Technologies to watch: 2012 and beyond

Published in Telecom Asia – Technologies to watch:2012 and beyond

Published in Telecoms Europe – Hot technologies for 2012 and beyond

A keen observer of the technological firmament, today, will observe a grand spectacle of diverse technological events. Some technological trends will blaze a trail and will become trend setters while others will vanish without a trace. The factors that make certain technologies to endure in comparison to others could be many, ranging from pure necessity to a coolness factor, from innovativeness to a cost factor.  This article looks at some of the technologies that are certain to be trail blazers in the years to come

Software Defined Networks (SDNs):  Software Defined Networks (SDNs) are based on the path breaking paradigm of separating the control of a network flow from the actual flow of data. SDN is the result of pioneering effort by Stanford University and University of California, Berkeley and is based on the Open Flow Protocol and represents a paradigm shift to the way networking elements operate. Software Defined Networks (SDN) decouples the routing and switching of the data flows and moves the control of the flow to a separate network element namely, the Flow controller.   The motivation for this is that the flow of data packets through the network can be controlled in a programmatic manner. The OpenFlow Protocol has 3 components to it. The Flow Controller that controls the flows, the OpenFlow switch and the Flow Table and a secure connection between the Flow Controller and the OpenFlow switch. Software Define Networks (SDNs) also include the ability to virtualize the network resources. Virtualized network resources are known as a “network slice”. A slice can span several network elements including the network backbone, routers and hosts. The ability to control multiple traffic flows programmatically provides enormous flexibility and power in the hands of users.  SDNs are bound to be the networks elements of the future.

Smart Grids: The energy industry is delicately poised for a complete transformation with the evolution of the smart grid concept. There is now an imminent need for an increased efficiency in power generation, transmission and distribution coupled with a reduction of energy losses. In this context many leading players in the energy industry are coming up with a connected end-to-end digital grid to smartly manage energy transmission and distribution.  The digital grid will have smart meters, sensors and other devices distributed throughout the grid capable of sensing, collecting, analyzing and distributing the data to devices that can take action on them. The huge volume of collected data will be sent to intelligent device which will use the wireless 3G networks to transmit the data.  Appropriate action like alternate routing and optimal energy distribution would then happen. Smart Grids are a certainty given that this technology addresses the dire need of efficient energy management. Smart Grids besides managing energy efficiently also save costs by preventing inefficiency and energy losses.

The NoSQL Paradigm: In large web applications where performance and scalability are key concerns a non –relational database like NoSQL is a better choice to the more traditional relational databases. There are several examples of such databases – the more reputed are Google’s BigTable,   HBase, Amazon’s Dynamo, CouchDB  & MongoDB. These databases partition the data horizontally and distribute it among many regular commodity servers.  Accesses to the data are based on get(key) or set(key, value) type of APIs. Accesses to the data are based on a consistent hashing scheme for example the Distributed Hash Table (DHT) method. The ability to distribute data and the queries to one of several servers provides the key benefit of scalability. Clearly having a single database handling an enormous amount of transactions will result in performance degradation as the number of transaction increases. Applications that have to frequently access and manage petabytes of data will clearly have to move to the NoSQL paradigm of databases.

Near Field Communications (NFC): Near Field Communications (NFC) is a technology whose time has come. Mobile phones enabled with NFC technology can be used for a variety of purposes. One such purpose is integrating credit card functionality into mobile phones using NFC. Already the major players in mobile are integrating NFC into their newer versions of mobile phones including Apple’s iPhone, Google’s Android, and Nokia. We will never again have to carry in our wallets with a stack of credit cards. Our mobile phone will double up as a Visa, MasterCard, etc. NFC also allows retail stores to send promotional coupons to subscribers who are in the vicinity of the shopping mall. Posters or trailers of movies running in a theatre can be sent as multi-media clips when travelling near a movie hall. NFC also allows retail stores to send promotional coupons to subscribers who are  in the vicinity of the shopping mall besides allowing exchanging contact lists with friends when they are close proximity.

The Other Suspects: Besides the above we have other usual suspects

Long Term Evolution (LTE): LTE enables is latest wireless technology that enables wireless access speeds of up to 56 Mbps. With the burgeoning interest in tablets, smartphones with the countless apps LTE will be used heavily as we move along. For a vision of where telecom is headed, do read my post ‘The Future of Telecom“.

Cloud Computing: Cloud Computing is the other technology that is bound to gain momentum in the years ahead. Besides obviating the need for upfront capital expenditure the cloud enables quick and easy deployment of applications. Moreover the elasticity of the cloud will make it irresistible to large enterprises and corporations.

The above is a list of technologies to watch as create new paths and blaze new trails. All these technologies are bound to transform the world as we know it and make our lives easier, better and more comfortable. These are the technologies that we need to focus on as we move bravely into our future. Do read my post for the year 2011 “Technology Trends – 2011 and beyond

Find me on Google+

Mobile Smartphones – The New Swiss Knife

The humble mobile phone from its early avatar of enabling voice calls has now metamorphosed into a device which can perform multiple functions. The mobile smart phone is the new Swiss knife. From making voice calls, to watching video clips, from mobile TV to Location Based Services (LBS) the uses of the mobile phone are many.The mobile phone is both ubiquitous and almost indispensable to daily life. A look at some of key technologies which will still further the utility of the mobile phones are discussed below.

Mobile Banking : Bringing the bank to the mobile: Mobile banking is a trend that is just picking up. Mobile banking provides for the banking needs for the poor who have no access to banks and has a lot of potential for growth. Mobile banking refers to a method where the rural poor can make payments and do cash transactions through simple SMS text messages. Mobile banking is crucial in emerging markets where traditional banks are not viable. A recent McKinsey Report 2010 states that the though the number of mobile phones in emerging markets is in excess of 1 billion, only about 45 million use mobile money in the place of traditional banking. The report further states that opportunity in mobile banking is about 3 billion annually.

Mobile banking requires the interworking of telecom operators, application providers and cash agents for making this service a reality. Mobile banking can promote customer growth and reduce churn for service providers. Some success stories are M-Pesa in Keya and SmartMoney in Philippines. There is a tremendous opportunity for this application in countries like India and China and other emerging markets. In this application, the mobile phone helps the user to bank while on the move.

Near Field Communication (NFC) : Mobile phones enabled with NFC technology can be used for a variety of purposes. One such purpose is integrating credit card functionality into mobile phones using NFC. Already the major players in mobile are integrating NFC into their newer versions of mobile phones including Apple’s iPhone, Google’s Android, and Nokia. We will never again have to carry in our wallets with a stack of credit cards. Our mobile phone will double up as a Visa, MasterCard, etc. NFC also allows retail stores to send promotional coupons to subscribers who are  in the vicinity of the shopping mall.

E-Ticketing: With an application, our flight iternary, tickets or movie tickets will be sent to the mobile phone. E-Ticketing can also be used for train and bus rides and does away with the need to carry small change.

Some of the key applications envisaged for the mobile phone in the future has been discussed and many are already in use. The smartphone will not only be indispensable in future but will be omnipotent and omniscient.

Published in Technorati – Mobile Smartphones – The New Swiss Knife

Find me on Google+

The Future of Telecom

Published in Voice & Data – Bright Future

Introduction: The close of the 20th century will long be remembered for one thing. The dotcom bust followed by the downward spiral of many major telecom and technology companies. For those who believe in the theory of the 12 year economic cycle this downturn is right about to end and we should see good times soon. Even otherwise there is good news for those in the telecom domain. We could shortly be witness to golden years ahead. There are many signs that seem to indicate that the telecom industry is on the verge of many major breakthroughs. Technologies like LTE, IMS, smartphones, cloud computing point to interesting times ahead. In fact telecom is at a inflexion point when the fortunes seem to be pointed northward. This article looks at some of the promising technologies which are going to bring back the sunshine to telecom.

3G Technologies –Better Quality of Experience (QoE): The auction of the 3G spectrum ended after 131 days of hectic bidding for this cutting edge telecom technology. 3G promises a whole new customer experience backed by extremely high data speeds. 3G promises download speed of up to 2 Mbps for stationary subscribers and 384 Kbps for moving subscribers. It is very clear that such high data speeds will inspire a host of new and exciting applications. Applications that span location based services (LBS), m-Commerce and NFC communications will be simply be irresistible to the users. Moreover the ability to watch video clips or live action on mobile TV or on laptops enabled with 3G dongles will have a lot of takers for 3G technology. App stores for 3G are bound to do a roaring business as 3G takes off in India.

Smartphones – The game changers: In the last decade or so in the telecom industry no other invention has had such a disruptive effect in the telecom domain as smartphones. Smartphones like the IPhone, Droid or Nexus One have changed the rules of the game. The impact of smartphone has been so huge that it actually spawned an entire industry of developers who developed applications for smartphones, content developers and app stores. The irresistible appeal of smartphones is the ease of use and the ability to browse the net as though they were using a normal data connection.  Users can watch youtube clips, play games or chat on the Smartphone.

IP Multimedia Systems (IMS) – Digital Convergence:  IP Multimedia System (IMS) , based on 3GPP’s Release 5 Specification in 2005, has been in the wings for quite some time. The IMS envisions an access agnostic telecommunication architecture that will use an all-IP Core for the transport of medium be it voice, data or video. IMS uses SIP protocol for signaling between network elements and SDP for exchanging media between applications.  The IMS architecture promises a whole slew of exciting application ranging from high quality video conference, high speed data access, white boarding or real time interactive gaining.  IMS represents a true convergence of the telecom wireless concepts with the data communication protocols. The types of services that are possible with IMS will be only limited by imagination. With the entry of smartphones and tablet PCs, IMS is a technology that is waiting to happen and will soon become prime time

Long Term Evolution (LTE)Blazing Speeds: Already there are upward of 5 billion mobile devices and a report from Cisco states that the total data navigating the net will exceed ½ a zettabyte (1021) by the year 2013. The exponential growth of data and the need to provide even higher Quality of Experience (QoE) led to the development of the LTE. LTE is considered 4G technology. LTE promises speeds anywhere between to 56 Mbps to 100 Mbps to users enabling unheard of speeds and applications.  What makes  LTE so attractive is that it promises better spectral efficiency and lower cost per bit than 3G networks. The competing technology for LTE is WIMAX which is also considered as 4G. But LTE has a better evolution path from 3G networks as opposed to WiMAX, While LTE is a packet only network there are sound strategies for handling voice traffic with LTE.  The standards body 3GPP offers two options for handling voice. The first is the Circuit switched (CS) fallback to 2G/3G network. In this scenario data access will be through the packet network of LTE while voice calls will use legacy 2G/3G voice networks. The other alternative is the switch voice traffic to the IMS network with its all-IP Core. This method is supported by the One Voice initiative of many major telecom companies and accepted by GSMA.  This strategy for handling voice through an IMS network is known as VoLTE (Voice over LTE)

Internet of Things- Towards a connected World:  “The Internet of Things” visualizes a highly interconnected world made of tiny passive or intelligent devices that connect to large databases and to the internet. This technology promises to transform the network from a dumb-bit pipe to a truly “computing” network. The Internet of Things or M2M (machine-to-machine) envisages an anytime, anywhere, anyone, anything network. The devices in this M2M network will be made up of passive elements, sensors and intelligent devices that communicate with the network. The devices will be capable of sensing, identifying and responding to changes in the immediate environment. Radio Frequency Identification (RFIDs) is one of the early and key enabler of this technology. The uses for this technology range from warning when the structural integrity of bridges is compromised to implantable devices in heart patients warning doctors of possible heart attacks.  The impact of the Internet of Things will be far-reaching. There are numerous applications for this technology. In fact, ubiquitous computing or the Internet of Things allows us to distribute processing power and intelligence throughout the network into a kind of ambient intelligence spread across the network. This technology promises to blur the lines between science fiction and reality.

App StoresThe final verdict:  The success of App Stores in the last couple of years has been nothing short of phenomenal. It is a complete ecosystem with App Store Developers, App Stores, and the Content Developers and Service Providers.  Apps and App stores have changed the rules of the game so completely. No longer is a mobile phone’s snazzy looks enough for it to be a best seller.  The mobile should be supported by cool downloadable apps for the user to use.  App Stores and apps will play an increasingly important role with apps being developed for smartphones and tablet PCs.  There are bound to be several interesting apps spanning technologies like   Location Based Service (LBS), mobile Commerce, eTicketing, Near Field Communication

Cloud Computing – Utility computing: Cloud Computing has been around some but is slowly gaining more and more prominence. Cloud computing follows a utility model for computing where the cloud user only pays for the computing power and storage capacity used. Cloud computing not involve any upfront Capacity expenditure (Capex).  Users of public clouds like EC2, App Engine or Azure can pay according to the usage of the resources provided by the cloud. Cloud technologies allow the CSPs to purchase processing power, platforms, and databases almost like a utility like electricity or water.  The cloud exhibits an elastic behavior and expands to accommodate increasing demands and contracts when the demand drops. Cloud computing will be slowly be adopted by more and more organizations and enterprises in the years to come.

AnalyticsMining intelligence from data:  Nowadays organizations all over are faced with a deluge of data.  For raw data to be useful it has been analyzed, classified and important patterns determined from the data. This is where data mining and analytics come into play. Analytics uses statistical methods to classify data, determine correlations, identify patterns, and highlight and detect key trends among large data sets. Analytics enables industries to plumb the data sets through the process of selecting, exploring and modeling large amount of data to uncover previously unknown data patterns. The insights which analytics provides can be channelized to business advantage. Data mining and predictive analytics unlock the hidden secrets of data and help businesses make strategic decisions. Analytics is bound to become more common and will play a predominant role in all organizations in the years to come.

Internet TVHot off the net:  If IMS represents the convergence of Telecom and the internet, Internet TV represents the marriage of TV and the internet. Internet TV is a technology whose time has come. Internet TV will bring a whole new user experience by allowing the viewer to be view rich content on his TV in an interactive manner. The technology titans like Apple, Microsoft and Google  have their own version of this technology. Internet TV combines TV, the internet and apps for this new technology.  Internet TV is bound to become popular with complementary technologies like IMS, LTE allowing for high speed data exchange and the popularity of websites like Youtube etc. Internet TV will receive a further boost from apps of smartphones and tablet PCs

IPv4 exhaustion – Damocles’ sword: While the future holds the promise of many new technologies it is also going throw a lot of attendant challenges. One serious problem that will need serious attention in the not too distant future is the IPv4 address space exhaustion.  This problem may be even more serious than the Y2K problem. The issue is that IPv4 can address only 2 32 or 4.3 billion devices. Already the pool has been exhausted because of new technologies like IMS which uses an all IP Core and the Internet of things with more devices, sensors connected to the internet – each identified by an IP address. The solution to this problem has been addressed long back and requires that the Internet adopt IPv6 addressing scheme. IPv6 uses 128-bit long address and allows 3.4 x 1038 or 340 trillion, trillion, trillion unique addresses. However the conversion to IPv6 is not happening at the required pace and pretty soon will have to be adopted on war footing. It is clear that while the transition takes place, both IPv4 and IPv6 will co-exist so there will be an additional requirement of devices on the internet to be able to convert from one to another

Conclusion:

Technologies like IMS, LTE, and Internet TV have a lot of potential and hold a lot of promise.  We as human beings have a constant need for better, faster and cheaper technologies. We can expect a lot of changes to happen in the next couple of years. We may once see rosy times ahead for telecom as a whole

<
Find me on Google+