The thing about the Internet of Things

km

Published in Smart World Jan-Feb 2014, The thing about the Internet of Things

Introduction: It is now common knowledge that the world is becoming more connected, instrumented and data driven. In a world of 7 billion people we have almost 10 billion devices connected to the internet. A recent report from Cisco suggests that the number of connected devices will almost touch 50 billion by the year 2020.

This huge increase in the number connected devices will come largely from a couple of new technology trends namely Internet of Things (IoT), Smart grids etc.

What exactly is the Internet of Things?

The first formal definition of the Internet of Things happened when ITU-T the telecom wing of United Nations came with a report titled “The Internet of Things” in 2005. In this report ITU-T added a fourth dimension of ‘anything’ to the existing anyone, anywhere, anytime network. This report visualized a world where millions and millions of devices either passive, intelligent or sensors collected data from the environment and sent it through the network to a backend processing system.

In Mark Weiser’s classic words, “the most profound technologies are those that disappear and weave themselves into the fabric of everyday life until they are indistinguishable from it”. Embedded intelligence in the things themselves will further enhance the power of the network. IoT is just this vision of Mark Weiser.

This fourth dimension of ‘things’ or intelligent sensors give the ability to gather data from the environment which is then sent back through the wireless network to the internet for back end processing. Analysis of the gathered data helps in forecasting events ahead of the time.

The Internet of Things is also known as M2M or machine–to–machine computing, pervasive computing or ubiquitous computing.

The Maha Kumbh Mela experiment: Last year, 2013, coincided with the 12 year cycle of the Maha Kumbh mela festival. More than 100+ million people would have passed through the city of Allahabad for a holy dip in river Sangam at the confluence of Ganges & Yamuna. Almost 95% of this human mass would have carried mobile phones equipped with location sensors.  Harvard Business University with the help of mobile Telecom Operators ran an experiment to track the movement of people through the city of Allahabad to understand the behavior of people. It was  hoped that the study of this large amount of data, as people moved through the city, would help in identifying signatures of disaster and how they can be avoided.

This is possible because mobile phones have the ability to send their location data back to the net for processing. This is an example of the Internet of Things.

Some applications of the Internet of Things is outlined below

 

RFID or Radio Frequency Identification: RFID was one of the early enablers of this technology; The RFID is a passive device that responds with its identity when it is in the presence of a RFID receiver. The RFID receiver transmits a signal and a RFID tag responds with its unique tag id. The RFID technology has been used extensively by large retail stores like Walmart of US and Tesco of UK etc. These stores RFID tag all their products in the central warehouse. In the presence of an RFID receiver the RFID tags of all the products are read. So the warehouse has a complete list of its inventory. As the products move from the central warehouse to the regional warehouse and finally to the retail store the products are tracked. So the retail stores know exactly how many of each product is present in all its warehouses and stores. As customers buy products and check it out at the counter the count of the products in the store is also updated. So at any point in time each store will know the count of each of its products. So stores like Walmart can now forecast if there is a going o be a shortage of any of it products and can move some of them to the concerned store. In fact we can imagine a scenario where each shopping cart is equipped with a RFID receiver. As we keep putting products into our cart the cart can add each of the items we have taken so that we have the bill ready when we reach the counter. We need not scan the products at the check out counter.

Highway Tolls: An interesting application of IoT, is the payment of highway tools in which the vehicle do not need to stop to pay the toll. Toll is deducted from a device, with a driver, which is RFID tagged. There are also applications in which the tires of cars are embedded with sensors to detect the wear & tear of the tires. Insurance companies can use the driving data from these sensors to give discounts to safe drivers.

Car-to-car networks: Another certainty in the evolution of IoT is car-to-car networks. Vehicular Communication along with the Intelligent Transport Systems (ITS) achieves safety by enabling communication between vehicles, people and roads. Vehicle-to-vehicle communications are the fundamental building block of autonomous, self-driving cars. It enables the exchange of data between vehicles and allows automobiles to “see” and adapt to driving obstacles more completely, preventing accidents besides resulting in more efficient driving.

Intelligent homes:  Rapid advances in technology will be closer to the home both literally and figuratively. The future home will have the ability to detect the presence of people, pets, smoke and changes to humidity, moisture, lighting, temperature. Smart devices will monitor the environment and take appropriate steps to save energy, improve safety and enhance security of homes.  Devices will start learning your habits and enhance your comfort and convenience. Everything from thermostats, fire detectors, washing machines, refrigerators will be equipped electronics that will be capable of adapting to the environment. ‘Nest’ is a smart thermostat that made headlines recently. The thermostat learns your requirements and adjusts the temperature accordingly. All gadgets in the Smart Home will be accessible through laptops, tablets or smartphones from anywhere. Others gadgets in Intelligent Homes are smart locks, smart lighting etc. Hence, we will be able to monitor all aspects of our intelligent home from anywhere.

Intelligent offices: Smart devices will also make major inroads into offices leading to the birth of intelligent offices where the lighting, heating, cooling will be based on the presence of people in the offices. This will result in an enormous savings in energy. The advances in intelligent homes and intelligent offices will be in the greater context of the Smart Grid.

eHealth: IoT is being used by some hospitals for monitoring of heart patients Here a device is  implanted into the patient. The device regularly sends data to a doctor who can monitor the patient’s pulse rate, heart rate, blood pressure etc.  It can warn the physician when it detects an irregularity in the patient’s heart rhythm who can then call the patient and advice on appropriate medication to take avoiding a real cardiac arrest.

Smart Cities: How often we sit fretting and fuming in a traffic jam contributing to air pollution. Smart Cities are equipped with multiple devices that identify and measure traffic speed and volume on city roads. At the back end the systems analyze this continuous stream of real time and provide alternative routes based on predictive analytics based on real time and historical data. Studies have also shown that it is possible to control traffic by offering discounts to drivers on less crowded roads.

Smart Grid: The grid or the legacy electrical network has three components to it namely energy generation, energy transmission and energy distribution. The conventional electrical grid which is prevalent in most countries throughout the world has extremely high transmission losses besides having other issues. Typically an outage in one part of the network would cause a cascading effect throughout the network. Remember the infamous blackout in US in 2003 which was the largest black in US in history. More closer to home, in India, we had a blackout in Dec 2012 which was the largest black out ever. This is because of the domino effect where an issue causes a cascading effect. Closer to home we had the world’s biggest blackout in Jul 31 which left 600 million powerless for close to 2 days.

With the advent of Smart Grid the legacy electrical grid will have millions of electrical sensors which monitor the flow of energy. If there is a fault in any part of the network the sensors ensure that the failure is isolated so that outage does not spread to other parts.

Besides instead of the regular electrical meters Smart Grids include the concept of the Smart home equipped with smart meters. These smart meters have a two way communication. The price of energy which we get from the grid varies like the stock price. With the smart meters and smart appliances these appliances turn on when the price of drawing energy is low.

Wearable Technologies: he latest entrants to IoT are the wearable technology like Smart watches, Google Glass, Health bands. These technologies constantly monitor measure and send the data for processing to the backend.  For e.g. Google’s glass can immediately recognize prominent landmarks and display it. Similarly health bands like Fitbit, Nike FuelBand etc can now measure steps, heart rate and provide feedback.

Challenges: There are still many challenges on the way to a future filled with M2M. There is still no universally accepted protocol. There are many competing protocols like WiFi, Zigbee, MQPP, XMPP etc and there is yet to be a single common standard between devices and the networks for the Internet Of Things.

In any case, the Internet of Things or M2M is happening technology and will soon come into our neighborhood and we should all be pretty swamped by this tidal wave in our future

Find me on Google+

Tomorrow’s wireless ecosystem

The wireless networks of today had its humble beginnings in 1924 when the first mobile radio was demonstrated. It was many years since this beginning, that a completely functional cellular network was established. The earliest systems were the analog 1G system that was demonstrated in 1978 in US with great success. The initial mobile systems were primarily used for making mobile voice calls. This continued for the next 2 decades as the network evolved to digital based 2G systems.

 

It was around 1999-2000 that ETSI standardized GPRS or 2.5G technology to use the cellular network for data. Though the early data rates, of 144 kbps, were modest, the entry of GPRS proved to be a turning point in technological history. GPRS provided the triple benefits of wireless connectivity, mobility and internet access.  Technological advancement enabled faster and higher speeds of wireless, mobile access to the internet. The deployments of 3G enabled speeds of up to 2 Mbps for fixed access while LTE promised speeds of almost 56 Mbps per second coupled with excellent spectral efficiency.

 

The large increase of bandwidth along with mobility has allowed different technologies to take advantage of the wireless infrastructure for their purposes.  While Wi-Fi networks based on 802.11 and WiMAX based on 802.16 will play a part in the wireless ecosystem this post looks at the role that will be played by cellular networks from 2G to 4G.

 

The cellular network with its feature of wireless access, mobility and the ability to handle voice, video and data calls will be the host of multiple disparate technologies as we move forward into the future.  Below are listed some of the major users of the wireless network in the future

 

Mobile Phones:  The cellular network was created to handle voice calls originating from mobile phones. A large part of mobile traffic will still be for mobile to mobile calls. As the penetration of the cellular networks occurs in emerging economies we can expect that there will be considerable traffic from voice calls. It is likely that as the concept of IP Multimedia System (IMS) finds widespread acceptance the mobile phone will also be used for making video calls. With the advent of the Smartphone this is a distinct possibility in the future.

Smartphones, tablets and Laptops: These devices will be the next major users of the cellular network. Smartphones, besides being able to make calls, also allow for many new compelling data applications. Exciting apps on tablets like the iPad and laptops consume a lot of bandwidth and use the GPRS, 3G or LTE network for data transfer. In fact in a recent report it has been found that a majority of data traffic in the wireless network are video. Consumers use the iPad and the laptop for watching videos on Youtube and for browsing using the wireless network.

Internet of Things (IoT):  The internet of things, also known as M2M, envisages a network in which passive or intelligent devices are spread throughout the network and collect and transmit data to back end database. RFIDs were the early enablers of this technology. These sensors and intelligent devices will collect data and transmit the data using the wireless network. Applications for the Internet of Things range from devices that monitor and transmit data about the health of cardiac patients to being able to monitor the structural integrity of bridges.

Smart Grid: The energy industry is delicately poised for a complete transformation with the evolution of the smart grid concept. There is now an imminent need for an increased efficiency in power generation, transmission and distribution coupled with a reduction of energy losses. In this context many leading players in the energy industry are coming up with a connected end-to-end digital grid to smartly manage energy transmission and distribution.  The digital grid will have smart meters, sensors and other devices distributed throughout the grid capable of sensing, collecting, analyzing and distributing the data to devices that can take action on them. The huge volume of collected data will be sent to intelligent device which will use the wireless 3G networks to transmit the data.  Appropriate action like alternate routing and optimal energy distribution would then happen. The Smart Grid will be a major user of the cellular wireless network in the future.

Hence it can be seen the users of the wireless network will increase dramatically as we move forward into the future. Multiple technologies will compete for the available bandwidth. For handling this exponential growth in traffic we not only need faster speeds for the traffic but also sufficient spectrum available for use and it is necessary that ITU addresses the spectrum needs on a war footing.

It is thus clear that the telecom network will have to become more sophisticated and more technologically advanced as we move forward into the future.


Find me on Google+

The “Internet of things”

Published in The Hindu, Sep 22, 2010 by Tinniam V Ganesh – http://bit.ly/9Jlwx5

We are progressively moving towards a more connected world, using a variety of devices to connect to each other and to the Net. We are connected to the network through the mundane telephone, mobile phone, desktop, laptop or iPads. We use the devices for sending, receiving, communicating or for our entertainment. In 2005, the International Telecommunications Standardisation Sector (ITU-T), which coordinates standards for telecommunications on behalf of the International Telecommunication Union, came up with a seminal report, “The Internet of Things.” The report visualises a highly interconnected world made of tiny passive or intelligent devices that connect to large databases and to the “network of networks” or the Internet.

This ‘Internet of Things’ or M2M (machine-to-machine) network adds another dimension to the existing notions of networks. It envisages an anytime, anywhere, anyone, anything network bringing about a complete ubiquity to computing. In Mark Weiser’s classic words, “the most profound technologies are those that disappear and weave themselves into the fabric of everyday life until they are indistinguishable from it”. This will result in the metamorphosis of the network from a dumb pipe to intelligence at the edges. Embedded intelligence in the things themselves will further enhance the power of the network.

The portents of this highly revolutionary technology are already visible. The devices in this M2M network will be made up of passive elements, sensors and actuators that communicate with the network. Soon everyday articles from tyres to toasters will have these intelligent devices embedded in them.

RFID tags

Radio Frequency Identification (RFID) was the early and pivotal enabler of this technology, with a tiny tag responding in the presence of a receiver which emits a signal. Retailers keep track of the goods going out of warehouses to their stores with this technology.

In a typical scenario one can imagine a retail store in which all items are RFID tagged. A shopping cart fitted with a receiver can automatically track all items placed in the cart for immediate payment and check-out. Another interesting application is in the payment of highway tolls. Similarly, plans are already afoot for embedding intelligent devices in the tyres of automobiles. The devices will be used for measuring the tyre pressure, speed etc., and warn the drivers of low pressure or tyre wear and tear. The devices will send data to the network, which can be processed.

This technology is also well suited for insurance companies which can give discounts to safe drivers based on the data sent by these sensors. Other promising applications include an implantable device capable of remote monitoring of patients with heart problems. It can warn the physician when it detects an irregularity in the patient’s heart rhythm.

The ‘Internet of Things’ can also play an important role in monitoring the stress and the load on bridges and forewarn when the stress is too great and a collapse is imminent. In mines, the sensors can send real-time info on the toxicity of the air, the structural strength of the walls or the possibility of flooding.

The day is not far off when devices will connect to the Internet to monitor and control the environment, improving our daily lives and warning us of impending hazards.

Find me on Google+