the career.

import cricpy.analytics as ca

#ca.batsmanCumulativeAverageRuns("aplayer001.csv","A Player001")
#ca.batsmanCumulativeAverageRuns("aplayer002.csv","A Player002")
#ca.batsmanCumulativeAverageRuns("aplayer003.csv","A Player003")
#ca.batsmanCumulativeAverageRuns("aplayer004.csv","A Player004")

18 Cumulative Average strike rate of batsman in career

.

import cricpy.analytics as ca
#ca.batsmanCumulativeStrikeRate("aplayer001.csv","A Player001")
#ca.batsmanCumulativeStrikeRate("aplayer002.csv","A Player002")
#ca.batsmanCumulativeStrikeRate("aplayer003.csv","A Player003")
#ca.batsmanCumulativeStrikeRate("aplayer004.csv","A Player004")

19 Future Runs forecast

import cricpy.analytics as ca

#ca.batsmanPerfForecast("aplayer001.csv","A Player001")

20 Relative Batsman Cumulative Average Runs

The plot below compares the Relative cumulative average runs of the batsman for each of the runs ranges of 10 and plots them.

import cricpy.analytics as ca

frames = ["aplayer1.csv","aplayer2.csv","aplayer3.csv","aplayer4.csv"]
names = ["A Player1","A Player2","A Player3","A Player4"]
#ca.relativeBatsmanCumulativeAvgRuns(frames,names)

21 Plot of 4s and 6s

import cricpy.analytics as ca

frames = ["aplayer1.csv","aplayer2.csv","aplayer3.csv","aplayer4.csv"]
names = ["A Player1","A Player2","A Player3","A Player4"]
#ca.batsman4s6s(frames,names)

22. Relative Batsman Strike Rate

The plot below gives the relative Runs Frequency Percetages for each 10 run bucket. The plot below show

import cricpy.analytics as ca

frames = ["aplayer1.csv","aplayer2.csv","aplayer3.csv","aplayer4.csv"]
names = ["A Player1","A Player2","A Player3","A Player4"]
#ca.relativeBatsmanCumulativeStrikeRate(frames,names)

23. 3D plot of Runs vs Balls Faced and Minutes at Crease

The plot is a scatter plot of Runs vs Balls faced and Minutes at Crease. A prediction plane is fitted

import cricpy.analytics as ca
#ca.battingPerf3d("aplayer001.csv","A Player001")
#ca.battingPerf3d("aplayer002.csv","A Player002")
#ca.battingPerf3d("aplayer003.csv","A Player003")
#ca.battingPerf3d("aplayer004.csv","A Player004")

24. Predicting Runs given Balls Faced and Minutes at Crease

A multi-variate regression plane is fitted between Runs and Balls faced +Minutes at crease.

import cricpy.analytics as ca

import numpy as np
import pandas as pd

BF = np.linspace( 10, 400,15)
Mins = np.linspace( 30,600,15)
newDF= pd.DataFrame({'BF':BF,'Mins':Mins})

#aplayer = ca.batsmanRunsPredict("aplayer.csv",newDF,"A Player")
#print(aplayer)

The fitted model is then used to predict the runs that the batsmen will score for a given Balls faced and Minutes at crease.

25 Analysis of Top 3 wicket takers

Take any number of bowlers from either Test, ODI or T20

  1. Bowler1
  2. Bowler2
  3. Bowler3 …

26. Get the bowler’s data (Test)

This plot below computes the percentage frequency of number of wickets taken for e.g 1 wicket x%, 2 wickets y% etc and plots them as a continuous line

import cricpy.analytics as ca

#abowler1 =ca.getPlayerData(profileNo1,dir=".",file="abowler1.csv",type="bowling",homeOrAway=[1,2], result=[1,2,4])
#abowler2 =ca.getPlayerData(profileNo2,dir=".",file="abowler2.csv",type="bowling",homeOrAway=[1,2], result=[1,2,4])
#abowler3 =ca.getPlayerData(profile3,dir=".",file="abowler3.csv",type="bowling",homeOrAway=[1,2], result=[1,2,4])

26b For ODI bowlers

import cricpy.analytics as ca

#abowler1 =ca.getPlayerDataOD(profileNo1,dir=".",file="abowler1.csv",type="bowling")
#abowler2 =ca.getPlayerDataOD(profileNo2,dir=".",file="abowler2.csv",type="bowling")
#abowler3 =ca.getPlayerDataOD(profile3,dir=".",file="abowler3.csv",type="bowling")

26c For T20 bowlers

import cricpy.analytics as ca

#abowler1 =ca.getPlayerDataTT(profileNo1,dir=".",file="abowler1.csv",type="bowling")
#abowler2 =ca.getPlayerDataTT(profileNo2,dir=".",file="abowler2.csv",type="bowling")
#abowler3 =ca.getPlayerDataTT(profile3,dir=".",file="abowler3.csv",type="bowling")

27. Wicket Frequency Plot

This plot below plots the frequency of wickets taken for each of the bowlers

import cricpy.analytics as ca

#ca.bowlerWktsFreqPercent("abowler1.csv","A Bowler1")
#ca.bowlerWktsFreqPercent("abowler2.csv","A Bowler2")
#ca.bowlerWktsFreqPercent("abowler3.csv","A Bowler3")

28. Wickets Runs plot

The plot below create a box plot showing the 1st and 3rd quartile of runs conceded versus the number of wickets taken

import cricpy.analytics as ca

#ca.bowlerWktsRunsPlot("abowler1.csv","A Bowler1")
#ca.bowlerWktsRunsPlot("abowler2.csv","A Bowler2")
#ca.bowlerWktsRunsPlot("abowler3.csv","A Bowler3")

29 Average wickets at different venues

The plot gives the average wickets taken bat different venues.

import cricpy.analytics as ca

#ca.bowlerAvgWktsGround("abowler1.csv","A Bowler1")
#ca.bowlerAvgWktsGround("abowler2.csv","A Bowler2")
#ca.bowlerAvgWktsGround("abowler3.csv","A Bowler3")

30 Average wickets against different opposition

The plot gives the average wickets taken against different countries.

import cricpy.analytics as ca

#ca.bowlerAvgWktsOpposition("abowler1.csv","A Bowler1")
#ca.bowlerAvgWktsOpposition("abowler2.csv","A Bowler2")
#ca.bowlerAvgWktsOpposition("abowler3.csv","A Bowler3")

31 Wickets taken moving average

import cricpy.analytics as ca

#ca.bowlerMovingAverage("abowler1.csv","A Bowler1")
#ca.bowlerMovingAverage("abowler2.csv","A Bowler2")
#ca.bowlerMovingAverage("abowler3.csv","A Bowler3")

32 Cumulative average wickets taken

The plots below give the cumulative average wickets taken by the bowlers.

import cricpy.analytics as ca

#ca.bowlerCumulativeAvgWickets("abowler1.csv","A Bowler1")
#ca.bowlerCumulativeAvgWickets("abowler2.csv","A Bowler2")
#ca.bowlerCumulativeAvgWickets("abowler3.csv","A Bowler3")

33 Cumulative average economy rate

The plots below give the cumulative average economy rate of the bowlers.

import cricpy.analytics as ca

#ca.bowlerCumulativeAvgEconRate("abowler1.csv","A Bowler1")
#ca.bowlerCumulativeAvgEconRate("abowler2.csv","A Bowler2")
#ca.bowlerCumulativeAvgEconRate("abowler3.csv","A Bowler3")

34 Future Wickets forecast

import cricpy.analytics as ca
#ca.bowlerPerfForecast("abowler1.csv","A bowler1")

35 Get player data special

import cricpy.analytics as ca

#abowler1sp =ca.getPlayerDataSp(profile1,tdir=".",tfile="abowler1sp.csv",ttype="bowling")
#abowler2sp =ca.getPlayerDataSp(profile2,tdir=".",tfile="abowler2sp.csv",ttype="bowling")
#abowler3sp =ca.getPlayerDataSp(profile3,tdir=".",tfile="abowler3sp.csv",ttype="bowling")

36 Contribution to matches won and lost

Note:This can be done only for Test cricketers

import cricpy.analytics as ca

#ca.bowlerContributionWonLost("abowler1sp.csv","A Bowler1")
#ca.bowlerContributionWonLost("abowler2sp.csv","A Bowler2")
#ca.bowlerContributionWonLost("abowler3sp.csv","A Bowler3")

37 Performance home and overseas

Note:This can be done only for Test cricketers

import cricpy.analytics as ca

#ca.bowlerPerfHomeAway("abowler1sp.csv","A Bowler1")
#ca.bowlerPerfHomeAway("abowler2sp.csv","A Bowler2")
#ca.bowlerPerfHomeAway("abowler3sp.csv","A Bowler3")

38 Relative cumulative average economy rate of bowlers

import cricpy.analytics as ca

frames = ["abowler1.csv","abowler2.csv","abowler3.csv"]
names = ["A Bowler1","A Bowler2","A Bowler3"]
#ca.relativeBowlerCumulativeAvgEconRate(frames,names)

39 Relative Economy Rate against wickets taken

import cricpy.analytics as ca

frames = ["abowler1.csv","abowler2.csv","abowler3.csv"]
names = ["A Bowler1","A Bowler2","A Bowler3"]
#ca.relativeBowlingER(frames,names)

40 Relative cumulative average wickets of bowlers in career

import cricpy.analytics as ca
frames = ["abowler1.csv","abowler2.csv","abowler3.csv"]
names = ["A Bowler1","A Bowler2","A Bowler3"]
#ca.relativeBowlerCumulativeAvgWickets(frames,names)

B. Analyzing cricket teams in Test, ODI and T20s

The following functions will get the team data for Tests, ODI and T20s

1a. Get Test team data

import cricpy.analytics as ca
#country1Test= ca.getTeamDataHomeAway(dir=".",teamView="bat",matchType="Test",file="country1Test.csv",save=True,teamName="Country1")
#country2Test= ca.getTeamDataHomeAway(dir=".",teamView="bat",matchType="Test",file="country2Test.csv",save=True,teamName="Country2")
#country3Test= ca.getTeamDataHomeAway(dir=".",teamView="bat",matchType="Test",file="country3Test.csv",save=True,teamName="Country3")

1b. Get ODI team data

import cricpy.analytics as ca
#team1ODI=  ca.getTeamDataHomeAway(dir=".",matchType="ODI",file="team1ODI.csv",save=True,teamName="team1")
#team2ODI=  ca.getTeamDataHomeAway(dir=".",matchType="ODI",file="team2ODI.csv",save=True,teamName="team2")
#team3ODI=  ca.getTeamDataHomeAway(dir=".",matchType="ODI",file="team3ODI.csv",save=True,teamName="team3")

1c. Get T20 team data

import cricpy.analytics as ca
#team1T20 = ca.getTeamDataHomeAway(matchType="T20",file="team1T20.csv",save=True,teamName="team1")
#team2T20 = ca.getTeamDataHomeAway(matchType="T20",file="team2T20.csv",save=True,teamName="team2")
#team3T20 = ca.getTeamDataHomeAway(matchType="T20",file="team3T20.csv",save=True,teamName="team3")

2a. Test – Analyzing test performances against opposition

import cricpy.analytics as ca
# Get the performance of Indian test team against all teams at all venues as a dataframe
#df = ca.teamWinLossStatusVsOpposition("country1Test.csv",teamName="Country1",opposition=["all"],homeOrAway=["all"],matchType="Test",plot=False)
#print(df.head())
# Plot the performance of Country1 Test team  against all teams at all venues
#ca.teamWinLossStatusVsOpposition("country1Test.csv",teamName="Country1",opposition=["all"],homeOrAway=["all"],matchType="Test",plot=True)
# Plot the performance of Country1 Test team  against specific teams at home/away venues
#ca.teamWinLossStatusVsOpposition("country1Test.csv",teamName="Country1",opposition=["Country2","Country3","Country4"],homeOrAway=["home","away","neutral"],matchType="Test",plot=True)

2b. Test – Analyzing test performances against opposition at different grounds

import cricpy.analytics as ca
# Get the performance of Indian test team against all teams at all venues as a dataframe
#df = ca.teamWinLossStatusAtGrounds("country1Test.csv",teamName="Country1",opposition=["all"],homeOrAway=["all"],matchType="Test",plot=False)
#df.head()
# Plot the performance of Country1 Test team  against all teams at all venues
#ca.teamWinLossStatusAtGrounds("country1Test.csv",teamName="Country1",opposition=["all"],homeOrAway=["all"],matchType="Test",plot=True)
# Plot the performance of Country1 Test team  against specific teams at home/away venues
#ca.teamWinLossStatusAtGrounds("country1Test.csv",teamName="Country1",opposition=["Country2","Country3","Country4"],homeOrAway=["home","away","neutral"],matchType="Test",plot=True)

2c. Test – Plot time lines of wins and losses

import cricpy.analytics as ca
#ca.plotTimelineofWinsLosses("country1Test.csv",team="Country1",opposition=["all"], #startDate="1970-01-01",endDate="2017-01-01")
#ca.plotTimelineofWinsLosses("country1Test.csv",team="Country1",opposition=["Country2","Count#ry3","Country4"], homeOrAway=["home",away","neutral"], startDate=<start Date> #,endDate=<endDate>)

3a. ODI – Analyzing test performances against opposition

import cricpy.analytics as ca
#df = ca.teamWinLossStatusVsOpposition("team1ODI.csv",teamName="Team1",opposition=["all"],homeOrAway=["all"],matchType="ODI",plot=False)
#print(df.head())
# Plot the performance of team1  in ODIs against Sri Lanka, India at all venues
#ca.teamWinLossStatusVsOpposition("team1ODI.csv",teamName="Team1",opposition=["all"],homeOrAway=[all"],matchType="ODI",plot=True)
# Plot the performance of Team1 ODI team  against specific teams at home/away venues
#ca.teamWinLossStatusVsOpposition("team1ODI.csv",teamName="Team1",opposition=["Team2","Team3","Team4"],homeOrAway="home","away","neutral"],matchType="ODI",plot=True)

3b. ODI – Analyzing test performances against opposition at different venues

import cricpy.analytics as ca
#df = ca.teamWinLossStatusAtGrounds("team1ODI.csv",teamName="Team1",opposition=["all"],homeOrAway=["all"],matchType="ODI",plot=False)
#print(df.head())
# Plot the performance of Team1s in ODIs specific ODI teams at all venues
#ca.teamWinLossStatusAtGrounds("team1ODI.csv",teamName="Team1",opposition=["all"],homeOrAway=[all"],matchType="ODI",plot=True)
# Plot the performance of Team1 against specific ODI teams at home/away venues
#ca.teamWinLossStatusAtGrounds("team1ODI.csv",teamName="Team1",opposition=["Team2","Team3","Team4"],homeOrAway=["home","away","neutral"],matchType="ODI",plot=True)

3c. ODI – Plot time lines of wins and losses

import cricpy.analytics as ca
#Plot the time line of wins/losses of Bangladesh ODI team between 2 dates all venues
#ca.plotTimelineofWinsLosses("team1ODI.csv",team="Team1",startDate=<start date> ,endDa#te=<end date>,matchType="ODI")
#Plot the time line of wins/losses against specific opposition between 2 dates
#ca.plotTimelineofWinsLosses("team1ODI.csv",team="Team1",opposition=["Team2","Team2"], homeOrAway=["home",away","neutral"], startDate=<start date>,endDate=<end date> ,matchType="ODI")

4a. T20 – Analyzing test performances against opposition

import cricpy.analytics as ca
#df = ca.teamWinLossStatusVsOpposition("teamT20.csv",teamName="Team1",opposition=["all"],homeOrAway=["all"],matchType="T20",plot=False)
#print(df.head())
# Plot the performance of Team1 in T20s  against  all opposition at all venues
#ca.teamWinLossStatusVsOpposition("teamT20.csv",teamName="Team1",opposition=["all"],homeOrAway=[all"],matchType="T20",plot=True)
# Plot the performance of T20 Test team  against specific teams at home/away venues
#ca.teamWinLossStatusVsOpposition("teamT20.csv",teamName="Team1",opposition=["Team2","Team3","Team4"],homeOrAway=["home","away","neutral"],matchType="T20",plot=True)

4b. T20 – Analyzing test performances against opposition at different venues

import cricpy.analytics as ca
#df = ca.teamWinLossStatusAtGrounds("teamT20.csv",teamName="Team1",opposition=["all"],homeOrAway=["all"],matchType="T20",plot=False)
#df.head()
# Plot the performance of Team1s in ODIs specific ODI teams at all venues
#ca.teamWinLossStatusAtGrounds("teamT20.csv",teamName="Team1",opposition=["all"],homeOrAway=["all"],matchType="T20",plot=True)
# Plot the performance of Team1 against specific ODI teams at home/away venues
#ca.teamWinLossStatusAtGrounds("teamT20.csv",teamName="Team1",opposition=["Team2","Team3","Team4"],homeOrAway=["home","away","neutral"],matchType="T20",plot=True)

4c. T20 – Plot time lines of wins and losses

import cricpy.analytics as ca
#Plot the time line of wins/losses of Bangladesh ODI team between 2 dates all venues
#ca.plotTimelineofWinsLosses("teamT20.csv",team="Team1",startDate=<start date> ,endDa#te=<end date>,matchType="T20")
#Plot the time line of wins/losses against specific opposition between 2 dates
#ca.plotTimelineofWinsLosses("teamT20.csv",team="Team1",opposition=c("Team2","Team2"), homeOrAway=c("home",away","neutral"), startDate=<start date>,endDate=<end date> ,matchType="T20")

Conclusion

Key Findings

Analysis of batsman

Analysis of bowlers

Analysis of teams

Have fun with cripy!!!

Analyzing cricketers’ and cricket team’s performances with cricketr template

This post includes a template which you can use for analyzing the performances of cricketers, both batsmen and bowlers in Test, ODI and Twenty 20 cricket. Additionally this template can also be used for analyzing performances of teams in Test, ODI and T20 matches using my R package cricketr. To see actual usage of functions related to players in the R package cricketr see Introducing cricketr! : An R package to analyze performances of cricketers and associated posts on cricket in Index of posts. For the analyses on team performances see https://gigadom.in/2019/06/21/cricpy-adds-team-analytics-to-its-repertoire/

The ‘cricketr’ package uses the statistics info available in ESPN Cricinfo Statsguru. The current version of this package supports all formats of the game including Test, ODI and Twenty20 versions.

You should be able to install the package from GitHub and use the many functions available in the package. Please mindful of the ESPN Cricinfo Terms of Use

Take a look at my short video tutorial on my R package cricketr on Youtube – R package cricketr – A short tutorial

Do check out my interactive Shiny app implementation using the cricketr package – Sixer – R package cricketr’s new Shiny avatar

You can download this RMarkdown file from Github at cricketr-template

The cricketr package

The cricketr package has several functions that perform several different analyses on both batsman and bowlers. The package can also analyze performances of teams The package has function that plot percentage frequency runs or wickets, runs likelihood for a batsman, relative run/strike rates of batsman and relative performance/economy rate for bowlers are available. Other interesting functions include batting performance moving average, forecast and a function to check whether the batsmans in in-form or out-of-form.

In addition performances of teams against different oppositions at different venues can be computed and plotted. The timeline of wins & losses can be plotted.

A. Performances of batsmen and bowlers

The data for a particular player can be obtained with the getPlayerData() function. To do you will need to go to ESPN CricInfo Player and type in the name of the player for e.g Ricky Ponting, Sachin Tendulkar etc. This will bring up a page which have the profile number for the player e.g. for Sachin Tendulkar this would be http://www.espncricinfo.com/india/content/player/35320.html. Hence, Sachin’s profile is 35320. This can be used to get the data for Tendulkar as shown below

The cricketr package is now available from CRAN!!! You should be able to install as below

1. Install the cricketr package

if (!require("cricketr")){
    install.packages("cricketr",lib = "c:/test")
}
library(cricketr)

The cricketr package includes some pre-packaged sample (.csv) files. You can use these sample to test functions as shown below
# Retrieve the file path of a data file installed with cricketr
#pathToFile <- system.file("data", "tendulkar.csv", package = "cricketr")
#batsman4s(pathToFile, "Sachin Tendulkar")

# The general format is pkg-function(pathToFile,par1,...)
#batsman4s(<path-To-File>,"Sachin Tendulkar")

The pre-packaged files can be accessed as shown above. To get the data of any player use the function in Test, ODI and Twenty20 use the following

2. For Test cricket

#tendulkar <- getPlayerData(35320,dir="..",file="tendulkar.csv",type="batting",homeOrAway=c(1,2), result=c(1,2,4))

2a. For ODI cricket

#tendulkarOD <- getPlayerDataOD(35320,dir="..",file="tendulkarOD.csv",type="batting")

2b For Twenty 20 cricket

#tendulkarT20 <- getPlayerDataTT(35320,dir="..",file="tendulkarT20.csv",type="batting")

Important Note 1: This needs to be done only once for a player. This function stores the player’s data in a CSV file (for e.g. tendulkar.csv as above) which can then be reused for all other functions. Once we have the data for the players many analyses can be done. This post will use the stored CSV file obtained with a prior getPlayerData for all subsequent analyses

Important Note 2: The same set of functions can be used for Tests, ODI and T20s. I have mentioned wherever you may need special functions for ODI and T20 below

Sachin Tendulkar’s performance – Basic Analyses

The 3 plots below provide the following for Tendulkar

  1. Frequency percentage of runs in each run range over the whole career
  2. Mean Strike Rate for runs scored in the given range
  3. A histogram of runs frequency percentages in runs ranges For example

3. Basic analyses

par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
#batsmanRunsFreqPerf("./tendulkar.csv","Tendulkar")
#batsmanMeanStrikeRate("./tendulkar.csv","Tendulkar")
#batsmanRunsRanges("./tendulkar.csv","Tendulkar")
dev.off()
## null device 
##           1
  1. Player 1
  2. Player 2
  3. Player 3
  4. Player 4

4. More analyses

par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
#batsman4s("./player1.csv","Player1")
#batsman6s("./player1.csv","Player1")
#batsmanMeanStrikeRate("./player1.csv","Player1")

# For ODI and T20
#batsmanScoringRateODTT("./player1.csv","Player1")
dev.off()
## null device 
##           1
par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
#batsman4s("./player2.csv","Player2")
#batsman6s("./player2.csv","Player2")
#batsmanMeanStrikeRate("./player2.csv","Player2")
# For ODI and T20
#batsmanScoringRateODTT("./player1.csv","Player1")
dev.off()
## null device 
##           1
par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
#batsman4s("./player3.csv","Player3")
#batsman6s("./player3.csv","Player3")
#batsmanMeanStrikeRate("./player3.csv","Player3")
# For ODI and T20
#batsmanScoringRateODTT("./player1.csv","Player1")

dev.off()
## null device 
##           1
par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
#batsman4s("./player4.csv","Player4")
#batsman6s("./player4.csv","Player4")
#batsmanMeanStrikeRate("./player4.csv","Player4")
# For ODI and T20
#batsmanScoringRateODTT("./player1.csv","Player1")
dev.off()
## null device 
##           1

Note: For mean strike rate in ODI and Twenty20 use the function batsmanScoringRateODTT()

5.Boxplot histogram plot

This plot shows a combined boxplot of the Runs ranges and a histogram of the Runs Frequency

#batsmanPerfBoxHist("./player1.csv","Player1")
#batsmanPerfBoxHist("./player2.csv","Player2")
#batsmanPerfBoxHist("./player3.csv","Player3")
#batsmanPerfBoxHist("./player4.csv","Player4")

6. Contribution to won and lost matches

For the 2 functions below you will have to use the getPlayerDataSp() function. I have commented this as I already have these files. This function can only be used for Test matches

#player1sp <- getPlayerDataSp(xxxx,tdir=".",tfile="player1sp.csv",ttype="batting")
#player2sp <- getPlayerDataSp(xxxx,tdir=".",tfile="player2sp.csv",ttype="batting")
#player3sp <- getPlayerDataSp(xxxx,tdir=".",tfile="player3sp.csv",ttype="batting")
#player4sp <- getPlayerDataSp(xxxx,tdir=".",tfile="player4sp.csv",ttype="batting")
par(mfrow=c(2,2))
par(mar=c(4,4,2,2))
#batsmanContributionWonLost("player1sp.csv","Player1")
#batsmanContributionWonLost("player2sp.csv","Player2")
#batsmanContributionWonLost("player3sp.csv","Player3")
#batsmanContributionWonLost("player4sp.csv","Player4")
dev.off()
## null device 
##           1

7, Performance at home and overseas

This function also requires the use of getPlayerDataSp() as shown above. This can only be used for Test matches

par(mfrow=c(2,2))
par(mar=c(4,4,2,2))
#batsmanPerfHomeAway("player1sp.csv","Player1")
#batsmanPerfHomeAway("player2sp.csv","Player2")
#batsmanPerfHomeAway("player3sp.csv","Player3")
#batsmanPerfHomeAway("player4sp.csv","Player4")
dev.off()
## null device 
##           1

8. Batsman average at different venues

par(mfrow=c(2,2))
par(mar=c(4,4,2,2))
#batsmanAvgRunsGround("./player1.csv","Player1")
#batsmanAvgRunsGround("./player2.csv","Player2")
#batsmanAvgRunsGround("./player3.csv","Ponting")
#batsmanAvgRunsGround("./player4.csv","Player4")
dev.off()
## null device 
##           1

9. Batsman average against different opposition

par(mfrow=c(2,2))
par(mar=c(4,4,2,2))
#batsmanAvgRunsOpposition("./player1.csv","Player1")
#batsmanAvgRunsOpposition("./player2.csv","Player2")
#batsmanAvgRunsOpposition("./player3.csv","Ponting")
#batsmanAvgRunsOpposition("./player4.csv","Player4")
dev.off()
## null device 
##           1

10. Runs Likelihood of batsman

par(mfrow=c(2,2))
par(mar=c(4,4,2,2))
#batsmanRunsLikelihood("./player1.csv","Player1")
#batsmanRunsLikelihood("./player2.csv","Player2")
#batsmanRunsLikelihood("./player3.csv","Ponting")
#batsmanRunsLikelihood("./player4.csv","Player4")
dev.off()
## null device 
##           1

11. Moving Average of runs in career

par(mfrow=c(2,2))
par(mar=c(4,4,2,2))
#batsmanMovingAverage("./player1.csv","Player1")
#batsmanMovingAverage("./player2.csv","Player2")
#batsmanMovingAverage("./player3.csv","Ponting")
#batsmanMovingAverage("./player4.csv","Player4")
dev.off()
## null device 
##           1

12. Cumulative Average runs of batsman in career

par(mfrow=c(2,2))
par(mar=c(4,4,2,2))
#batsmanCumulativeAverageRuns("./player1.csv","Player1")
#batsmanCumulativeAverageRuns("./player2.csv","Player2")
#batsmanCumulativeAverageRuns("./player3.csv","Ponting")
#batsmanCumulativeAverageRuns("./player4.csv","Player4")
dev.off()
## null device 
##           1

13. Cumulative Average strike rate of batsman in career

par(mfrow=c(2,2))
par(mar=c(4,4,2,2))
#batsmanCumulativeStrikeRate("./player1.csv","Player1")
#batsmanCumulativeStrikeRate("./player2.csv","Player2")
#batsmanCumulativeStrikeRate("./player3.csv","Ponting")
#batsmanCumulativeStrikeRate("./player4.csv","Player4")
dev.off()
## null device 
##           1

14. Future Runs forecast

Here are plots that forecast how the batsman will perform in future. In this case 90% of the career runs trend is uses as the training set. the remaining 10% is the test set.

A Holt-Winters forecating model is used to forecast future performance based on the 90% training set. The forecated runs trend is plotted. The test set is also plotted to see how close the forecast and the actual matches

Take a look at the runs forecasted for the batsman below.

par(mfrow=c(2,2))
par(mar=c(4,4,2,2))
#batsmanPerfForecast("./player1.csv","Player1")
#batsmanPerfForecast("./player2.csv","Player2")
#batsmanPerfForecast("./player3.csv","Player3")
#batsmanPerfForecast("./player4.csv","Player4")
dev.off()
## null device 
##           1

15. Relative Mean Strike Rate plot

The plot below compares the Mean Strike Rate of the batsman for each of the runs ranges of 10 and plots them. The plot indicate the following

frames <- list("./player1.csv","./player2.csv","player3.csv","player4.csv")
names <- list("Player1","Player2","Player3","Player4")
#relativeBatsmanSR(frames,names)

16. Relative Runs Frequency plot

The plot below gives the relative Runs Frequency Percetages for each 10 run bucket. The plot below show

frames <- list("./player1.csv","./player2.csv","player3.csv","player4.csv")
names <- list("Player1","Player2","Player3","Player4")
#relativeRunsFreqPerf(frames,names)

17. Relative cumulative average runs in career

frames <- list("./player1.csv","./player2.csv","player3.csv","player4.csv")
names <- list("Player1","Player2","Player3","Player4")
#relativeBatsmanCumulativeAvgRuns(frames,names)

18. Relative cumulative average strike rate in career

frames <- list("./player1.csv","./player2.csv","player3.csv","player4.csv")
names <- list("Player1","Player2","Player3","player4")
#relativeBatsmanCumulativeStrikeRate(frames,names)

19. Check Batsman In-Form or Out-of-Form

The below computation uses Null Hypothesis testing and p-value to determine if the batsman is in-form or out-of-form. For this 90% of the career runs is chosen as the population and the mean computed. The last 10% is chosen to be the sample set and the sample Mean and the sample Standard Deviation are caculated.

The Null Hypothesis (H0) assumes that the batsman continues to stay in-form where the sample mean is within 95% confidence interval of population mean The Alternative (Ha) assumes that the batsman is out of form the sample mean is beyond the 95% confidence interval of the population mean.

A significance value of 0.05 is chosen and p-value us computed If p-value >= .05 – Batsman In-Form If p-value < 0.05 – Batsman Out-of-Form

Note Ideally the p-value should be done for a population that follows the Normal Distribution. But the runs population is usually left skewed. So some correction may be needed. I will revisit this later

This is done for the Top 4 batsman

#checkBatsmanInForm("./player1.csv","Player1")
#checkBatsmanInForm("./player2.csv","Player2")
#checkBatsmanInForm("./player3.csv","Player3")
#checkBatsmanInForm("./player4.csv","Player4")

20. 3D plot of Runs vs Balls Faced and Minutes at Crease

The plot is a scatter plot of Runs vs Balls faced and Minutes at Crease. A prediction plane is fitted

par(mfrow=c(1,2))
par(mar=c(4,4,2,2))
#battingPerf3d("./player1.csv","Player1")
#battingPerf3d("./player2.csv","Player2")
par(mfrow=c(1,2))
par(mar=c(4,4,2,2))
#battingPerf3d("./player3.csv","Player3")
#battingPerf3d("./player4.csv","player4")
dev.off()
## null device 
##           1

21. Predicting Runs given Balls Faced and Minutes at Crease

A multi-variate regression plane is fitted between Runs and Balls faced +Minutes at crease.

BF <- seq( 10, 400,length=15)
Mins <- seq(30,600,length=15)
newDF <- data.frame(BF,Mins)
#Player1 <- batsmanRunsPredict("./player1.csv","Player1",newdataframe=newDF)
#Player2 <- batsmanRunsPredict("./player2.csv","Player2",newdataframe=newDF)
#ponting <- batsmanRunsPredict("./player3.csv","Player3",newdataframe=newDF)
#sangakkara <- batsmanRunsPredict("./player4.csv","Player4",newdataframe=newDF)
#batsmen <-cbind(round(Player1$Runs),round(Player2$Runs),round(Player3$Runs),round(Player4$Runs))
#colnames(batsmen) <- c("Player1","Player2","Player3","Player4")
#newDF <- data.frame(round(newDF$BF),round(newDF$Mins))
#colnames(newDF) <- c("BallsFaced","MinsAtCrease")
#predictedRuns <- cbind(newDF,batsmen)
#predictedRuns

Analysis of bowlers

  1. Bowler1
  2. Bowler2
  3. Bowler3
  4. Bowler4

player1 <- getPlayerData(xxxx,dir=“..”,file=“player1.csv”,type=“bowling”) Note For One day you will have to use getPlayerDataOD() and for Twenty20 it is getPlayerDataTT()

21. Wicket Frequency Plot

This plot below computes the percentage frequency of number of wickets taken for e.g 1 wicket x%, 2 wickets y% etc and plots them as a continuous line

par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
#bowlerWktsFreqPercent("./bowler1.csv","Bowler1")
#bowlerWktsFreqPercent("./bowler2.csv","Bowler2")
#bowlerWktsFreqPercent("./bowler3.csv","Bowler3")
dev.off()
## null device 
##           1

22. Wickets Runs plot

par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
#bowlerWktsRunsPlot("./bowler1.csv","Bowler1")
#bowlerWktsRunsPlot("./bowler2.csv","Bowler2")
#bowlerWktsRunsPlot("./bowler3.csv","Bowler3")
dev.off()
## null device 
##           1

23. Average wickets at different venues

#bowlerAvgWktsGround("./bowler3.csv","Bowler3")

24. Average wickets against different opposition

#bowlerAvgWktsOpposition("./bowler3.csv","Bowler3")

25. Wickets taken moving average

par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
#bowlerMovingAverage("./bowler1.csv","Bowler1")
#bowlerMovingAverage("./bowler2.csv","Bowler2")
#bowlerMovingAverage("./bowler3.csv","Bowler3")

dev.off()
## null device 
##           1

26. Cumulative Wickets taken

par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
#bowlerCumulativeAvgWickets("./bowler1.csv","Bowler1")
#bowlerCumulativeAvgWickets("./bowler2.csv","Bowler2")
#bowlerCumulativeAvgWickets("./bowler3.csv","Bowler3")
dev.off()
## null device 
##           1

27. Cumulative Economy rate

par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
#bowlerCumulativeAvgEconRate("./bowler1.csv","Bowler1")
#bowlerCumulativeAvgEconRate("./bowler2.csv","Bowler2")
#bowlerCumulativeAvgEconRate("./bowler3.csv","Bowler3")
dev.off()
## null device 
##           1

28. Future Wickets forecast

Here are plots that forecast how the bowler will perform in future. In this case 90% of the career wickets trend is used as the training set. the remaining 10% is the test set.

A Holt-Winters forecating model is used to forecast future performance based on the 90% training set. The forecated wickets trend is plotted. The test set is also plotted to see how close the forecast and the actual matches

par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
#bowlerPerfForecast("./bowler1.csv","Bowler1")
#bowlerPerfForecast("./bowler2.csv","Bowler2")
#bowlerPerfForecast("./bowler3.csv","Bowler3")
dev.off()
## null device 
##           1

29. Contribution to matches won and lost

As discussed above the next 2 charts require the use of getPlayerDataSp(). This can only be done for Test matches

#bowler1sp <- getPlayerDataSp(xxxx,tdir=".",tfile="bowler1sp.csv",ttype="bowling")
#bowler2sp <- getPlayerDataSp(xxxx,tdir=".",tfile="bowler2sp.csv",ttype="bowling")
#bowler3sp <- getPlayerDataSp(xxxx,tdir=".",tfile="bowler3sp.csv",ttype="bowling")
par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
#bowlerContributionWonLost("bowler1sp","Bowler1")
#bowlerContributionWonLost("bowler2sp","Bowler2")
#bowlerContributionWonLost("bowler3sp","Bowler3")
dev.off()
## null device 
##           1

30. Performance home and overseas.

This can only be done for Test matches

par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
#bowlerPerfHomeAway("bowler1sp","Bowler1")
#bowlerPerfHomeAway("bowler2sp","Bowler2")
#bowlerPerfHomeAway("bowler3sp","Bowler3")
dev.off()
## null device 
##           1

31 Relative Wickets Frequency Percentage

frames <- list("./bowler1.csv","./bowler3.csv","bowler2.csv")
names <- list("Bowler1","Bowler3","Bowler2")
#relativeBowlingPerf(frames,names)

32 Relative Economy Rate against wickets taken

frames <- list("./bowler1.csv","./bowler3.csv","bowler2.csv")
names <- list("Bowler1","Bowler3","Bowler2")
#relativeBowlingER(frames,names)

33 Relative cumulative average wickets of bowlers in career

frames <- list("./bowler1.csv","./bowler3.csv","bowler2.csv")
names <- list("Bowler1","Bowler3","Bowler2")
#relativeBowlerCumulativeAvgWickets(frames,names)

34 Relative cumulative average economy rate of bowlers

frames <- list("./bowler1.csv","./bowler3.csv","bowler2.csv")
names <- list("Bowler1","Bowler3","Bowler2")
#relativeBowlerCumulativeAvgEconRate(frames,names)

35 Check for bowler in-form/out-of-form

The below computation uses Null Hypothesis testing and p-value to determine if the bowler is in-form or out-of-form. For this 90% of the career wickets is chosen as the population and the mean computed. The last 10% is chosen to be the sample set and the sample Mean and the sample Standard Deviation are caculated.

The Null Hypothesis (H0) assumes that the bowler continues to stay in-form where the sample mean is within 95% confidence interval of population mean The Alternative (Ha) assumes that the bowler is out of form the sample mean is beyond the 95% confidence interval of the population mean.

A significance value of 0.05 is chosen and p-value us computed If p-value >= .05 – Batsman In-Form If p-value < 0.05 – Batsman Out-of-Form

Note Ideally the p-value should be done for a population that follows the Normal Distribution. But the runs population is usually left skewed. So some correction may be needed. I will revisit this later

Note: The check for the form status of the bowlers indicate

#checkBowlerInForm("./bowler1.csv","Bowler1")
#checkBowlerInForm("./bowler2.csv","Bowler2")
#checkBowlerInForm("./bowler3.csv","Bowler3")
dev.off()
## null device 
##           1

36. Performing granular analysis of batsmen and bowlers

To perform granular analysis of batsmen and bowlers do the following 2 steps

  1. Step 1: getPlayerDataHA – This function is a wrapper around getPlayerData(), getPlayerDataOD() and getPlayerDataTT(), and adds an extra column ‘homeOrAway’ which says whether the match was played at home/away/neutral venues. A CSV file is created with this new column.
  2. Step2:getPlayerDataOppnHA – This function allows you to slice & dice the data for batsmen and bowlers against specific oppositions, at home/away/neutral venues and between certain periods. This reduced subset of data can be used to perform analyses. A CSV file is created as an output based on the parameters of opposition, home or away and the interval of time

37. GetPlayerDataHA (Batsmen, Tests)

#This saves a file playerTestHA.csv
#df=getPlayerDataHA(<profileNo>,tfile="playerTestHA.csv",type="batting", matchType="Test")

#Use the generate file to create a subset of data
#df1=getPlayerDataOppnHA(infile="playerTestHA.csv",outfile="playerTestFile1.csv",
#                         startDate=<start Date>,endDate=<end Date>)

38. GetPlayerDataHA (Bowlers, Tests)

#This saves a file playerTestHA.csv
#df=getPlayerDataHA(<profileNo>,tfile="playerTestHA.csv",type="bowling", matchType="Test")

#Use the generate file to create a subset of data
#df1=getPlayerDataOppnHA(infile="playerTestHA.csv",outfile="playerTestFile1.csv",
#                         startDate=<start Date>,endDate=<end Date>)

39. GetPlayerDataHA (Batsmen, ODI)

#This saves a file playerTestHA.csv
#df=getPlayerDataHA(<profileNo>,tfile="playerODIHA.csv",type="batting", matchType="ODI")

#Use the generate file to create a subset of data
#df1=getPlayerDataOppnHA(infile="playerODIHA.csv",outfile="playerODIFile1.csv",
#                         startDate=<start Date>,endDate=<end Date>)

40. GetPlayerDataHA (Bowlers, ODI)

#This saves a file playerTestHA.csv
#df=getPlayerDataHA(<profileNo>,tfile="playerODIHA.csv",type="bowling", matchType="ODI")

#Use the generate file to create a subset of data
#df1=getPlayerDataOppnHA(infile="playerODIHA.csv",outfile="playerODIFile1.csv",
#                         startDate=<start Date>,endDate=<end Date>)

41. GetPlayerDataHA (Batsmen, T20)

#This saves a file playerTestHA.csv
#df=getPlayerDataHA(<profileNo>,tfile="playerT20HA.csv",type="batting", matchType="T20")

#Use the generate file to create a subset of data
#df1=getPlayerDataOppnHA(infile="playerT20HA.csv",outfile="playerT20File1.csv",
#                         startDate=<start Date>,endDate=<end Date>)

42. GetPlayerDataHA (Bowlers, T20)

#This saves a file playerTestHA.csv
#df=getPlayerDataHA(<profileNo>,tfile="playerT20HA.csv",type="bowling", matchType="T20")

#Use the generate file to create a subset of data
#df1=getPlayerDataOppnHA(infile="playerT20HA.csv",outfile="playerT20File1.csv",
#                         startDate=<start Date>,endDate=<end Date>)

Important Note Once you get the subset of data for batsmen and bowlers playerTestFile1.csv, playerODIFile1.csv or playerT20File1.csv , you can use any of the cricketr functions on the subset of data for a fine-grained analysis

B. Performances of teams

The following functions will get the team data for Tests, ODI and T20s

1a. Get Test team data

#country1Test= getTeamDataHomeAway(dir=".",teamView="bat",matchType="Test",file="country1Test.csv",save=True,teamName="Country1")
#country2Test= getTeamDataHomeAway(dir=".",teamView="bat",matchType="Test",file="country2Test.csv",save=True,teamName="Country2")
#country3Test= getTeamDataHomeAway(dir=".",teamView="bat",matchType="Test",file="country3Test.csv",save=True,teamName="Country3")

1b. Get ODI team data

#team1ODI=  getTeamDataHomeAway(dir=".",matchType="ODI",file="team1ODI.csv",save=True,teamName="team1")
#team2ODI=  getTeamDataHomeAway(dir=".",matchType="ODI",file="team2ODI.csv",save=True,teamName="team2")
#team3ODI=  getTeamDataHomeAway(dir=".",matchType="ODI",file="team3ODI.csv",save=True,teamName="team3")

1c. Get T20 team data

#team1T20 = getTeamDataHomeAway(matchType="T20",file="team1T20.csv",save=True,teamName="team1")
#team2T20 = getTeamDataHomeAway(matchType="T20",file="team2T20.csv",save=True,teamName="team2")
#team3T20 = getTeamDataHomeAway(matchType="T20",file="team3T20.csv",save=True,teamName="team3")

2a. Test – Analyzing test performances against opposition

# Get the performance of Indian test team against all teams at all venues as a dataframe
#df <- teamWinLossStatusVsOpposition("country1Test.csv",teamName="Country1",opposition=c("all"),homeOrAway=c("all"),matchType="Test",plot=FALSE)
#head(df)

# Plot the performance of Country1 Test team  against all teams at all venues
#teamWinLossStatusVsOpposition("country1Test.csv",teamName="Country1",opposition=c("all"),homeOrAway=c("all"),matchType="Test",plot=TRUE)

# Plot the performance of Country1 Test team  against specific teams at home/away venues
#teamWinLossStatusVsOpposition("country1Test.csv",teamName="Country1",opposition=c("Country2","Country3","Country4"),homeOrAway=c("home","away","neutral"),matchType="Test",plot=TRUE)

2b. Test – Analyzing test performances against opposition at different grounds

# Get the performance of Indian test team against all teams at all venues as a dataframe
#df <- teamWinLossStatusAtGrounds("country1Test.csv",teamName="Country1",opposition=c("all"),homeOrAway=c("all"),matchType="Test",plot=FALSE)
#head(df)

# Plot the performance of Country1 Test team  against all teams at all venues
#teamWinLossStatusAtGrounds("country1Test.csv",teamName="Country1",opposition=c("all"),homeOrAway=c("all"),matchType="Test",plot=TRUE)

# Plot the performance of Country1 Test team  against specific teams at home/away venues
#teamWinLossStatusAtGrounds("country1Test.csv",teamName="Country1",opposition=c("Country2","Country3","Country4"),homeOrAway=c("home","away","neutral"),matchType="Test",plot=TRUE)

2c. Test – Plot time lines of wins and losses

#plotTimelineofWinsLosses("country1Test.csv",team="Country1",opposition=c("all"), #startDate="1970-01-01",endDate="2017-01-01")
#plotTimelineofWinsLosses("country1Test.csv",team="Country1",opposition=c("Country2","Count#ry3","Country4"), homeOrAway=c("home",away","neutral"), startDate=<start Date> #,endDate=<endDate>)

3a. ODI – Analyzing test performances against opposition

#df <- teamWinLossStatusVsOpposition("team1ODI.csv",teamName="Team1",opposition=c("all"),homeOrAway=c("all"),matchType="ODI",plot=FALSE)
#head(df)

# Plot the performance of team1  in ODIs against Sri Lanka, India at all venues
#teamWinLossStatusVsOpposition("team1ODI.csv",teamName="Team1",opposition=c("all"),homeOrAway=c(all"),matchType="ODI",plot=TRUE)

# Plot the performance of Team1 ODI team  against specific teams at home/away venues
#teamWinLossStatusVsOpposition("team1ODI.csv",teamName="Team1",opposition=c("Team2","Team3","Team4"),homeOrAway=c("home","away","neutral"),matchType="ODI",plot=TRUE)

3b. ODI – Analyzing test performances against opposition at different venues

#df <- teamWinLossStatusAtGrounds("team1ODI.csv",teamName="Team1",opposition=c("all"),homeOrAway=c("all"),matchType="ODI",plot=FALSE)
#head(df)

# Plot the performance of Team1s in ODIs specific ODI teams at all venues
#teamWinLossStatusAtGrounds("team1ODI.csv",teamName="Team1",opposition=c("all"),homeOrAway=c(all"),matchType="ODI",plot=TRUE)

# Plot the performance of Team1 against specific ODI teams at home/away venues
#teamWinLossStatusAtGrounds("team1ODI.csv",teamName="Team1",opposition=c("Team2","Team3","Team4"),homeOrAway=c("home","away","neutral"),matchType="ODI",plot=TRUE)

3c. ODI – Plot time lines of wins and losses

#Plot the time line of wins/losses of Bangladesh ODI team between 2 dates all venues
#plotTimelineofWinsLosses("team1ODI.csv",team="Team1",startDate=<start date> ,endDa#te=<end date>,matchType="ODI")

#Plot the time line of wins/losses against specific opposition between 2 dates
#plotTimelineofWinsLosses("team1ODI.csv",team="Team1",opposition=c("Team2","Team2"), homeOrAway=c("home",away","neutral"), startDate=<start date>,endDate=<end date> ,matchType="ODI")

4a. T20 – Analyzing test performances against opposition

#df <- teamWinLossStatusVsOpposition("teamT20.csv",teamName="Team1",opposition=c("all"),homeOrAway=c("all"),matchType="T20",plot=FALSE)
#head(df)

# Plot the performance of Team1 in T20s  against  all opposition at all venues
#teamWinLossStatusVsOpposition("teamT20.csv",teamName="Team1",opposition=c("all"),homeOrAway=c(all"),matchType="T20",plot=TRUE)

# Plot the performance of T20 Test team  against specific teams at home/away venues
#teamWinLossStatusVsOpposition("teamT20.csv",teamName="Team1",opposition=c("Team2","Team3","Team4"),homeOrAway=c("home","away","neutral"),matchType="T20",plot=TRUE)

4b. T20 – Analyzing test performances against opposition at different venues

#df <- teamWinLossStatusAtGrounds("teamT20.csv",teamName="Team1",opposition=c("all"),homeOrAway=c("all"),matchType="T20",plot=FALSE)
#head(df)

# Plot the performance of Team1s in ODIs specific ODI teams at all venues
#teamWinLossStatusAtGrounds("teamT20.csv",teamName="Team1",opposition=c("all"),homeOrAway=c(all"),matchType="T20",plot=TRUE)

# Plot the performance of Team1 against specific ODI teams at home/away venues
#teamWinLossStatusAtGrounds("teamT20.csv",teamName="Team1",opposition=c("Team2","Team3","Team4"),homeOrAway=c("home","away","neutral"),matchType="T20",plot=TRUE)

4c. T20 – Plot time lines of wins and losses

#Plot the time line of wins/losses of Bangladesh ODI team between 2 dates all venues
#plotTimelineofWinsLosses("teamT20.csv",team="Team1",startDate=<start date> ,endDa#te=<end date>,matchType="T20")

#Plot the time line of wins/losses against specific opposition between 2 dates
#plotTimelineofWinsLosses("teamT20.csv",team="Team1",opposition=c("Team2","Team2"), homeOrAway=c("home",away","neutral"), startDate=<start date>,endDate=<end date> ,matchType="T20")

Key Findings

Analysis of batsman

Analysis of bowlers

Analysis of teams

Conclusion

Using the above template, analysis can be done for both batsmen and bowlers in Test, ODI and T20. Also analysis of any any team in Test, ODI and T20 against other specific opposition, at home/away and neutral venues can be performed.

Have fun with cricketr!!

Also see
1. Practical Machine Learning with R and Python – Part 5
2. Using Linear Programming (LP) for optimizing bowling change or batting lineup in T20 cricket
3. yorkr crashes the IPL party ! – Part 1
4. Deep Learning from first principles in Python, R and Octave – Part 6
5. Cricpy takes a swing at the ODIs
6. Bull in a china shop – Behind the scenes in Android
7. Eliminating the Performance Drag
To see all posts click Index of posts

Cricpy adds team analytics to its arsenal!!

I can’t sit still and see another man slaving and working. I want to get up and superintend, and walk round with my hands in my pockets, and tell him what to do. It is my energetic nature. I can’t help it.

It always does seem to me that I am doing more work than I should do. It is not that I object to the work, mind you; I like work: it fascinates me. I can sit and look at it for hours. I love to keep it by me: the idea of getting rid of it nearly breaks my heart.

Let your boat of life be light, packed with only what you need – a homely home and simple pleasures, one or two friends, worth the name, someone to love and someone to love you, a cat, a dog, and a pipe or two, enough to eat and enough to wear, and a little more than enough to drink; for thirst is a dangerous thing.

                Three Men in a boat by Jerome K Jerome
                

Introduction

Cricpy, the python avatar of my R package was born about a 9 months back see Introducing cricpy:A python package to analyze performances of cricketers. Cricpy, like its R twin, can analyze performance of batsmen & bowlers in Test, ODI and T20 formats. About a week and a half back, I added team analytics to my R package cricketr see Cricketr adds team analytics to its repertoire!!!. If cricketr has team analysis functions, then can cricpy be far behind? So, I have included the same 8 functions which can perform Team analytics into cricpy also. Team performance analysis can be done for Test, ODI and T20 matches.

This package uses the statistics info available in ESPN Cricinfo Statsguru. The current version of this package can handle all formats of the game including Test, ODI and Twenty20 cricket.

You should be able to install the package using pip install cricpy. Please be mindful of ESPN Cricinfo Terms of Use

There are 5 functions which are used internally 1) getTeamData b) getTeamNumber c) getMatchType d) getTeamDataHomeAway e) cleanTeamData

and the external functions which a) teamWinLossStatusVsOpposition b) teamWinLossStatusAtGrounds c) plotTimelineofhttps://drive.google.com/file/d/1l4nQsRZ0C2FyPosigZmo0t-kC2xZZ_wl/view?usp=sharingWinsLosses

All the above functions are common to Test, ODI and T20 teams

The data for a particular Team can be obtained with the getTeamDataHomeAway() function from the package. This will return a dataframe of the team’s win/loss status at home and away venues over a period of time. This can be saved as a CSV file. Once this is done, you can use this CSV file for all subsequent analysis

This post has been published at Rpubs at teamAnalyticsCricpy You can download the PDF version of this post at teamAnalyticsCricpy

As before you can get the help for any of the cricpy functions as below

import cricpy.analytics as ca
help(ca.teamWinLossStatusAtGrounds)
## Help on function teamWinLossStatusAtGrounds in module cricpy.analytics:
## 
## teamWinLossStatusAtGrounds(file, teamName, opposition=['all'], homeOrAway=['all'], matchType='Test', plot=False)
##     Compute the wins/losses/draw/tied etc for a Team in Test, ODI or T20 at venues
##     
##     Description
##     
##     This function computes the won,lost,draw,tied or no result for a team against other teams in home/away or neutral venues and either returns a dataframe or plots it for grounds
##     
##     Usage
##     
##     teamWinLossStatusAtGrounds(file,teamName,opposition=["all"],homeOrAway=["all"],
##                   matchType="Test",plot=FALSE)
##     Arguments
##     
##     file        
##     The CSV file for which the plot is required
##     teamName    
##     The name of the team for which plot is required
##     opposition  
##     Opposition is a vector namely ["all")] or ["Australia", "India", "England"]
##     homeOrAway  
##     This parameter is a vector which is either ["all")] or a vector of venues ["home","away","neutral"]
##     matchType   
##     Match type - Test, ODI or T20
##     plot        
##     If plot=FALSE then a data frame is returned, If plot=TRUE then a plot is generated
##     Value
##     
##     None
##     
##     Note
##     
##     Maintainer: Tinniam V Ganesh tvganesh.85@gmail.com
##     
##     Author(s)
##     
##     Tinniam V Ganesh
##     
##     References
##     
##     http://www.espncricinfo.com/ci/content/stats/index.html
##     https://gigadom.in/
##     See Also
##     
##     teamWinLossStatusVsOpposition teamWinLossStatusAtGrounds plotTimelineofWinsLosses
##     
##     Examples
##     
##     ## Not run: 
##     #Get the team data for India for Tests
##     
##     df =getTeamDataHomeAway(teamName="India",file="indiaOD.csv",matchType="ODI")
##     ca.teamWinLossStatusAtGrounds("india.csv",teamName="India",opposition=c("Australia","England","India"),
##                               homeOrAway=c("home","away"),plot=TRUE)
##     
##     ## End(Not run)

1. Get team data

1a. Test

The teams in Test cricket are included below

  1. Afghanistan 2.Bangladesh 3. England 4. World 5. India 6. Ireland 7. New Zealand 8. Pakistan 9. South Africa 10.Sri Lanka 11. West Indies 12.Zimbabwe

You can use this for the teamName paramater. This will return a dataframe and also save the file as a CSV , if save=True

Note: – Since I have already got the data as CSV files I am not executing the lines below

import cricpy.analytics as ca
# Get the data for the teams. Save as CSV
#indiaTest= ca.getTeamDataHomeAway(dir=".",teamView="bat",matchType="Test",file="indiaTest.csv",save=True,teamName="India")
#ca.getTeamDataHomeAway(teamName="South Africa", matchType="Test", file="southafricaTest.csv", save=True)
#ca.getTeamDataHomeAway(teamName="West Indies", matchType="Test", file="westindiesTest.csv", save=True)
#newzealandTest = ca.getTeamDataHomeAway(matchType="Test",file="newzealandTest.csv",save=True,teamName="New Zealand")

1b. ODI

The ODI teams in the world are below. The data for these teams can be got by names as shown below

  1. Afghanistan 2. Africa XI 3. Asia XI 4.Australia 5.Bangladesh
  2. Bermuda 7. England 8. ICC World X1 9. India 11.Ireland 12. New Zealand 13. Pakistan       14. South Africa 15.Sri Lanka 17. West Indies 18. Zimbabwe 19 Canada    21. East Africa        22. Hong Kong 23.Ireland 24. Kenya 25. Namibia 26.Nepal 27.Netherlands 28. Oman 29.Papua New Guinea 30. Scotland 31 United Arab Emirates 32. United States of America
import cricpy.analytics as ca
#indiaODI=  ca.getTeamDataHomeAway(dir=".",matchType="ODI",file="indiaODI.csv",save=True,teamName="India")
#englandODI =  ca.getTeamDataHomeAway(matchType="ODI",file="englandODI.csv",save=True,teamName="England")
#westindiesODI = ca.getTeamDataHomeAway(matchType="ODI",file="westindiesODI.csv",save=True,teamName="West Indies")
#irelandODI <- ca.getTeamDataHomeAway(matchType="ODI",file="irelandODI.csv",save=True,teamName="Ireland")

1c T20

The T20 teams in the world are

  1. Afghanistan 2. Australia 3. Bahrain 4. Bangladesh 5. Belgium 6. Belize
  2. Bermuda 8.Botswana 9. Canada 11. Costa Rica 12. Germany 13. Ghana
  3. Guernsey 15. Hong Kong 16. ICC World X1 17.India 18. Ireland 19.Italy
  4. Jersey 21. Kenya 22.Kuwait 23.Maldives 24.Malta 25.Mexico 26.Namibia
    27.Nepal 28.Netherlands 29. New Zealand 30.Nigeria 31.Oman 32. Pakistan
    33.Panama 34.Papua New Guinea 35. Philippines 36.Qatar 37.Saudi Arabia
    38.Scotland 39.South Africa 40.Spain 41.Sri Lanka 42.Uganda 43.United Arab Emirates United States of America 44.Vanuatu 45.West Indies
import cricpy.analytics as ca
#southafricaT20 = ca.getTeamDataHomeAway(matchType="T20",file="southafricaT20.csv",save=True,teamName="South Africa")
#srilankaT20 = ca.getTeamDataHomeAway(matchType="T20",file="srilankaT20.csv",save=True,teamName="Sri Lanka")
#canadaT20 = ca.getTeamDataHomeAway(matchType="T20",file="canadaT20.csv",save=True,teamName="Canada")
#afghanistanT20 = ca.getTeamDataHomeAway(matchType="T20",file="afghanistanT20.csv",save=True,teamName="Afghanistan")

2 Analysis of Test matches

The functions below perform analysis of Test teams

2a. Wins vs Loss against opposition

This function performs analysis of Test teams against other teams at home/away or neutral venue. Note:- The opposition can be a list of opposition teams. Similarly homeOrAway can also be a list of home/away/neutral venues.

import cricpy.analytics as ca
# Get the performance of Indian test team against all teams at all venues as a dataframe
df =ca.teamWinLossStatusVsOpposition("indiaTest.csv",teamName="India",opposition=["all"], homeOrAway=["all"], matchType="Test", plot=False)
print(df)
## ha                   away  home
## Opposition   Result            
## Afghanistan  won      0.0   1.0
## Australia    draw    20.0  23.0
##              lost    58.0  26.0
##              tied     0.0   2.0
##              won     13.0  39.0
## Bangladesh   draw     3.0   0.0
##              won      9.0   2.0
## England      draw    35.0  48.0
##              lost    68.0  26.0
##              won     13.0  33.0
## New Zealand  draw    18.0  28.0
##              lost    16.0   4.0
##              won     10.0  28.0
## Pakistan     draw    29.0  34.0
##              lost    14.0  10.0
##              won      2.0  13.0
## South Africa draw    13.0   3.0
##              lost    20.0  10.0
##              won      6.0  15.0
## Sri Lanka    draw    11.0  14.0
##              lost    14.0   0.0
##              won     16.0  13.0
## West Indies  draw    39.0  35.0
##              lost    32.0  28.0
##              won     13.0  21.0
## Zimbabwe     draw     1.0   1.0
##              lost     4.0   0.0
##              won      5.0   6.0
# Plot the performance of Indian Test team  against all teams at all venues
ca.teamWinLossStatusVsOpposition("indiaTest.csv",teamName="India",opposition=["all"],homeOrAway=["all"],matchType="Test",plot=True)















# Get the performance of Australia against India, England and New Zealand at all venues in Tests
df =ca.teamWinLossStatusVsOpposition("southafricaTest.csv",teamName="South Africa",opposition=["India","England","New Zealand"],homeOrAway=["all"],matchType="Test",plot=False)
print(df)

#Plot the performance of Australia against England, India and New Zealand only at home (Australia) 
## ha                  away  home
## Opposition  Result            
## England     draw      43    55
##             lost      60    62
##             won       26    34
## India       draw       5    14
##             lost      16     6
##             won        7    19
## New Zealand draw      20     7
##             lost       2     6
##             won       14    29
ca.teamWinLossStatusVsOpposition("southafricaTest.csv",teamName="South Africa",opposition=["India","England","New Zealand"],homeOrAway=["home","away"],matchType="Test",plot=True)

 

2b Wins vs losses of Test teams against opposition at different venues

import cricpy.analytics as ca
# Get the  performance of Pakistan against India, West Indies, South Africa at all venues in Tests and show performances at the venues
df = ca.teamWinLossStatusAtGrounds("westindiesTest.csv",teamName="West Indies",opposition=["India","Sri Lanka","South Africa"],homeOrAway=["all"],matchType="Test",plot=False)
print(df)

# Plot the performance of New Zealand Test team against England, Sri Lanka and Bangladesh at all grounds playes 
## ha                         away  home
## Ground             Result            
## Ahmedabad          won      2.0   0.0
## Basseterre         draw     0.0   3.0
## Bengaluru          draw     2.0   0.0
##                    won      2.0   0.0
## Bridgetown         draw     0.0   6.0
##                    lost     0.0   6.0
##                    won      0.0  14.0
## Cape Town          draw     2.0   0.0
##                    lost     6.0   0.0
## Centurion          lost     6.0   0.0
## Chennai            draw     4.0   0.0
##                    lost     8.0   0.0
##                    won      3.0   0.0
## Colombo (PSS)      lost     2.0   0.0
## Colombo (RPS)      draw     2.0   0.0
## Colombo (SSC)      lost     4.0   0.0
## Delhi              draw     6.0   0.0
##                    lost     2.0   0.0
##                    won      3.0   0.0
## Durban             lost     6.0   0.0
## Galle              draw     1.0   0.0
##                    lost     4.0   0.0
## Georgetown         draw     0.0  10.0
## Gros Islet         draw     0.0   5.0
##                    lost     0.0   2.0
## Hyderabad (Deccan) lost     2.0   0.0
## Johannesburg       lost     4.0   0.0
## Kandy              lost     4.0   0.0
## Kanpur             draw     1.0   0.0
##                    won      3.0   0.0
## Kingston           draw     0.0   8.0
##                    lost     0.0   4.0
##                    won      0.0  15.0
## Kingstown          draw     0.0   2.0
## Kolkata            draw     7.0   0.0
##                    lost     6.0   0.0
##                    won      3.0   0.0
## Mohali             won      2.0   0.0
## Moratuwa           draw     1.0   0.0
## Mumbai             draw     7.0   0.0
##                    lost     6.0   0.0
##                    won      2.0   0.0
## Mumbai (BS)        draw     5.0   0.0
##                    won      2.0   0.0
## Nagpur             draw     2.0   0.0
## North Sound        lost     0.0   2.0
## Pallekele          draw     1.0   0.0
## Port Elizabeth     draw     1.0   0.0
##                    lost     2.0   0.0
##                    won      2.0   0.0
## Port of Spain      draw     0.0  12.0
##                    lost     0.0  12.0
##                    won      0.0  10.0
## Providence         lost     0.0   2.0
## Rajkot             lost     2.0   0.0
## Roseau             draw     0.0   2.0
## St John's          draw     0.0   6.0
##                    lost     0.0   2.0
##                    won      0.0   2.0
ca. teamWinLossStatusAtGrounds("newzealandTest.csv",teamName="New Zealand",opposition=["England","Sri Lanka","Bangladesh"],homeOrAway=["all"],matchType="Test",plot=True)

 

2c. Plot the time line of wins vs losses of Test teams against opposition at different venues during an interval

import cricpy.analytics as ca
# Plot the time line of wins/losses of India against Australia, West Indies, South Africa in away/neutral venues
#from 2000-01-01 to 2017-01-01
ca.plotTimelineofWinsLosses("indiaTest.csv",teamName="India",opposition=["Australia","West Indies","South Africa"],
                         homeOrAway=["away","neutral"], startDate="2000-01-01",endDate="2017-01-01")
#Plot the time line of wins/losses of Indian Test team from 1970 onwards

ca.plotTimelineofWinsLosses("indiaTest.csv",teamName="India",startDate="1970-01-01",endDate="2017-01-01")

3 ODI

The functions below perform analysis of ODI teams listed above

3a. Wins vs Loss against opposition ODI teams

This function performs analysis of ODI teams against other teams at home/away or neutral venue. Note:- The opposition can be a vector of opposition teams. Similarly homeOrAway can also be a vector of home/away/neutral venues.

import cricpy.analytics as ca
# Get the performance of West Indies in ODIs against all other ODI teams at all venues and retirn as a dataframe
df = ca.teamWinLossStatusVsOpposition("westindiesODI.csv",teamName="West Indies",opposition=["all"],homeOrAway=["all"],matchType="ODI",plot=False)
print(df)

# Plot the performance of West Indies in ODIs against Sri Lanka, India at all venues
## ha                   away  home  neutral
## Opposition   Result                     
## Afghanistan  lost     0.0   1.0      2.0
##              won      0.0   1.0      0.0
## Australia    lost    41.0  25.0      8.0
##              n/r      3.0   0.0      0.0
##              tied     1.0   2.0      0.0
##              won     35.0  18.0      7.0
## Bangladesh   lost     6.0   5.0      3.0
##              n/r      1.0   0.0      1.0
##              won     10.0   8.0      3.0
## Bermuda      won      0.0   0.0      1.0
## Canada       won      2.0   1.0      1.0
## England      lost    22.0  17.0     12.0
##              n/r      0.0   3.0      0.0
##              won     15.0  23.0      6.0
## India        lost    27.0  14.0     18.0
##              n/r      0.0   1.0      0.0
##              tied     1.0   0.0      1.0
##              won     27.0  20.0     15.0
## Ireland      lost     0.0   0.0      1.0
##              won      2.0   3.0      2.0
## Kenya        lost     0.0   0.0      1.0
##              won      3.0   0.0      2.0
## Netherlands  won      0.0   0.0      2.0
## New Zealand  lost    19.0   5.0      3.0
##              n/r      2.0   0.0      2.0
##              won     10.0  15.0      5.0
## P.N.G.       won      0.0   0.0      1.0
## Pakistan     lost    11.0  15.0     34.0
##              tied     1.0   2.0      0.0
##              won     14.0  16.0     41.0
## Scotland     won      0.0   0.0      3.0
## South Africa lost    20.0  17.0      7.0
##              n/r      1.0   0.0      0.0
##              tied     0.0   0.0      1.0
##              won      5.0   7.0      3.0
## Sri Lanka    lost     9.0   5.0     11.0
##              n/r      2.0   1.0      0.0
##              won      3.0   5.0     20.0
## U.A.E.       won      0.0   0.0      2.0
## Zimbabwe     lost     4.0   1.0      5.0
##              n/r      0.0   1.0      0.0
##              tied     1.0   0.0      0.0
##              won      9.0  15.0     12.0
ca.teamWinLossStatusVsOpposition("westindiesODI.csv",teamName="West Indies",opposition=["Sri Lanka", "India"],homeOrAway=["all"],matchType="ODI",plot=True)















#Plot the performance of Ireland in ODIs against Zimbabwe, Kenya, bermuda, UAE, Oman and Scotland at all venues
ca.teamWinLossStatusVsOpposition("irelandODI.csv",teamName="Ireland",opposition=["Zimbabwe","Kenya","Bermuda","U.A.E.","Oman","Scotland"],homeOrAway=["all"],matchType="ODI",plot=True)

 

3b Wins vs losses of ODI teams against opposition at different venues

import cricpy.analytics as ca
# Plot the performance of England ODI team against Bangladesh, West Indies and Australia at all venues
ca.teamWinLossStatusAtGrounds("englandODI.csv",teamName="England",opposition=["West Indies"],homeOrAway=["all"],matchType="ODI",plot=True)
























#Plot the performance of India against South Africa, West Indies and Australia at 'home' venues
ca.teamWinLossStatusAtGrounds("indiaODI.csv",teamName="India",opposition=["South Africa"],homeOrAway=["home"],matchType="ODI",plot=True)

 

3c. Plot the time line of wins vs losses of ODI teams against opposition at different venues during an interval


import cricpy.analytics as ca
#Plot the time line of wins/losses of Bangladesh ODI team between 2015 and 2019 against all other teams and at
# all venues
ca.plotTimelineofWinsLosses("bangladeshOD.csv",teamName="Bangladesh",startDate="2015-01-01",endDate="2019-01-01",matchType="ODI")























#Plot the time line of wins/losses of India ODI against Sri Lanka, Bangladesh from 2016 to 2019
ca.plotTimelineofWinsLosses("indiaODI.csv",teamName="India",opposition=["Sri Lanka","Bangladesh"],startDate="2016-01-01",endDate="2019-01-01",matchType="ODI")

 

4 Twenty 20

The functions below perform analysis of Twenty 20 teams listed above

4a. Wins vs Loss against opposition ODI teams

This function performs analysis of T20 teams against other T20 teams at home/away or neutral venue. Note:- The opposition can be a list of opposition teams. Similarly homeOrAway can also be a list of home/away/neutral venues.

import cricpy.analytics as ca
# Get the performance of South Africa T20 team against England, India and Sri Lanka at home grounds at England
df = ca.teamWinLossStatusVsOpposition("southafricaT20.csv",teamName="South Africa",opposition=["England","India","Sri Lanka"], homeOrAway=["home"], matchType="T20", plot=False)
print(df)

#Plot the performance of South Africa T20 against England, India and Sri Lanka at all venues
## ha                 home
## Opposition Result      
## England    lost       1
##            won        4
## India      lost       5
##            won        2
## Sri Lanka  lost       2
##            tied       1
##            won        3
ca.teamWinLossStatusVsOpposition("southafricaT20.csv",teamName="South Africa", opposition=["England","India","Sri Lanka"],homeOrAway=["all"],matchType="T20",plot=True)

























#Plot the performance of Afghanistan T20 teams against all oppositions

 

ca.teamWinLossStatusVsOpposition("afghanistanT20.csv",teamName="Afghanistan",opposition=["all"],homeOrAway=["all"],matchType="T20",plot=True)

 

4b Wins vs losses of T20 teams against opposition at different venues

# Compute the performance of Canada against all opposition at all venues and show by grounds. Return as dataframe
df =ca.teamWinLossStatusAtGrounds("canadaT20.csv",teamName="Canada",opposition=["all"],homeOrAway=["all"],matchType="T20",plot=False)
print(df)

# Plot the performance of Sri Lanka T20 team against India and Bangladesh in different venues at home/away and neutral
## ha                     home  neutral
## Ground         Result               
## Abu Dhabi      lost     0.0      1.0
## Belfast        lost     0.0      1.0
##                won      0.0      2.0
## Colombo (SSC)  lost     0.0      1.0
##                won      0.0      1.0
## Dubai (DSC)    lost     0.0      5.0
## ICCA Dubai     lost     0.0      2.0
##                won      0.0      1.0
## King City (NW) lost     3.0      0.0
##                tied     1.0      0.0
## Sharjah        lost     0.0      1.0
ca.teamWinLossStatusAtGrounds("srilankaT20.csv",teamName="Sri Lanka",opposition=["India", "Bangladesh"], homeOrAway=["all"], matchType="T20", plot=True)

 

4c. Plot the time line of wins vs losses of T20 teams against opposition at different venues during an interval

#Plot the time line of Sri Lanka T20 team agaibst all opposition
ca.plotTimelineofWinsLosses("srilankaT20.csv",teamName="Sri Lanka",opposition=["Australia", "Pakistan"], startDate="2013-01-01", endDate="2019-01-01",  matchType="T20")





















# Plot the time line of South Africa T20 between 2010 and 2015 against West Indies and Pakistan
ca.plotTimelineofWinsLosses("southafricaT20.csv",teamName="South Africa",opposition=["West Indies", "Pakistan"], startDate="2010-01-01", endDate="2015-01-01",  matchType="T20")

Conclusion

With the above additional functions cricpy can now analyze batsmen, bowlers and teams in all formats of the game (Test, ODI and T20).

Have fun with cricpy!!!

You may also like

  1. My book ‘Deep Learning from first principles:Second Edition’ now on Amazon
  2. Practical Machine Learning with R and Python – Part 3
  3. Big Data-4: Webserver log analysis with RDDs, Pyspark, SparkR and SparklyR
  4. Revisiting World Bank data analysis with WDI and gVisMotionChart
  5. The Clash of the Titans in Test and ODI cricket
  6. Simulating the domino effect in Android using Box2D and AndEngine
  7. Presentation on Wireless Technologies – Part 1 8.De-blurring revisited with Wiener filter using OpenCV
  8. Cloud Computing – Design Considerations

To see all posts click Index of posts