Cricpy performs granular analysis of players

“Gold medals aren’t really made of gold. They’re made of sweat, determination, & a hard-to-find alloy called guts.” Dan Gable

“It doesn’t matter whether you are pursuing success in business, sports, the arts, or life in general: The bridge between wishing and accomplishing is discipline” Harvey Mackay

“I won’t predict anything historic. But nothing is impossible.” Michael Phelps

Introduction

In this post, I introduce 2 new functions in my Python package ‘cricpy’ (cricpy v0.20) see Introducing cricpy:A python package to analyze performances of cricketers which enable granular analysis of batsmen and bowlers. They are

  1. Step 1: getPlayerDataHA – This function is a wrapper around getPlayerData(), getPlayerDataOD() and getPlayerDataTT(), and adds an extra column ‘homeOrAway’ which says whether the match was played at home/away/neutral venues. A CSV file is created with this new column.
  2. Step 2: getPlayerDataOppnHA – This function allows you to slice & dice the data for batsmen and bowlers against specific oppositions, at home/away/neutral venues and between certain periods. This reducedsubset of data can be used to perform analyses. A CSV file is created as an output based on the parameters of opposition, home or away and the interval of time

Note All the existing cricpy functions can be used on this smaller fine-grained data set for a closer analysis of players

This post has been published in Rpubs and can be accessed at Cricpy performs granular analysis of players

You can download a PDF version of this post at Cricpy performs granular analysis of players

I have also updated the cricpy template with these lastest changes. See cricpy-template

1. Analyzing Rahul Dravid at 3 different stages of his career

The following functions analyze Rahul Dravid during 3 different periods of his illustrious career. a) 1st Jan 2001-1st Jan 2002 b) 1st Jan 2004-1st Jan 2005 c) 1st Jan 2009-1st Jan 2010

import cricpy.analytics as ca
# Get the homeOrAway dataset for Dravid in matches
# Note:Since I have already got the data I reuse the CSV file
#df=ca.getPlayerDataHA(28114,tfile="dravidTestHA.csv",matchType="Test")

# Get Dravid's data for 2001-02
df1=ca.getPlayerDataOppnHA(infile="dravidTestHA.csv",outfile="dravidTest2001.csv",startDate="2001-01-01",endDate="2002-01-01")

# Get Dravid's data for 2004-05
df2=ca.getPlayerDataOppnHA(infile="dravidTestHA.csv",outfile="dravidTest2004.csv", startDate="2004-01-01",endDate="2005-01-01")

# Get Dravid's data for 2009-10
df3=ca.getPlayerDataOppnHA(infile="dravidTestHA.csv",outfile="dravidTest2009.csv",startDate="2009-01-01",endDate="2010-01-01")

1a. Plot the performance of Dravid at venues during 2001,2004,2009

Note: Any of the cricpy functions can be used on the fine-grained subset of data as below.

import cricpy.analytics as ca
ca.batsmanAvgRunsGround("dravidTest2001.csv","Dravid-2001")

ca.batsmanAvgRunsGround("dravidTest2004.csv","Dravid-2004")

ca.batsmanAvgRunsGround("dravidTest2009.csv","Dravid-2009")


1b. Plot the performance of Dravid against different oppositions during 2001,2004,2009

import cricpy.analytics as ca
ca.batsmanAvgRunsOpposition("dravidTest2001.csv","Dravid-2001")

ca.batsmanAvgRunsOpposition("dravidTest2004.csv","Dravid-2004")


ca.batsmanAvgRunsOpposition("dravidTest2009.csv","Dravid-2009")


1c. Plot the relative cumulative average and relative strike rate of Dravid in 2001,2004,2009

The plot below compares Dravid’s cumulative strike rate and cumulative average during 3 different stages of his career

import cricpy.analytics as ca
frames=["dravidTest2001.csv","dravidTest2004.csv","dravidTest2009.csv"]
names=["Dravid-2001","Dravid-2004","Dravid-2009"]
ca.relativeBatsmanCumulativeAvgRuns(frames,names)

 

ca.relativeBatsmanCumulativeStrikeRate(frames,names)

2. Analyzing Virat Kohli’s performance against England in England in 2014 and 2018

The analysis below looks at Kohli’s performance against England in ‘away’ venues (England) in 2014 and 2018

import cricpy.analytics as ca
# Get the homeOrAway data for Kohli in Test matches
#df=ca.getPlayerDataHA(253802,tfile="kohliTestHA.csv",type="batting",matchType="Test")

# Get the homeOrAway data for Kohli in Test matches
df=ca.getPlayerDataHA(253802,tfile="kohliTestHA.csv",type="batting",matchType="Test")

# Get the subset if data of Kohli's performance against England in England in 2014
df=ca.getPlayerDataOppnHA(infile="kohliTestHA.csv",outfile="kohliTestEng2014.csv",  opposition=["England"],homeOrAway=["away"],startDate="2014-01-01",endDate="2015-01-01")

# Get the subset if data of Kohli's performance against England in England in 2018
df1=ca.getPlayerDataOppnHA(infile="kohliTestHA.csv",outfile="kohliTestEng2018.csv",
   opposition=["England"],homeOrAway=["away"],startDate="2018-01-01",endDate="2019-01-01")

2a. Kohli’s performance at England grounds in 2014 & 2018

Kohli had a miserable outing to England in 2014 with a string of low scores. In 2018 Kohli pulls himself out of the morass

import cricpy.analytics as ca
ca.batsmanAvgRunsGround("kohliTestEng2014.csv","Kohli-Eng-2014")
ca.batsmanAvgRunsGround("kohliTestEng2018.csv","Kohli-Eng-2018")


2a. Kohli’s cumulative average runs in 2014 & 2018

Kohli’s cumulative average runs in 2014 is in the low 15s, while in 2018 it is 70+. Kohli stamps his class back again and undoes the bad memories of 2014

import cricpy.analytics as ca
ca.batsmanCumulativeAverageRuns("kohliTestEng2014.csv", "Kohli-Eng-2014")

ca.batsmanCumulativeAverageRuns("kohliTestEng2018.csv", "Kohli-Eng-2018")

3a. Compare the performances of Ganguly, Dravid and VVS Laxman against opposition in ‘away’ matches in Tests

The analyses below compares the performances of Sourav Ganguly, Rahul Dravid and VVS Laxman against Australia, South Africa, and England in ‘away’ venues between 01 Jan 2002 to 01 Jan 2008

import cricpy.analytics as ca
#Get the HA data for Ganguly, Dravid and Laxman
#df=ca.getPlayerDataHA(28779,tfile="gangulyTestHA.csv",type="batting",matchType="Test")
#df=ca.getPlayerDataHA(28114,tfile="dravidTestHA.csv",type="batting",matchType="Test")
#df=ca.getPlayerDataHA(30750,tfile="laxmanTestHA.csv",type="batting",matchType="Test")

# Slice the data 
df=ca.getPlayerDataOppnHA(infile="gangulyTestHA.csv",outfile="gangulyTestAES2002-08.csv" ,opposition=["Australia", "England", "South Africa"],                        homeOrAway=["away"],startDate="2002-01-01",endDate="2008-01-01")
df=ca.getPlayerDataOppnHA(infile="dravidTestHA.csv",outfile="dravidTestAES2002-08.csv" ,opposition=["Australia", "England", "South Africa"],                        homeOrAway=["away"],startDate="2002-01-01",endDate="2008-01-01")
df=ca.getPlayerDataOppnHA(infile="laxmanTestHA.csv",outfile="laxmanTestAES2002-08.csv",opposition=["Australia", "England", "South Africa"],                       homeOrAway=["away"],startDate="2002-01-01",endDate="2008-01-01")

3b Plot the relative cumulative average runs and relative cumative strike rate

Plot the relative cumulative average runs and relative cumative strike rate of Ganguly, Dravid and Laxman

-Dravid towers over Laxman and Ganguly with respect to cumulative average runs. – Ganguly has a superior strike rate followed by Laxman and then Dravid

import cricpy.analytics as ca
frames=["gangulyTestAES2002-08.csv","dravidTestAES2002-08.csv","laxmanTestAES2002-08.csv"]
names=["GangulyAusEngSA2002-08","DravidAusEngSA2002-08","LaxmanAusEngSA2002-08"]
ca.relativeBatsmanCumulativeAvgRuns(frames,names)

ca.relativeBatsmanCumulativeStrikeRate(frames,names)

4. Compare the ODI performances of Rohit Sharma, Joe Root and Kane Williamson against opposition

Compare the performances of Rohit Sharma, Joe Root and Kane williamson in away & neutral venues against Australia, West Indies and Soouth Africa

  • Joe Root piles us the runs in about 15 matches. Rohit has played far more ODIs than the other two and averages a steady 35+
import cricpy.analytics as ca
# Get the ODI HA data for Rohit, Root and Williamson
#df=ca.getPlayerDataHA(34102,tfile="rohitODIHA.csv",type="batting",matchType="ODI")
#df=ca.getPlayerDataHA(303669,tfile="joerootODIHA.csv",type="batting",matchType="ODI")
#df=ca.getPlayerDataHA(277906,tfile="williamsonODIHA.csv",type="batting",matchType="ODI")

# Subset the data for specific opposition in away and neutral venues
## C:\Users\Ganesh\ANACON~1\lib\site-packages\statsmodels\compat\pandas.py:56: FutureWarning: The pandas.core.datetools module is deprecated and will be removed in a future version. Please use the pandas.tseries module instead.
##   from pandas.core import datetools
df=ca.getPlayerDataOppnHA(infile="rohitODIHA.csv",outfile="rohitODIAusWISA.csv"
                       ,opposition=["Australia", "West Indies", "South Africa"],
                      homeOrAway=["away","neutral"])
df=ca.getPlayerDataOppnHA(infile="joerootODIHA.csv",outfile="joerootODIAusWISA.csv"
                       ,opposition=["Australia", "West Indies", "South Africa"],
                       homeOrAway=["away","neutral"])
df=ca.getPlayerDataOppnHA(infile="williamsonODIHA.csv",outfile="williamsonODIAusWiSA.csv",opposition=["Australia", "West Indies", "South Africa"],                    homeOrAway=["away","neutral"])

4a. Compare cumulative strike rates and cumulative average runs of Rohit, Root and Williamson

The relative cumulative strike rate of all 3 are comparable

import cricpy.analytics as ca
frames=["rohitODIAusWISA.csv","joerootODIAusWISA.csv","williamsonODIAusWiSA.csv"]
names=["Rohit-ODI-AusWISA","Joe Root-ODI-AusWISA","Williamson-ODI-AusWISA"]
ca.relativeBatsmanCumulativeAvgRuns(frames,names)

ca.relativeBatsmanCumulativeStrikeRate(frames,names)

5. Plot the performance of Dhoni in T20s against specific opposition at all venues

Plot the performances of Dhoni against Australia, West Indies, South Africa and England

import cricpy.analytics as ca
# Get the HA T20 data for Dhoni
#df=ca.getPlayerDataHA(28081,tfile="dhoniT20HA.csv",type="batting",matchType="T20")
#Subset the data
df=ca.getPlayerDataOppnHA(infile="dhoniT20HA.csv",outfile="dhoniT20AusWISAEng.csv",opposition=["Australia", "West Indies", "South Africa","England"],                homeOrAway=["all"])

5a. Plot Dhoni’s performances in T20

Note You can use any of cricpy’s functions against the fine grained data

import cricpy.analytics as ca
ca.batsmanAvgRunsOpposition("dhoniT20AusWISAEng.csv","Dhoni")

ca.batsmanAvgRunsGround("dhoniT20AusWISAEng.csv","Dhoni")

ca.batsmanCumulativeStrikeRate("dhoniT20AusWISAEng.csv","Dhoni")

ca.batsmanCumulativeAverageRuns("dhoniT20AusWISAEng.csv","Dhoni")

6. Compute and performances of Anil Kumble, Muralitharan and Warne in ‘away’ test matches

Compute the performances of Kumble, Warne and Maralitharan against New Zealand, West Indies, South Africa and England in pitches that are not ‘home’ pithes

import cricpy.analytics as ca
# Get the bowling data for Kumble, Warne and Muralitharan in Test matches
#df=ca.getPlayerDataHA(30176,tfile="kumbleTestHA.csv",type="bowling",matchType="Test")
#df=ca.getPlayerDataHA(8166,tfile="warneTestHA.csv",type="bowling",matchType="Test")
#df=ca.getPlayerDataHA(49636,tfile="muraliTestHA.csv",type="bowling",matchType="Test")

# Subset the data
df=ca.getPlayerDataOppnHA(infile="kumbleTestHA.csv",outfile="kumbleTest-NZWISAEng.csv",opposition=["New Zealand", "West Indies", "South Africa","England"],
                       homeOrAway=["away"])

df=ca.getPlayerDataOppnHA(infile="warneTestHA.csv",outfile="warneTest-NZWISAEng.csv"
                       ,opposition=["New Zealand", "West Indies", "South Africa","England"], homeOrAway=["away"])

df=ca.getPlayerDataOppnHA(infile="muraliTestHA.csv",outfile="muraliTest-NZWISAEng.csv"
                       ,opposition=["New Zealand", "West Indies", "South Africa","England"], homeOrAway=["away"])

6a. Plot the average wickets of Kumble, Warne and Murali

import cricpy.analytics as ca
ca.bowlerAvgWktsOpposition("kumbleTest-NZWISAEng.csv","Kumble-NZWISAEng-AN")

ca.bowlerAvgWktsOpposition("warneTest-NZWISAEng.csv","Warne-NZWISAEng-AN")

ca.bowlerAvgWktsOpposition("muraliTest-NZWISAEng.csv","Murali-NZWISAEng-AN")

6b. Plot the average wickets in different grounds of Kumble, Warne and Murali

import cricpy.analytics as ca
ca.bowlerAvgWktsGround("kumbleTest-NZWISAEng.csv","Kumble")

ca.bowlerAvgWktsGround("warneTest-NZWISAEng.csv","Warne")

ca.bowlerAvgWktsGround("muraliTest-NZWISAEng.csv","Murali")

6c. Plot the cumulative average wickets and cumulative economy rate of Kumble, Warne and Murali

  • Murali has the best economy rate followed by Kumble and then Warne
  • Again Murali has the best cumulative average wickets followed by Warne and then Kumble
import cricpy.analytics as ca
frames=["kumbleTest-NZWISAEng.csv","warneTest-NZWISAEng.csv","muraliTest-NZWISAEng.csv"]
names=["Kumble","Warne","Murali"]
ca.relativeBowlerCumulativeAvgEconRate(frames,names)

ca.relativeBowlerCumulativeAvgWickets(frames,names)

7. Compute and plot the performances of Bumrah in 2016, 2017 and 2018 in ODIs

import cricpy.analytics as ca
# Get the HA data for Bumrah in ODI in bowling
#df=ca.getPlayerDataHA(625383,tfile="bumrahODIHA.csv",type="bowling",matchType="ODI")

# Slice the data for periods 2016, 2017 and 2018
df=ca.getPlayerDataOppnHA(infile="bumrahODIHA.csv",outfile="bumrahODI2016.csv",
                       startDate="2016-01-01",endDate="2017-01-01")

df=ca.getPlayerDataOppnHA(infile="bumrahODIHA.csv",outfile="bumrahODI2017.csv",
                       startDate="2017-01-01",endDate="2018-01-01")

df=ca.getPlayerDataOppnHA(infile="bumrahODIHA.csv",outfile="bumrahODI2018.csv",
                       startDate="2018-01-01",endDate="2019-01-01")

7a. Compute the performances of Bumrah in 2016, 2017 and 2018

  • Very clearly Bumrah is getting better at his art. His economy rate in 2018 is the best!!!
  • Bumrah has had a very prolific year in 2017. However all the years he seems to be quite effective
import cricpy.analytics as ca
frames=["bumrahODI2016.csv","bumrahODI2017.csv","bumrahODI2018.csv"]
names=["Bumrah-2016","Bumrah-2017","Bumrah-2018"]
ca.relativeBowlerCumulativeAvgEconRate(frames,names)

ca.relativeBowlerCumulativeAvgWickets(frames,names)

8. Compute and plot the performances of Shakib, Bumrah and Jadeja in T20 matches for bowling

import cricpy.analytics as ca
# Get the HA bowling data for Shakib, Bumrah and Jadeja
#df=ca.getPlayerDataHA(56143,tfile="shakibT20HA.csv",type="bowling",matchType="T20")
#df=ca.getPlayerDataHA(625383,tfile="bumrahT20HA.csv",type="bowling",matchType="T20")
#df=ca.getPlayerDataHA(234675,tfile="jadejaT20HA.csv",type="bowling",matchType="T20")

# Slice the data for performances against Sri Lanka, Australia, South Africa and England
df=ca.getPlayerDataOppnHA(infile="shakibT20HA.csv",outfile="shakibT20-SLAusSAEng.csv" ,opposition=["Sri Lanka","Australia", "South Africa","England"],
                       homeOrAway=["all"])
df=ca.getPlayerDataOppnHA(infile="bumrahT20HA.csv",outfile="bumrahT20-SLAusSAEng.csv",opposition=["Sri Lanka","Australia", "South Africa","England"],
                       homeOrAway=["all"])

df=ca.getPlayerDataOppnHA(infile="jadejaT20HA.csv",outfile="jadejaT20-SLAusSAEng.csv"                      ,opposition=["Sri Lanka","Australia", "South Africa","England"],   homeOrAway=["all"])

8a. Compare the relative performances of Shakib, Bumrah and Jadeja

  • Jadeja and Bumrah have comparable economy rates. Shakib is more expensive
  • Shakib pips Bumrah in number of cumulative wickets, though Bumrah is close behind
import cricpy.analytics as ca
frames=["shakibT20-SLAusSAEng.csv","bumrahT20-SLAusSAEng.csv","jadejaT20-SLAusSAEng.csv"]
names=["Shakib-SLAusSAEng","Bumrah-SLAusSAEng","Jadeja-SLAusSAEng"]
ca.relativeBowlerCumulativeAvgEconRate(frames,names)

ca.relativeBowlerCumulativeAvgWickets(frames,names)

Conclusion

By getting the homeOrAway data for players using the profileNo, you can slice and dice the data based on your choice of opposition, whether you want matches that were played at home/away/neutral venues. Finally by specifying the period for which the data has to be subsetted you can create fine grained analysis.

Hope you have a great time with cricpy!!!

Also see
1. My book ‘Cricket analytics with cricketr and cricpy’ is now on Amazon
2. The 3rd paperback & kindle editions of my books on Cricket, now on Amazon
3. Exploring Quantum Gate operations with QCSimulator
4. Deep Learning from first principles in Python, R and Octave – Part 6
5. Natural selection of database technology through the years
6. Pitching yorkpy … short of good length to IPL – Part 1
7. Using Linear Programming (LP) for optimizing bowling change or batting lineup in T20 cricket
8. Practical Machine Learning with R and Python – Part 3

To see all posts click Index of posts

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s