Cricketr learns new tricks : Performs fine-grained analysis of players

“He felt that his whole life was some kind of dream and he sometimes wondered whose it was and whether they were enjoying it.”

“The ships hung in the sky in much the same way that bricks don’t.”

“We demand rigidly defined areas of doubt and uncertainty!”

“For a moment, nothing happened. Then, after a second or so, nothing continued to happen.”

“The Answer to the Great Question… Of Life, the Universe and Everything… Is… Forty-two,’ said Deep Thought, with infinite majesty and calm.”

                 The Hitchhiker's Guide to the Galaxy - Douglas Adams

Introduction

In this post, I introduce 2 new functions in my R package ‘cricketr’ (cricketr v0.22) see Re-introducing cricketr! : An R package to analyze performances of cricketers which enable granular analysis of batsmen and bowlers. They are

  1. Step 1: getPlayerDataHA – This function is a wrapper around getPlayerData(), getPlayerDataOD() and getPlayerDataTT(), and adds an extra column ‘homeOrAway’ which says whether the match was played at home/away/neutral venues. A CSV file is created with this new column.
  2. Setp 2: getPlayerDataOppnHA – This function allows you to slice & dice the data for batsmen and bowlers against specific oppositions, at home/away/neutral venues and between certain periods. This reduced subset of data can be used to perform analyses. A CSV file is created as an output based on the parameters of opposition, home or away and the interval of time

Note All the existing cricketr functions can be used on this smaller fine-grained data set for a closer analysis of players

Note 1: You have to call the above functions only once. You can reuse the CSV files in other functions

Important note: Don’t go too fine-grained by choosing just one opposition, in one of home/away/neutral and for too short a period. Too small a dataset may defeat the purpose of the analysis!

This post has been published in Rpubs and can be accessed at Cricketr learns new tricks

You can download a PDF version of this post at Cricketr learns new tricks

If you are passionate about cricket, and love analyzing cricket performances, then check out my racy book on cricket ‘Cricket analytics with cricketr and cricpy – Analytics harmony with R & Python’! This book discusses and shows how to use my R package ‘cricketr’ and my Python package ‘cricpy’ to analyze batsmen and bowlers in all formats of the game (Test, ODI and T20). The paperback is available on Amazon at $21.99 and  the kindle version at $9.99/Rs 449/-. A must read for any cricket lover! Check it out!!

Untitled

1. Analyzing Tendulkar at 3 different stages of his career

The following functions analyze Sachin Tendulkar during 3 different periods of his illustrious career. a) 1st Jan 2001-1st Jan 2002 b) 1st Jan 2005-1st Jan 2006 c) 1st Jan 2012-1st Jan 2013

# Get the homeOrAway dataset for Tendulkar in matches
#Note: I have commented the lines to getPlayerDataHA() as I already have 
# CSV file
#df=getPlayerDataHA(35320,tfile="tendulkarTestHA.csv",matchType="Test")

# Get Tendulkar's data for 2001-02
df1=getPlayerDataOppnHA(infile="tendulkarHA.csv",outfile="tendulkarTest2001.csv",
                         startDate="2001-01-01",endDate="2002-01-01")

# Get Tendulkar's data for 2005-06
df2=getPlayerDataOppnHA(infile="tendulkarHA.csv",outfile="tendulkarTest2005.csv",

                                               startDate="2005-01-01",endDate="2006-01-01")

# Get Tendulkar's data for 20012-13
#df3=getPlayerDataOppnHA(infile="tendulkarHA.csv",outfile="tendulkarTest2012.csv",
#                        startDate="2012-01-01",endDate="2013-01-01")

`

1a Mean strike rate of Tendulkar in 2001,2005,2012

Note: Any of the cricketr R functions can be used on the fine-grained subset of data as below. The mean strike rate of Tendulkar is of the order of 60+ in 2001 which decreases to 50 and later to around 45

# Compute and plot mean strike rate of Tendulkar in the 3 periods
batsmanMeanStrikeRate ("./tendulkarTest2001.csv","Tendulkar-2001")

batsmanMeanStrikeRate ("./tendulkarTest2005.csv","Tendulkar-2005")

batsmanMeanStrikeRate ("./tendulkarTest2012.csv","Tendulkar-2012")

1b. Plot the performance of Tendulkar at venues during 2001,2005,2012

On an average Tendulkar score 60+ in 2001 and is really blazing. This performance decreases in 2005 and later in 2012

par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
batsmanAvgRunsGround("tendulkarTest2001.csv","Tendulkar-2001")
batsmanAvgRunsGround("tendulkarTest2005.csv","Tendulkar-2005")
batsmanAvgRunsGround("tendulkarTest2012.csv","Tendulkar-2012")

dev.off()

 

 

1c. Plot the performance of Tendulkar against different oppositions during 2001,2005,2012

Sachin uniformly scores 50+ against formidable oppositions in 2001. In 2005 this decreases to 40 in 2005 and in 2012 it is around 25

batsmanAvgRunsOpposition("tendulkarTest2001.csv","Tendulkar-2001")
batsmanAvgRunsOpposition("tendulkarTest2005.csv","Tendulkar-2005")

batsmanAvgRunsOpposition("tendulkarTest2012.csv","Tendulkar-2012")

1d. Plot the relative cumulative average and relative strike rate of Tendulkar in 2001,2005,2012

The plot below compares Tendulkar’s cumulative strike rate and cumulative average during 3 different stages of his career

  1. The cumulative average runs of Tendulkar is in the high 60+ in 2001, which drops to ~50 in 2005 and later plummets to the low 25s in 2012
  2. The strike rate in 2001 for Tendulkar is amazing 60+
frames=list("tendulkarTest2001.csv","tendulkarTest2005.csv","tendulkarTest2012.csv")
names=list("Tendulkar-2001","Tendulkar-2005","Tendulkar-2012")
relativeBatsmanCumulativeAvgRuns(frames,names)

relativeBatsmanCumulativeStrikeRate(frames,names)

2. Analyzing Virat Kohli’s performance against England in England in 2014 and 2018

The analysis below looks at Kohli’s performance against England in ‘away’ venues (England) in 2014 and 2018

# Get the homeOrAway data for Kohli in Test matches
#df=getPlayerDataHA(253802,tfile="kohliTestHA.csv",type="batting",matchType="Test")

# Get the subset if data of Kohli's performance against England in England in 2014
df=getPlayerDataOppnHA(infile="kohliTestHA.csv",outfile="kohliTestEng2014.csv",
   opposition=c("England"),homeOrAway=c("away"),startDate="2014-01-01",endDate="2015-01-01")

# Get the subset if data of Kohli's performance against England in England in 2018
df1=getPlayerDataOppnHA(infile="kohliHA.csv",outfile="kohliTestEng2018.csv",
   opposition=c("England"),homeOrAway=c("away"),startDate="2018-01-01",endDate="2019-01-01")

2a. Kohli’s performance at England grounds in 2014 & 2018

Kohli had a miserable outing to England in 2014 with a string of low scores. In 2018 Kohli pulls himself out of the morass

batsmanAvgRunsGround("kohliTestEng2014.csv","Kohli-Eng-2014")

batsmanAvgRunsGround("kohliTestEng2018.csv","Kohli-Eng-2018")

2a. Kohli’s cumulative average runs in 2014 & 2018

Kohli’s cumulative average runs in 2014 is in the low 15s, while in 2018 it is 70+. Kohli stamps his class back again and undoes the bad memories of 2014

batsmanCumulativeAverageRuns("kohliTestEng2014.csv", "Kohli-Eng-2014")

batsmanCumulativeAverageRuns("kohliTestEng2018.csv", "Kohli-Eng-2018")

3a. Compare the performances of Ganguly, Dravid and VVS Laxman against opposition in ‘away’ matches in Tests

The analyses below compares the performances of Sourav Ganguly, Rahul Dravid and VVS Laxman against Australia, South Africa, and England in ‘away’ venues between 01 Jan 2002 to 01 Jan 2008

#Get the HA data for Ganguly, Dravid and Laxman
#df=getPlayerDataHA(28779,tfile="gangulyTestHA.csv",type="batting",matchType="Test")
#df=getPlayerDataHA(28114,tfile="dravidTestHA.csv",type="batting",matchType="Test")
#df=getPlayerDataHA(30750,tfile="laxmanTestHA.csv",type="batting",matchType="Test")


# Slice the data 
df=getPlayerDataOppnHA(infile="gangulyTestHA.csv",outfile="gangulyTestAES2002-08.csv"
                       ,opposition=c("Australia", "England", "South Africa"),
                       homeOrAway=c("away"),startDate="2002-01-01",endDate="2008-01-01")


df=getPlayerDataOppnHA(infile="dravidTestHA.csv",outfile="dravidTestAES2002-08.csv"
                       ,opposition=c("Australia", "England", "South Africa"),
                       homeOrAway=c("away"),startDate="2002-01-01",endDate="2008-01-01")


df=getPlayerDataOppnHA(infile="laxmanTestHA.csv",outfile="laxmanTestAES2002-08.csv"
                       ,opposition=c("Australia", "England", "South Africa"),
                       homeOrAway=c("away"),startDate="2002-01-01",endDate="2008-01-01")

3b Plot the relative cumulative average runs and relative cumative strike rate

Plot the relative cumulative average runs and relative cumative strike rate of Ganguly, Dravid and Laxman

-Dravid towers over Laxman and Ganguly with respect to cumulative average runs. – Ganguly has a superior strike rate followed by Laxman and then Dravid

frames=list("gangulyTestAES2002-08.csv","dravidTestAES2002-08.csv","laxmanTestAES2002-08.csv")
names=list("GangulyAusEngSA2002-08","DravidAusEngSA2002-08","LaxmanAusEngSA2002-08")
relativeBatsmanCumulativeAvgRuns(frames,names)

relativeBatsmanCumulativeStrikeRate(frames,names)

4. Compare the ODI performances of Rohit Sharma, Joe Root and Kane Williamson against opposition

Compare the performances of Rohit Sharma, Joe Root and Kane williamson in away & neutral venues against Australia, West Indies and Soouth Africa

  • Joe Root piles us the runs in about 15 matches. Rohit has played far more ODIs than the other two and averages a steady 35+
# Get the ODI HA data for Rohit, Root and Williamson
#df=getPlayerDataHA(34102,tfile="rohitODIHA.csv",type="batting",matchType="ODI")
#df=getPlayerDataHA(303669,tfile="joerootODIHA.csv",type="batting",matchType="ODI")
#df=getPlayerDataHA(277906,tfile="williamsonODIHA.csv",type="batting",matchType="ODI")

# Subset the data for specific opposition in away and neutral venues
df=getPlayerDataOppnHA(infile="rohitODIHA.csv",outfile="rohitODIAusWISA.csv"
                       ,opposition=c("Australia", "West Indies", "South Africa"),
                      homeOrAway=c("away","neutral"))

df=getPlayerDataOppnHA(infile="joerootODIHA.csv",outfile="joerootODIAusWISA.csv"
                       ,opposition=c("Australia", "West Indies", "South Africa"),
                       homeOrAway=c("away","neutral"))

df=getPlayerDataOppnHA(infile="williamsonODIHA.csv",outfile="williamsonODIAusWiSA.csv"
                       ,opposition=c("Australia", "West Indies", "South Africa"),
                       homeOrAway=c("away","neutral"))

4a. Compare cumulative strike rates and cumulative average runs of Rohit, Root and Williamson

The relative cumulative strike rate of all 3 are comparable

frames=list("rohitODIAusWISA.csv","joerootODIAusWISA.csv","williamsonODIAusWiSA.csv")
names=list("Rohit-ODI-AusWISA","Joe Root-ODI-AusWISA","Williamson-ODI-AusWISA")
relativeBatsmanCumulativeAvgRuns(frames,names)

relativeBatsmanCumulativeStrikeRate(frames,names)

5. Plot the performance of Dhoni in T20s against specific opposition at all venues

Plot the performances of Dhoni against Australia, West Indies, South Africa and England

# Get the HA T20 data for Dhoni
#df=getPlayerDataHA(28081,tfile="dhoniT20HA.csv",type="batting",matchType="T20")

#Subset the data
df=getPlayerDataOppnHA(infile="dhoniT20HA.csv",outfile="dhoniT20AusWISAEng.csv"
                       ,opposition=c("Australia", "West Indies", "South Africa","England"),
                       homeOrAway=c("all"))

5a. Plot Dhoni’s performances in T20

Note You can use any of cricketr’s functions against the fine grained data

batsmanAvgRunsOpposition("dhoniT20AusWISAEng.csv","Dhoni")

batsmanAvgRunsGround("dhoniT20AusWISAEng.csv","Dhoni")

batsmanCumulativeStrikeRate("dhoniT20AusWISAEng.csv","Dhoni")

batsmanCumulativeAverageRuns("dhoniT20AusWISAEng.csv","Dhoni")

6. Compute and performances of Anil Kumble, Muralitharan and Warne in ‘away’ test matches

Compute the performances of Kumble, Warne and Maralitharan against New Zealand, West Indies, South Africa and England in pitches that are not ‘home’ pithes

# Get the bowling data for Kumble, Warne and Muralitharan in Test matches
#df=getPlayerDataHA(30176,tfile="kumbleTestHA.csv",type="bowling",matchType="Test")
#df=getPlayerDataHA(8166,tfile="warneTestHA.csv",type="bowling",matchType="Test")
#df=getPlayerDataHA(49636,tfile="muraliTestHA.csv",type="bowling",matchType="Test")


# Subset the data
df=getPlayerDataOppnHA(infile="kumbleTestHA.csv",outfile="kumbleTest-NZWISAEng.csv"
                       ,opposition=c("New Zealand", "West Indies", "South Africa","England"),
                       homeOrAway=c("away"))

df=getPlayerDataOppnHA(infile="warneTestHA.csv",outfile="warneTest-NZWISAEng.csv"
                       ,opposition=c("New Zealand", "West Indies", "South Africa","England"),
                       homeOrAway=c("away"))

df=getPlayerDataOppnHA(infile="muraliTestHA.csv",outfile="muraliTest-NZWISAEng.csv"
                       ,opposition=c("New Zealand", "West Indies", "South Africa","England"),
                       homeOrAway=c("away"))

6a. Plot the average wickets of Kumble, Warne and Murali

bowlerAvgWktsOpposition("kumbleTest-NZWISAEng.csv","Kumble-NZWISAEng-AN")

bowlerAvgWktsOpposition("warneTest-NZWISAEng.csv","Warne-NZWISAEng-AN")

bowlerAvgWktsOpposition("muraliTest-NZWISAEng.csv","Murali-NZWISAEng-AN")

6b. Plot the average wickets in different grounds of Kumble, Warne and Murali

bowlerAvgWktsGround("kumbleTest-NZWISAEng.csv","Kumblew")

bowlerAvgWktsGround("warneTest-NZWISAEng.csv","Warne")

bowlerAvgWktsGround("muraliTest-NZWISAEng.csv","murali")

6c. Plot the cumulative average wickets and cumulative economy rate of Kumble, Warne and Murali

  • Murali has the best economy rate followed by Kumble and then Warne
  • Again Murali has the best cumulative average wickets followed by Warne and then Kumble
frames=list("kumbleTest-NZWISAEng.csv","warneTest-NZWISAEng.csv","muraliTest-NZWISAEng.csv")
names=list("Kumble","Warne","Murali")
relativeBowlerCumulativeAvgEconRate(frames,names)

relativeBowlerCumulativeAvgWickets(frames,names)

7. Compute and plot the performances of Bumrah in 2016, 2017 and 2018 in ODIs

# Get the HA data for Bumrah in ODI in bowling
df=getPlayerDataHA(625383,tfile="bumrahODIHA.csv",type="bowling",matchType="ODI")
## [1] "Working..."
# Slice the data for periods 2016, 2017 and 2018
df=getPlayerDataOppnHA(infile="bumrahODIHA.csv",outfile="bumrahODI2016.csv",
                       startDate="2016-01-01",endDate="2017-01-01")

df=getPlayerDataOppnHA(infile="bumrahODIHA.csv",outfile="bumrahODI2017.csv",
                       startDate="2017-01-01",endDate="2018-01-01")

df=getPlayerDataOppnHA(infile="bumrahODIHA.csv",outfile="bumrahODI2018.csv",
                       startDate="2018-01-01",endDate="2019-01-01")

7a. Compute the performances of Bumrah in 2016, 2017 and 2018

  • Very clearly Bumrah is getting better at his art. His economy rate in 2018 is the best!!!
  • Bumrah has had a very prolific year in 2017. However all the years he seems to be quite effective
frames=list("bumrahODI2016.csv","bumrahODI2017.csv","bumrahODI2018.csv")
names=list("Bumrah-2016","Bumrah-2017","Bumrah-2018")
relativeBowlerCumulativeAvgEconRate(frames,names)

relativeBowlerCumulativeAvgWickets(frames,names)

8. Compute and plot the performances of Shakib, Bumrah and Jadeja in T20 matches for bowling

# Get the HA bowling data for Shakib, Bumrah and Jadeja
df=getPlayerDataHA(56143,tfile="shakibT20HA.csv",type="bowling",matchType="T20")
## [1] "Working..."
df=getPlayerDataHA(625383,tfile="bumrahT20HA.csv",type="bowling",matchType="T20")
## [1] "Working..."
df=getPlayerDataHA(234675,tfile="jadejaT20HA.csv",type="bowling",matchType="T20")
## [1] "Working..."
# Slice the data for performances against Sri Lanka, Australia, South Africa and England
df=getPlayerDataOppnHA(infile="shakibT20HA.csv",outfile="shakibT20-SLAusSAEng.csv"
                       ,opposition=c("Sri Lanka","Australia", "South Africa","England"),
                       homeOrAway=c("all"))
df=getPlayerDataOppnHA(infile="bumrahT20HA.csv",outfile="bumrahT20-SLAusSAEng.csv"
                       ,opposition=c("Sri Lanka","Australia", "South Africa","England"),
                       homeOrAway=c("all"))

df=getPlayerDataOppnHA(infile="jadejaT20HA.csv",outfile="jadejaT20-SLAusSAEng.csv"
                       ,opposition=c("Sri Lanka","Australia", "South Africa","England"),
                       homeOrAway=c("all"))

8a. Compare the relative performances of Shakib, Bumrah and Jadeja

  • Jadeja and Bumrah have comparable economy rates. Shakib is more expensive
  • Shakib pips Bumrah in number of cumulative wickets, though Bumrah is close behind
frames=list("shakibT20-SLAusSAEng.csv","bumrahT20-SLAusSAEng.csv","jadejaT20-SLAusSAEng.csv")
names=list("Shakib-SLAusSAEng","Bumrah-SLAusSAEng","Jadeja-SLAusSAEng")
relativeBowlerCumulativeAvgEconRate(frames,names)

relativeBowlerCumulativeAvgWickets(frames,names)

Conclusion

By getting the homeOrAway data for players using the profileNo, you can slice and dice the data based on your choice of opposition, whether you want matches that were played at home/away/neutral venues. Finally by specifying the period for which the data has to be subsetted you can create fine grained analysis.

Hope you have a great time with cricketr!!!

Also see

1. My book ‘Deep Learning from first principles:Second Edition’ now on Amazon
2. Cricpy takes a swing at the ODIs
3. My book ‘Practical Machine Learning in R and Python: Third edition’ on Amazon
4. Googly: An interactive app for analyzing IPL players, matches and teams using R package yorkr
5. Big Data-2: Move into the big league:Graduate from R to SparkR
6. Rock N’ Roll with Bluemix, Cloudant & NodeExpress
7. A method to crowd source pothole marking on (Indian) roads
8. De-blurring revisited with Wiener filter using OpenCV

To see all posts click Index of posts

My book ‘Cricket analytics with cricketr and cricpy’ is now on Amazon

‘Cricket analytics with cricketr and cricpy – Analytics harmony with R and Python’ is now available on Amazon in both paperback ($21.99) and kindle ($9.99/Rs 449) versions. The book includes analysis of cricketers using both my R package ‘cricketr’ and my python package ‘cricpy’ for all formats of the game namely Test, ODI and T20. Both packages use data from ESPN Cricinfo Statsguru. The paperback is available on Amazon for $21.99 and the kindle version is available for $9.99/Rs 449

Pick up your copy today!

The book includes the following chapters

CONTENTS

Introduction 7
1. Cricket analytics with cricketr 9
1.1. Introducing cricketr! : An R package to analyze performances of cricketers 10
1.2. Taking cricketr for a spin – Part 1 48
1.2. cricketr digs the Ashes! 69
1.3. cricketr plays the ODIs! 97
1.4. cricketr adapts to the Twenty20 International! 139
1.5. Sixer – R package cricketr’s new Shiny avatar 168
1.6. Re-introducing cricketr! : An R package to analyze performances of cricketers 178
1.7. cricketr sizes up legendary All-rounders of yesteryear 233
1.8. cricketr flexes new muscles: The final analysis 277
1.9. The Clash of the Titans in Test and ODI cricket 300
1.10. Analyzing performances of cricketers using cricketr template 338
2. Cricket analytics with cricpy 352
2.1 Introducing cricpy:A python package to analyze performances of cricketers 353
2.2 Cricpy takes a swing at the ODIs 405
Analysis of Top 4 batsman 448
2.3 Cricpy takes guard for the Twenty20s 449
2.4 Analyzing batsmen and bowlers with cricpy template 490
9. Average runs against different opposing teams 493
3. Other cricket posts in R 500
3.1 Analyzing cricket’s batting legends – Through the mirage with R 500
3.2 Mirror, mirror … the best batsman of them all? 527
4. Appendix 541
Cricket analysis with Machine Learning using Octave 541
4.1 Informed choices through Machine Learning – Analyzing Kohli, Tendulkar and Dravid 542
4.2 Informed choices through Machine Learning-2 Pitting together Kumble, Kapil, Chandra 555
Further reading 569
Important Links 570

Also see
1. My book “Deep Learning from first principles” now on Amazon
2. Practical Machine Learning with R and Python – Part 1
3. Revisiting World Bank data analysis with WDI and gVisMotionChart
4. Natural language processing: What would Shakespeare say?
5. Optimal Cloud Computing
6. Pitching yorkpy … short of good length to IPL – Part 1
7. Computer Vision: Ramblings on derivatives, histograms and contours

To see all posts click Index of posts

Analyzing batsmen and bowlers with cricpy template

Introduction

This post shows how you can analyze batsmen and bowlers of Test, ODI and T20s using cricpy templates, using data from ESPN Cricinfo.

The cricpy package

The data for a particular player can be obtained with the getPlayerData() function. To do you will need to go to ESPN CricInfo Player and type in the name of the player for e.g Rahul Dravid, Virat Kohli  etc. This will bring up a page which have the profile number for the player e.g. for Rahul Dravid this would be http://www.espncricinfo.com/india/content/player/28114.html. Hence, Dravid’s profile is 28114. This can be used to get the data for Rahul Dravid as shown below

1. For Test players use batting and bowling.
2. For ODI use batting and bowling
3. For T20 use T20 Batting T20 Bowling

Please mindful of the  ESPN Cricinfo Terms of Use

My posts on Cripy were
a. Introducing cricpy:A python package to analyze performances of cricketers
b. Cricpy takes a swing at the ODIs
c. Cricpy takes guard for the Twenty20s

You can clone/download this cricpy template for your own analysis of players. This can be done using RStudio or IPython notebooks from Github at cricpy-template. You can uncomment the functions and use them.

Cricpy can now analyze performances of teams in Test, ODI and T20 cricket see Cricpy adds team analytics to its arsenal!!

This post is also hosted on Rpubs at Int

The cricpy package is now available with pip install cricpy!!!

If you are passionate about cricket, and love analyzing cricket performances, then check out my racy book on cricket ‘Cricket analytics with cricketr and cricpy – Analytics harmony with R & Python’! This book discusses and shows how to use my R package ‘cricketr’ and my Python package ‘cricpy’ to analyze batsmen and bowlers in all formats of the game (Test, ODI and T20). The paperback is available on Amazon at $21.99 and  the kindle version at $9.99/Rs 449/-. A must read for any cricket lover! Check it out!!

Untitled

1 Importing cricpy – Python

# Install the package
# Do a pip install cricpy
# Import cricpy
import cricpy.analytics as ca 
## C:\Users\Ganesh\ANACON~1\lib\site-packages\statsmodels\compat\pandas.py:56: FutureWarning: The pandas.core.datetools module is deprecated and will be removed in a future version. Please use the pandas.tseries module instead.
##   from pandas.core import datetools

2. Invoking functions with Python package cricpy

import cricpy.analytics as ca 
#ca.batsman4s("aplayer.csv","A Player")

3. Getting help from cricpy – Python

import cricpy.analytics as ca
#help(ca.getPlayerData)

The details below will introduce the different functions that are available in cricpy.

4. Get the player data for a player using the function getPlayerData()

Important Note This needs to be done only once for a player. This function stores the player’s data in the specified CSV file (for e.g. dravid.csv as above) which can then be reused for all other functions). Once we have the data for the players many analyses can be done. This post will use the stored CSV file obtained with a prior getPlayerData for all subsequent analyses

4a. For Test players

import cricpy.analytics as ca
#player1 =ca.getPlayerData(profileNo1,dir="..",file="player1.csv",type="batting",homeOrAway=[1,2], result=[1,2,4])
#player1 =ca.getPlayerData(profileNo2,dir="..",file="player2.csv",type="batting",homeOrAway=[1,2], result=[1,2,4])

4b. For ODI players

import cricpy.analytics as ca
#player1 =ca.getPlayerDataOD(profileNo1,dir="..",file="player1.csv",type="batting")
#player1 =ca.getPlayerDataOD(profileNo2,dir="..",file="player2.csv",type="batting"")

4c For T20 players

import cricpy.analytics as ca
#player1 =ca.getPlayerDataTT(profileNo1,dir="..",file="player1.csv",type="batting")
#player1 =ca.getPlayerDataTT(profileNo2,dir="..",file="player2.csv",type="batting"")

5 A Player’s performance – Basic Analyses

The 3 plots below provide the following for Rahul Dravid

  1. Frequency percentage of runs in each run range over the whole career
  2. Mean Strike Rate for runs scored in the given range
  3. A histogram of runs frequency percentages in runs ranges
import cricpy.analytics as ca
import matplotlib.pyplot as plt
#ca.batsmanRunsFreqPerf("aplayer.csv","A Player")
#ca.batsmanMeanStrikeRate("aplayer.csv","A Player")
#ca.batsmanRunsRanges("aplayer.csv","A Player") 

6. More analyses

This gives details on the batsmen’s 4s, 6s and dismissals

import cricpy.analytics as ca
#ca.batsman4s("aplayer.csv","A Player")
#ca.batsman6s("aplayer.csv","A Player") 
#ca.batsmanDismissals("aplayer.csv","A Player")
# The below function is for ODI and T20 only
#ca.batsmanScoringRateODTT("./kohli.csv","Virat Kohli")  

7. 3D scatter plot and prediction plane

The plots below show the 3D scatter plot of Runs versus Balls Faced and Minutes at crease. A linear regression plane is then fitted between Runs and Balls Faced + Minutes at crease

import cricpy.analytics as ca
#ca.battingPerf3d("aplayer.csv","A Player")

8. Average runs at different venues

The plot below gives the average runs scored at different grounds. The plot also the number of innings at each ground as a label at x-axis.

import cricpy.analytics as ca
#ca.batsmanAvgRunsGround("aplayer.csv","A Player")

9. Average runs against different opposing teams

This plot computes the average runs scored against different countries.

import cricpy.analytics as ca
#ca.batsmanAvgRunsOpposition("aplayer.csv","A Player")

10. Highest Runs Likelihood

The plot below shows the Runs Likelihood for a batsman.

import cricpy.analytics as ca
#ca.batsmanRunsLikelihood("aplayer.csv","A Player")

11. A look at the Top 4 batsman

Choose any number of players

1.Player1 2.Player2 3.Player3 …

The following plots take a closer at their performances. The box plots show the median the 1st and 3rd quartile of the runs

12. Box Histogram Plot

This plot shows a combined boxplot of the Runs ranges and a histogram of the Runs Frequency

import cricpy.analytics as ca
#ca.batsmanPerfBoxHist("aplayer001.csv","A Player001")
#ca.batsmanPerfBoxHist("aplayer002.csv","A Player002")
#ca.batsmanPerfBoxHist("aplayer003.csv","A Player003")
#ca.batsmanPerfBoxHist("aplayer004.csv","A Player004")

13. Get Player Data special

import cricpy.analytics as ca
#player1sp = ca.getPlayerDataSp(profile1,tdir=".",tfile="player1sp.csv",ttype="batting")
#player2sp = ca.getPlayerDataSp(profile2,tdir=".",tfile="player2sp.csv",ttype="batting")
#player3sp = ca.getPlayerDataSp(profile3,tdir=".",tfile="player3sp.csv",ttype="batting")
#player4sp = ca.getPlayerDataSp(profile4,tdir=".",tfile="player4sp.csv",ttype="batting")

14. Contribution to won and lost matches

Note:This can only be used for Test matches

import cricpy.analytics as ca
#ca.batsmanContributionWonLost("player1sp.csv","A Player001")
#ca.batsmanContributionWonLost("player2sp.csv","A Player002")
#ca.batsmanContributionWonLost("player3sp.csv","A Player003")
#ca.batsmanContributionWonLost("player4sp.csv","A Player004")

15. Performance at home and overseas

Note:This can only be used for Test matches This function also requires the use of getPlayerDataSp() as shown above

import cricpy.analytics as ca
#ca.batsmanPerfHomeAway("player1sp.csv","A Player001")
#ca.batsmanPerfHomeAway("player2sp.csv","A Player002")
#ca.batsmanPerfHomeAway("player3sp.csv","A Player003")
#ca.batsmanPerfHomeAway("player4sp.csv","A Player004")

16 Moving Average of runs in career

import cricpy.analytics as ca
#ca.batsmanMovingAverage("aplayer001.csv","A Player001")
#ca.batsmanMovingAverage("aplayer002.csv","A Player002")
#ca.batsmanMovingAverage("aplayer003.csv","A Player003")
#ca.batsmanMovingAverage("aplayer004.csv","A Player004")

17 Cumulative Average runs of batsman in career

This function provides the cumulative average runs of the batsman over the career.

import cricpy.analytics as ca
#ca.batsmanCumulativeAverageRuns("aplayer001.csv","A Player001")
#ca.batsmanCumulativeAverageRuns("aplayer002.csv","A Player002")
#ca.batsmanCumulativeAverageRuns("aplayer003.csv","A Player003")
#ca.batsmanCumulativeAverageRuns("aplayer004.csv","A Player004")

18 Cumulative Average strike rate of batsman in career

.

import cricpy.analytics as ca
#ca.batsmanCumulativeStrikeRate("aplayer001.csv","A Player001")
#ca.batsmanCumulativeStrikeRate("aplayer002.csv","A Player002")
#ca.batsmanCumulativeStrikeRate("aplayer003.csv","A Player003")
#ca.batsmanCumulativeStrikeRate("aplayer004.csv","A Player004")

19 Future Runs forecast

import cricpy.analytics as ca
#ca.batsmanPerfForecast("aplayer001.csv","A Player001")

20 Relative Batsman Cumulative Average Runs

The plot below compares the Relative cumulative average runs of the batsman for each of the runs ranges of 10 and plots them.

import cricpy.analytics as ca
frames = ["aplayer1.csv","aplayer2.csv","aplayer3.csv","aplayer4.csv"]
names = ["A Player1","A Player2","A Player3","A Player4"]
#ca.relativeBatsmanCumulativeAvgRuns(frames,names)

21 Plot of 4s and 6s

import cricpy.analytics as ca
frames = ["aplayer1.csv","aplayer2.csv","aplayer3.csv","aplayer4.csv"]
names = ["A Player1","A Player2","A Player3","A Player4"]
#ca.batsman4s6s(frames,names)

22. Relative Batsman Strike Rate

The plot below gives the relative Runs Frequency Percetages for each 10 run bucket. The plot below show

import cricpy.analytics as ca
frames = ["aplayer1.csv","aplayer2.csv","aplayer3.csv","aplayer4.csv"]
names = ["A Player1","A Player2","A Player3","A Player4"]
#ca.relativeBatsmanCumulativeStrikeRate(frames,names)

23. 3D plot of Runs vs Balls Faced and Minutes at Crease

The plot is a scatter plot of Runs vs Balls faced and Minutes at Crease. A prediction plane is fitted

import cricpy.analytics as ca
#ca.battingPerf3d("aplayer001.csv","A Player001")
#ca.battingPerf3d("aplayer002.csv","A Player002")
#ca.battingPerf3d("aplayer003.csv","A Player003")
#ca.battingPerf3d("aplayer004.csv","A Player004")

24. Predicting Runs given Balls Faced and Minutes at Crease

A multi-variate regression plane is fitted between Runs and Balls faced +Minutes at crease.

import cricpy.analytics as ca
import numpy as np
import pandas as pd
BF = np.linspace( 10, 400,15)
Mins = np.linspace( 30,600,15)
newDF= pd.DataFrame({'BF':BF,'Mins':Mins})
#aplayer = ca.batsmanRunsPredict("aplayer.csv",newDF,"A Player")
#print(aplayer)

The fitted model is then used to predict the runs that the batsmen will score for a given Balls faced and Minutes at crease.

25 Analysis of Top 3 wicket takers

Take any number of bowlers from either Test, ODI or T20

  1. Bowler1
  2. Bowler2
  3. Bowler3 …

26. Get the bowler’s data (Test)

This plot below computes the percentage frequency of number of wickets taken for e.g 1 wicket x%, 2 wickets y% etc and plots them as a continuous line

import cricpy.analytics as ca
#abowler1 =ca.getPlayerData(profileNo1,dir=".",file="abowler1.csv",type="bowling",homeOrAway=[1,2], result=[1,2,4])
#abowler2 =ca.getPlayerData(profileNo2,dir=".",file="abowler2.csv",type="bowling",homeOrAway=[1,2], result=[1,2,4])
#abowler3 =ca.getPlayerData(profile3,dir=".",file="abowler3.csv",type="bowling",homeOrAway=[1,2], result=[1,2,4])

26b For ODI bowlers

import cricpy.analytics as ca
#abowler1 =ca.getPlayerDataOD(profileNo1,dir=".",file="abowler1.csv",type="bowling")
#abowler2 =ca.getPlayerDataOD(profileNo2,dir=".",file="abowler2.csv",type="bowling")
#abowler3 =ca.getPlayerDataOD(profile3,dir=".",file="abowler3.csv",type="bowling")

26c For T20 bowlers

import cricpy.analytics as ca
#abowler1 =ca.getPlayerDataTT(profileNo1,dir=".",file="abowler1.csv",type="bowling")
#abowler2 =ca.getPlayerDataTT(profileNo2,dir=".",file="abowler2.csv",type="bowling")
#abowler3 =ca.getPlayerDataTT(profile3,dir=".",file="abowler3.csv",type="bowling")

27. Wicket Frequency Plot

This plot below plots the frequency of wickets taken for each of the bowlers

import cricpy.analytics as ca
#ca.bowlerWktsFreqPercent("abowler1.csv","A Bowler1")
#ca.bowlerWktsFreqPercent("abowler2.csv","A Bowler2")
#ca.bowlerWktsFreqPercent("abowler3.csv","A Bowler3")

28. Wickets Runs plot

The plot below create a box plot showing the 1st and 3rd quartile of runs conceded versus the number of wickets taken

import cricpy.analytics as ca
#ca.bowlerWktsRunsPlot("abowler1.csv","A Bowler1")
#ca.bowlerWktsRunsPlot("abowler2.csv","A Bowler2")
#ca.bowlerWktsRunsPlot("abowler3.csv","A Bowler3")

29 Average wickets at different venues

The plot gives the average wickets taken bat different venues.

import cricpy.analytics as ca
#ca.bowlerAvgWktsGround("abowler1.csv","A Bowler1")
#ca.bowlerAvgWktsGround("abowler2.csv","A Bowler2")
#ca.bowlerAvgWktsGround("abowler3.csv","A Bowler3")

30 Average wickets against different opposition

The plot gives the average wickets taken against different countries.

import cricpy.analytics as ca
#ca.bowlerAvgWktsOpposition("abowler1.csv","A Bowler1")
#ca.bowlerAvgWktsOpposition("abowler2.csv","A Bowler2")
#ca.bowlerAvgWktsOpposition("abowler3.csv","A Bowler3")

31 Wickets taken moving average

import cricpy.analytics as ca
#ca.bowlerMovingAverage("abowler1.csv","A Bowler1")
#ca.bowlerMovingAverage("abowler2.csv","A Bowler2")
#ca.bowlerMovingAverage("abowler3.csv","A Bowler3")

32 Cumulative average wickets taken

The plots below give the cumulative average wickets taken by the bowlers.

import cricpy.analytics as ca
#ca.bowlerCumulativeAvgWickets("abowler1.csv","A Bowler1")
#ca.bowlerCumulativeAvgWickets("abowler2.csv","A Bowler2")
#ca.bowlerCumulativeAvgWickets("abowler3.csv","A Bowler3")

33 Cumulative average economy rate

The plots below give the cumulative average economy rate of the bowlers.

import cricpy.analytics as ca
#ca.bowlerCumulativeAvgEconRate("abowler1.csv","A Bowler1")
#ca.bowlerCumulativeAvgEconRate("abowler2.csv","A Bowler2")
#ca.bowlerCumulativeAvgEconRate("abowler3.csv","A Bowler3")

34 Future Wickets forecast

import cricpy.analytics as ca
#ca.bowlerPerfForecast("abowler1.csv","A bowler1")

35 Get player data special

import cricpy.analytics as ca
#abowler1sp =ca.getPlayerDataSp(profile1,tdir=".",tfile="abowler1sp.csv",ttype="bowling")
#abowler2sp =ca.getPlayerDataSp(profile2,tdir=".",tfile="abowler2sp.csv",ttype="bowling")
#abowler3sp =ca.getPlayerDataSp(profile3,tdir=".",tfile="abowler3sp.csv",ttype="bowling")

36 Contribution to matches won and lost

Note:This can be done only for Test cricketers

import cricpy.analytics as ca
#ca.bowlerContributionWonLost("abowler1sp.csv","A Bowler1")
#ca.bowlerContributionWonLost("abowler2sp.csv","A Bowler2")
#ca.bowlerContributionWonLost("abowler3sp.csv","A Bowler3")

37 Performance home and overseas

Note:This can be done only for Test cricketers

import cricpy.analytics as ca
#ca.bowlerPerfHomeAway("abowler1sp.csv","A Bowler1")
#ca.bowlerPerfHomeAway("abowler2sp.csv","A Bowler2")
#ca.bowlerPerfHomeAway("abowler3sp.csv","A Bowler3")

38 Relative cumulative average economy rate of bowlers

import cricpy.analytics as ca
frames = ["abowler1.csv","abowler2.csv","abowler3.csv"]
names = ["A Bowler1","A Bowler2","A Bowler3"]
#ca.relativeBowlerCumulativeAvgEconRate(frames,names)

39 Relative Economy Rate against wickets taken

import cricpy.analytics as ca
frames = ["abowler1.csv","abowler2.csv","abowler3.csv"]
names = ["A Bowler1","A Bowler2","A Bowler3"]
#ca.relativeBowlingER(frames,names)

40 Relative cumulative average wickets of bowlers in career

import cricpy.analytics as ca
frames = ["abowler1.csv","abowler2.csv","abowler3.csv"]
names = ["A Bowler1","A Bowler2","A Bowler3"]
#ca.relativeBowlerCumulativeAvgWickets(frames,names)

Clone/download this cricpy template for your own analysis of players. This can be done using RStudio or IPython notebooks from Github at cricpy-template

Important note: Do check out my other posts using cricpy at cricpy-posts

Key Findings

Analysis of Top 4 batsman

Analysis of Top 3 bowlers

You may also like
1. My book ‘Deep Learning from first principles:Second Edition’ now on Amazon
2. Presentation on ‘Evolution to LTE’
3. Stacks of protocol stacks – A primer
4. Taking baby steps in Lisp
5. Introducing cricket package yorkr: Part 1- Beaten by sheer pace!

To see all posts click Index of posts

Cricpy takes guard for the Twenty20s

There are two ways to write error-free programs; only the third one works.”” Alan J. Perlis

Programming today is a race between software engineers striving to build bigger and better idiot-proof programs, and the universe trying to produce bigger and better idiots. So far, the universe is winning. ” Rick Cook

My software never has bugs. It just develops random features.” Anon

If you make an ass out of yourself, there will always be someone to ride you.” Bruce Lee

Introduction

This is the 3rd and final post on cricpy, and is a continuation to my 2 earlier posts

1. Introducing cricpy:A python package to analyze performances of cricketers
2.Cricpy takes a swing at the ODIs

Cricpy, is the python avatar of my R package ‘cricketr’. To know more about my R package cricketr see Re-introducing cricketr! : An R package to analyze performances of cricketers

With this post  cricpy, like cricketr, now becomes omnipotent, and is now capable of handling Test, ODI and T20 matches.

Cricpy uses the statistics info available in ESPN Cricinfo Statsguru.

You should be able to install the package using pip install cricpy and use the many functions available in the package. Please mindful of the ESPN Cricinfo Terms of Use

Cricpy can now analyze performances of teams in Test, ODI and T20 cricket see Cricpy adds team analytics to its arsenal!!

This post is also hosted on Rpubs at Int

This post is also hosted on Rpubs at Cricpy takes guard for the Twenty 20s. You can also download the pdf version of this post at cricpy-TT.pdf

You can fork/clone the package at Github cricpy

Note: If you would like to do a similar analysis for a different set of batsman and bowlers, you can clone/download my skeleton cricpy-template from Github (which is the R Markdown file I have used for the analysis below). You will only need to make appropriate changes for the players you are interested in. The functions can be executed in RStudio or in a IPython notebook.

If you are passionate about cricket, and love analyzing cricket performances, then check out my racy book on cricket ‘Cricket analytics with cricketr and cricpy – Analytics harmony with R & Python’! This book discusses and shows how to use my R package ‘cricketr’ and my Python package ‘cricpy’ to analyze batsmen and bowlers in all formats of the game (Test, ODI and T20). The paperback is available on Amazon at $21.99 and  the kindle version at $9.99/Rs 449/-. A must read for any cricket lover! Check it out!!

Untitled

The cricpy package

The data for a particular player in Twenty20s can be obtained with the getPlayerDataTT() function. To do this you will need to go to T20 Batting and T20 Bowling and click the player you are interested in This will bring up a page which have the profile number for the player e.g. for Virat Kohli this would be http://www.espncricinfo.com/india/content/player/253802.html. Hence,this can be used to get the data for Virat Kohlias shown below

The cricpy package is a clone of my R package cricketr. The signature of all the python functions are identical with that of its clone ‘cricketr’, with only the necessary variations between Python and R. It may be useful to look at my post R vs Python: Different similarities and similar differences. In fact if you are familar with one of the languages you can look up the package in the other and you will notice the parallel constructs.

You can fork/clone the package at Github cricpy

Note: The charts are self-explanatory and I have not added much of my own interpretation to it. Do look at the plots closely and check out the performances for yourself.

1 Importing cricpy – Python

# Install the package
# Do a pip install cricpy
# Import cricpy
import cricpy.analytics as ca 

2. Invoking functions with Python package cricpy

import cricpy.analytics as ca 
ca.batsman4s("./kohli.csv","Virat Kohli")

3. Getting help from cricpy – Python

import cricpy.analytics as ca 
help(ca.getPlayerDataTT)
## Help on function getPlayerDataTT in module cricpy.analytics:
## 
## getPlayerDataTT(profile, opposition='', host='', dir='./data', file='player001.csv', type='batting', homeOrAway=[1, 2, 3], result=[1, 2, 3, 5], create=True)
##     Get the Twenty20 International player data from ESPN Cricinfo based on specific inputs and store in a file in a given directory~
##     
##     Description
##     
##     Get the Twenty20 player data given the profile of the batsman/bowler. The allowed inputs are home,away, neutralboth and won,lost,tied or no result of matches. The data is stored in a <player>.csv file in a directory specified. This function also returns a data frame of the player
##     
##     Usage
##     
##     getPlayerDataTT(profile, opposition="",host="",dir = "./data", file = "player001.csv", 
##     type = "batting", homeOrAway = c(1, 2, 3), result = c(1, 2, 3,5))
##     Arguments
##     
##     profile     
##     This is the profile number of the player to get data. This can be obtained from http://www.espncricinfo.com/ci/content/player/index.html. Type the name of the player and click search. This will display the details of the player. Make a note of the profile ID. For e.g For Virat Kohli this turns out to be 253802 http://www.espncricinfo.com/india/content/player/35263.html. Hence the profile for Sehwag is 35263
##     opposition  
##     The numerical value of the opposition country e.g.Australia,India, England etc. The values are Afghanistan:40,Australia:2,Bangladesh:25,England:1,Hong Kong:19,India:6,Ireland:29, New Zealand:5,Pakistan:7,Scotland:30,South Africa:3,Sri Lanka:8,United Arab Emirates:27, West Indies:4, Zimbabwe:9; Note: If no value is entered for opposition then all teams are considered
##     host        
##     The numerical value of the host country e.g.Australia,India, England etc. The values are Australia:2,Bangladesh:25,England:1,India:6,New Zealand:5, South Africa:3,Sri Lanka:8,United States of America:11,West Indies:4, Zimbabwe:9 Note: If no value is entered for host then all host countries are considered
##     dir 
##     Name of the directory to store the player data into. If not specified the data is stored in a default directory "./data". Default="./data"
##     file        
##     Name of the file to store the data into for e.g. kohli.csv. This can be used for subsequent functions. Default="player001.csv"
##     type        
##     type of data required. This can be "batting" or "bowling"
##     homeOrAway  
##     This is vector with either or all 1,2, 3. 1 is for home 2 is for away, 3 is for neutral venue
##     result      
##     This is a vector that can take values 1,2,3,5. 1 - won match 2- lost match 3-tied 5- no result
##     Details
##     
##     More details can be found in my short video tutorial in Youtube https://www.youtube.com/watch?v=q9uMPFVsXsI
##     
##     Value
##     
##     Returns the player's dataframe
##     
##     Note
##     
##     Maintainer: Tinniam V Ganesh <tvganesh.85@gmail.com>
##     
##     Author(s)
##     
##     Tinniam V Ganesh
##     
##     References
##     
##     http://www.espncricinfo.com/ci/content/stats/index.html
##     https://gigadom.wordpress.com/
##     
##     See Also
##     
##     bowlerWktRateTT getPlayerData
##     
##     Examples
##     
##     ## Not run: 
##     # Only away. Get data only for won and lost innings
##     kohli =getPlayerDataTT(253802,dir="../cricketr/data", file="kohli1.csv",
##     type="batting")
##     
##     # Get bowling data and store in file for future
##     ashwin = getPlayerDataTT(26421,dir="../cricketr/data",file="ashwin1.csv",
##     type="bowling")
##     
##     kohli =getPlayerDataTT(253802,opposition = 2,host=2,dir="../cricketr/data", 
##     file="kohli1.csv",type="batting")

The details below will introduce the different functions that are available in cricpy.

4. Get the Twenty20 player data for a player using the function getPlayerDataOD()

Important Note This needs to be done only once for a player. This function stores the player’s data in the specified CSV file (for e.g. kohli.csv as above) which can then be reused for all other functions). Once we have the data for the players many analyses can be done. This post will use the stored CSV file obtained with a prior getPlayerDataTT for all subsequent analyses

import cricpy.analytics as ca
#kohli=ca.getPlayerDataTT(253802,dir=".",file="kohli.csv",type="batting")
#guptill=ca.getPlayerDataTT(226492,dir=".",file="guptill.csv",type="batting")
#shahzad=ca.getPlayerDataTT(419873,dir=".",file="shahzad.csv",type="batting")
#mccullum=ca.getPlayerDataTT(37737,dir=".",file="mccullum.csv",type="batting")

Included below are some of the functions that can be used for ODI batsmen and bowlers. For this I have chosen, Virat Kohli, ‘the run machine’ who is on-track for breaking many of the Test, ODI and Twenty20 records

5 Virat Kohli’s performance – Basic Analyses

The 3 plots below provide the following for Virat Kohli in T20s

  1. Frequency percentage of runs in each run range over the whole career
  2. Mean Strike Rate for runs scored in the given range
  3. A histogram of runs frequency percentages in runs ranges
import cricpy.analytics as ca
import matplotlib.pyplot as plt
ca.batsmanRunsFreqPerf("./kohli.csv","Virat Kohli")

ca.batsmanMeanStrikeRate("./kohli.csv","Virat Kohli")

ca.batsmanRunsRanges("./kohli.csv","Virat Kohli")

6. More analyses

import cricpy.analytics as ca
ca.batsman4s("./kohli.csv","Virat Kohli")

ca.batsman6s("./kohli.csv","Virat Kohli")

ca.batsmanDismissals("./kohli.csv","Virat Kohli")

ca.batsmanScoringRateODTT("./kohli.csv","Virat Kohli")

7. 3D scatter plot and prediction plane

The plots below show the 3D scatter plot of Kohli’s Runs versus Balls Faced and Minutes at crease. A linear regression plane is then fitted between Runs and Balls Faced + Minutes at crease

import cricpy.analytics as ca
ca.battingPerf3d("./kohli.csv","Virat Kohli")

8. Average runs at different venues

The plot below gives the average runs scored by Kohli at different grounds. The plot also the number of innings at each ground as a label at x-axis.

import cricpy.analytics as ca
ca.batsmanAvgRunsGround("./kohli.csv","Virat Kohli")

9. Average runs against different opposing teams

This plot computes the average runs scored by Kohli against different countries.

import cricpy.analytics as ca
ca.batsmanAvgRunsOpposition("./kohli.csv","Virat Kohli")

10 . Highest Runs Likelihood

The plot below shows the Runs Likelihood for a batsman. For this the performance of Kohli is plotted as a 3D scatter plot with Runs versus Balls Faced + Minutes at crease. K-Means. The centroids of 3 clusters are computed and plotted. In this plot Kohli’s highest tendencies are computed and plotted using K-Means

import cricpy.analytics as ca
ca.batsmanRunsLikelihood("./kohli.csv","Virat Kohli")

11. A look at the Top 4 batsman – Kohli,  Guptill, Shahzad and McCullum

The following batsmen have been very prolific in Twenty20 cricket and will be used for the analyses

  1. Virat Kohli: Runs – 2167, Average:49.25 ,Strike rate-136.11
  2. MJ Guptill : Runs -2271, Average:34.4 ,Strike rate-132.88
  3. Mohammed Shahzad :Runs – 1936, Average:31.22 ,Strike rate-134.81
  4. BB McCullum : Runs – 2140, Average:35.66 ,Strike rate-136.21

The following plots take a closer at their performances. The box plots show the median the 1st and 3rd quartile of the runs

12. Box Histogram Plot

This plot shows a combined boxplot of the Runs ranges and a histogram of the Runs Frequency

import cricpy.analytics as ca
ca.batsmanPerfBoxHist("./kohli.csv","Virat Kohli")

ca.batsmanPerfBoxHist("./guptill.csv","M J Guptill")

ca.batsmanPerfBoxHist("./shahzad.csv","M Shahzad")

ca.batsmanPerfBoxHist("./mccullum.csv","BB McCullum")

13 Moving Average of runs in career

Take a look at the Moving Average across the career of the Top 4 Twenty20 batsmen.

import cricpy.analytics as ca
ca.batsmanMovingAverage("./kohli.csv","Virat Kohli")

ca.batsmanMovingAverage("./guptill.csv","M J Guptill")
#ca.batsmanMovingAverage("./shahzad.csv","M Shahzad") # Gives error. Check!

ca.batsmanMovingAverage("./mccullum.csv","BB McCullum")

14 Cumulative Average runs of batsman in career

This function provides the cumulative average runs of the batsman over the career.Kohli’s average tops around 45 runs around 43 innings, though there is a dip downwards

import cricpy.analytics as ca
ca.batsmanCumulativeAverageRuns("./kohli.csv","Virat Kohli")

ca.batsmanCumulativeAverageRuns("./guptill.csv","M J Guptill")

ca.batsmanCumulativeAverageRuns("./shahzad.csv","M Shahzad")

ca.batsmanCumulativeAverageRuns("./mccullum.csv","BB McCullum")

15 Cumulative Average strike rate of batsman in career

Kohli, Guptill and McCullum average a strike rate of 125+

import cricpy.analytics as ca
ca.batsmanCumulativeStrikeRate("./kohli.csv","Virat Kohli")

ca.batsmanCumulativeStrikeRate("./guptill.csv","M J Guptill")

ca.batsmanCumulativeStrikeRate("./shahzad.csv","M Shahzad")

ca.batsmanCumulativeStrikeRate("./mccullum.csv","BB McCullum")

16 Relative Batsman Cumulative Average Runs

The plot below compares the Relative cumulative average runs of the batsman. Kohli is way above all the other 3 batsmen. Behind Kohli is McCullum and then Guptill

import cricpy.analytics as ca
frames = ["./kohli.csv","./guptill.csv","./shahzad.csv","./mccullum.csv"]
names = ["Kohli","Guptill","Shahzad","McCullumn"]
ca.relativeBatsmanCumulativeAvgRuns(frames,names)

17. Relative Batsman Strike Rate

The plot below gives the relative Runs Frequency Percetages for each 10 run bucket. The plot below show that Kohli tops the overall strike rate followed by McCullum and then Guptill

import cricpy.analytics as ca
frames = ["./kohli.csv","./guptill.csv","./shahzad.csv","./mccullum.csv"]
names = ["Kohli","Guptill","Shahzad","McCullum"]
ca.relativeBatsmanCumulativeStrikeRate(frames,names)

18. 3D plot of Runs vs Balls Faced and Minutes at Crease

The plot is a scatter plot of Runs vs Balls faced and Minutes at Crease. A 3D prediction plane is fitted

import cricpy.analytics as ca
ca.battingPerf3d("./kohli.csv","Virat Kohli")

ca.battingPerf3d("./guptill.csv","M J Guptill")

ca.battingPerf3d("./shahzad.csv","M Shahzad")

ca.battingPerf3d("./mccullum.csv","BB McCullum")

19. 3D plot of Runs vs Balls Faced and Minutes at Crease

Guptill and McCullum have a large percentage of sixes in comparison to the 4s. Kohli has a relative lower number of 6s

import cricpy.analytics as ca
frames = ["./kohli.csv","./guptill.csv","./shahzad.csv","./mccullum.csv"]
names = ["Kohli","Guptill","Shahzad","McCullum"]
ca.batsman4s6s(frames,names)

20. Predicting Runs given Balls Faced and Minutes at Crease

A multi-variate regression plane is fitted between Runs and Balls faced +Minutes at crease.

import cricpy.analytics as ca
import numpy as np
import pandas as pd
BF = np.linspace( 10, 400,15)
Mins = np.linspace( 30,600,15)
newDF= pd.DataFrame({'BF':BF,'Mins':Mins})
kohli= ca.batsmanRunsPredict("./kohli.csv",newDF,"Kohli")
print(kohli)
##             BF        Mins        Runs
## 0    10.000000   30.000000   14.753153
## 1    37.857143   70.714286   55.963333
## 2    65.714286  111.428571   97.173513
## 3    93.571429  152.142857  138.383693
## 4   121.428571  192.857143  179.593873
## 5   149.285714  233.571429  220.804053
## 6   177.142857  274.285714  262.014233
## 7   205.000000  315.000000  303.224414
## 8   232.857143  355.714286  344.434594
## 9   260.714286  396.428571  385.644774
## 10  288.571429  437.142857  426.854954
## 11  316.428571  477.857143  468.065134
## 12  344.285714  518.571429  509.275314
## 13  372.142857  559.285714  550.485494
## 14  400.000000  600.000000  591.695674

21 Analysis of Top Bowlers

The following 4 bowlers have had an excellent career and will be used for the analysis

  1. Shakib Hasan:Wickets: 80, Average = 21.07, Economy Rate – 6.74
  2. Mohammed Nabi : Wickets: 67, Average = 24.25, Economy Rate – 7.13
  3. Rashid Khan: Wickets: 64, Average = 12.40, Economy Rate – 6.01
  4. Imran Tahir : Wickets:62, Average – 14.95, Economy Rate – 6.77

22. Get the bowler’s data

This plot below computes the percentage frequency of number of wickets taken for e.g 1 wicket x%, 2 wickets y% etc and plots them as a continuous line

import cricpy.analytics as ca
#shakib=ca.getPlayerDataTT(56143,dir=".",file="shakib.csv",type="bowling")
#nabi=ca.getPlayerDataOD(25913,dir=".",file="nabi.csv",type="bowling")
#rashid=ca.getPlayerDataOD(793463,dir=".",file="rashid.csv",type="bowling")
#tahir=ca.getPlayerDataOD(40618,dir=".",file="tahir.csv",type="bowling")

23. Wicket Frequency Plot

This plot below plots the frequency of wickets taken for each of the bowlers

import cricpy.analytics as ca
ca.bowlerWktsFreqPercent("./shakib.csv","Shakib Al Hasan")

ca.bowlerWktsFreqPercent("./nabi.csv","Mohammad Nabi")

ca.bowlerWktsFreqPercent("./rashid.csv","Rashid Khan")

ca.bowlerWktsFreqPercent("./tahir.csv","Imran Tahir")

24. Wickets Runs plot

The plot below create a box plot showing the 1st and 3rd quartile of runs conceded versus the number of wickets taken.

import cricpy.analytics as ca
ca.bowlerWktsRunsPlot("./shakib.csv","Shakib Al Hasan")

ca.bowlerWktsRunsPlot("./nabi.csv","Mohammad Nabi")

ca.bowlerWktsRunsPlot("./rashid.csv","Rashid Khan")

ca.bowlerWktsRunsPlot("./tahir.csv","Imran Tahir")

25 Average wickets at different venues

The plot gives the average wickets taken by Muralitharan at different venues.

import cricpy.analytics as ca
ca.bowlerAvgWktsGround("./shakib.csv","Shakib Al Hasan")

ca.bowlerAvgWktsGround("./nabi.csv","Mohammad Nabi")

ca.bowlerAvgWktsGround("./rashid.csv","Rashid Khan")

ca.bowlerAvgWktsGround("./tahir.csv","Imran Tahir")

26 Average wickets against different opposition

The plot gives the average wickets taken by Muralitharan against different countries. The x-axis also includes the number of innings against each team

import cricpy.analytics as ca
ca.bowlerAvgWktsOpposition("./shakib.csv","Shakib Al Hasan")

ca.bowlerAvgWktsOpposition("./nabi.csv","Mohammad Nabi")

ca.bowlerAvgWktsOpposition("./rashid.csv","Rashid Khan")

ca.bowlerAvgWktsOpposition("./tahir.csv","Imran Tahir")

27 Wickets taken moving average

From the plot below it can be see

import cricpy.analytics as ca
ca.bowlerMovingAverage("./shakib.csv","Shakib Al Hasan")

ca.bowlerMovingAverage("./nabi.csv","Mohammad Nabi")

ca.bowlerMovingAverage("./rashid.csv","Rashid Khan")

ca.bowlerMovingAverage("./tahir.csv","Imran Tahir")

28 Cumulative average wickets taken

The plots below give the cumulative average wickets taken by the bowlers. Rashid Khan has been the most effective with almost 2.28 wickets per match

import cricpy.analytics as ca
ca.bowlerCumulativeAvgWickets("./shakib.csv","Shakib Al Hasan")

ca.bowlerCumulativeAvgWickets("./nabi.csv","Mohammad Nabi")

ca.bowlerCumulativeAvgWickets("./rashid.csv","Rashid Khan")

ca.bowlerCumulativeAvgWickets("./tahir.csv","Imran Tahir")

29 Cumulative average economy rate

The plots below give the cumulative average economy rate of the bowlers. Rashid Khan has the nest economy rate followed by Mohammed Nabi

import cricpy.analytics as ca
ca.bowlerCumulativeAvgEconRate("./shakib.csv","Shakib Al Hasan")

ca.bowlerCumulativeAvgEconRate("./nabi.csv","Mohammad Nabi")

ca.bowlerCumulativeAvgEconRate("./rashid.csv","Rashid Khan")

ca.bowlerCumulativeAvgEconRate("./tahir.csv","Imran Tahir")

30 Relative cumulative average economy rate of bowlers

The Relative cumulative economy rate is given below. It can be seen that Rashid Khan has the best economy rate followed by Mohammed Nabi and then Imran Tahir

import cricpy.analytics as ca
frames = ["./shakib.csv","./nabi.csv","./rashid.csv","tahir.csv"]
names = ["Shakib Al Hasan","Mohammad Nabi","Rashid Khan", "Imran Tahir"]
ca.relativeBowlerCumulativeAvgEconRate(frames,names)

31 Relative Economy Rate against wickets taken

Rashid Khan has the best figures for wickets between 2-3.5 wickets. Mohammed Nabi pips Rashid Khan when takes a haul of 4 wickets.

import cricpy.analytics as ca
frames = ["./shakib.csv","./nabi.csv","./rashid.csv","tahir.csv"]
names = ["Shakib Al Hasan","Mohammad Nabi","Rashid Khan", "Imran Tahir"]
ca.relativeBowlingER(frames,names)

32 Relative cumulative average wickets of bowlers in career

Rashid has the best performance with cumulative average wickets. He is followed by Imran Tahir in the wicket haul, followed by Shakib Al Hasan

import cricpy.analytics as ca
frames = ["./shakib.csv","./nabi.csv","./rashid.csv","tahir.csv"]
names = ["Shakib Al Hasan","Mohammad Nabi","Rashid Khan", "Imran Tahir"]
ca.relativeBowlerCumulativeAvgWickets(frames,names)

33. Key Findings

The plots above capture some of the capabilities and features of my cricpy package. Feel free to install the package and try it out. Please do keep in mind ESPN Cricinfo’s Terms of Use.

Here are the main findings from the analysis above

Analysis of Top 4 batsman

The analysis of the Top 4 test batsman Kohli, Guptill, Shahzad and McCullum
1.Kohli has the best overall cumulative average runs and towers over everybody else
2. Kohli, Guptill and McCullum has a very good strike rate of around 125+
3. Guptill and McCullum have a larger percentage of sixes as compared to Kohli
4. Rashid Khan has the best cumulative average wickets, followed by Imran Tahir and then Shakib Al Hasan
5. Rashid Khan is the most economical bowler, followed by Mohammed Nabi

You can fork/clone the package at Github cricpy

Conclusion

Cricpy now has almost all the functions and functionalities of my R package cricketr. There are still a few more features that need to be added to cricpy. I intend to do this as and when I find time.

Go ahead, take cricpy for a spin! Hope you enjoy the ride!

Watch this space!!!

Important note: Do check out my other posts using cricpy at cricpy-posts

You may also like
1. A method for optimal bandwidth usage by auctioning available bandwidth using the OpenFlow protocol
2. Introducing QCSimulator: A 5-qubit quantum computing simulator in R
3. Dabbling with Wiener filter using OpenCV
4. Deep Learning from first principles in Python, R and Octave – Part 5
5. Latency, throughput implications for the Cloud
6. Bend it like Bluemix, MongoDB using Auto-scale – Part 1!
7. Sea shells on the seashore
8. Practical Machine Learning with R and Python – Part 4

To see all posts click Index of Posts

Inswinger: yorkr swings into International T20s

In this post I introduce ‘Inswinger’ an interactive Shiny app to analyze International T20 players, matches and teams. This app was a natural consequence to my earlier Shiny app ‘GooglyPlus’. Most of the structure for this app remained the same, I only had to work with a different dataset, so to speak.

The Googly Shiny app is based on my R package ‘yorkr’ which is now available in CRAN. The R package and hence this Shiny app is based on data from Cricsheet. Inswinger is based on the latest data dump from Cricsheet (Dec 2016) and includes all International T20 till then. There are a lot of new Internationation teams like Oman, Hong Kong, UAE, etc. In total there are 22 different International T20 teams in my Inswinger app.

The countries are a) Afghanistan b) Australia c) Bangladesh d) Bermuda e) Canada f) England g) Hong Kong h) India i) Ireland j) Kenya k) Nepal l) Netherlands m) New Zealand n) Oman o) Pakistan p) Papua New Guinea q) Scotland r) South Africa s) Sri Lanka t) United Arab Emirates u) West Indies v) Zimbabwe

If you are passionate about cricket, and love analyzing cricket performances, then check out my 2 racy books on cricket! In my books, I perform detailed yet compact analysis of performances of both batsmen, bowlers besides evaluating team & match performances in Tests , ODIs, T20s & IPL. You can buy my books on cricket from Amazon at $12.99 for the paperback and $4.99/$6.99 respectively for the kindle versions. The books can be accessed at Cricket analytics with cricketr  and Beaten by sheer pace-Cricket analytics with yorkr  A must read for any cricket lover! Check it out!!

1

 

My R package ‘yorkr’,  on which both these Shiny apps are based, has the ability to output either a dataframe or plot, depending on a parameter plot=TRUE or FALSE. Hence in the Inswinger Shiny app results can be displayed both as table or a plot depending on the choice of function.

Inswinger can do detailed analyses of a) Individual T20 batsman b) Individual T20 bowler c) Any T20 match d) Head to head confrontation between 2 T20 teams e) All matches of a T20 team against all other teams.

The Shiny app can be accessed at Inswinger

The code for Inswinger is available at Github. Feel free to clone/download/fork  the code from Inswinger

Based on the 5 detailed analysis domains there are 5 tabs
A) T20 Batsman: This tab can be used to perform analysis of all T20 batsman. If a batsman has played in more than 1 team, then the overall performance is considered. There are 10 functions for the T20 Batsman. They are shown below
– Batsman Runs vs. Deliveries
– Batsman’s Fours & Sixes
– Dismissals of batsman
– Batsman’s Runs vs Strike Rate
– Batsman’s Moving Average
– Batsman’s Cumulative Average Run
– Batsman’s Cumulative Strike Rate
– Batsman’s Runs against Opposition
– Batsman’s Runs at Venue
– Predict Runs of batsman

B) T20 Bowler: This tab can be used to analyze individual T20 bowlers. The functions handle T20 bowlers who have played in more than 1 T20 team.
– Mean Economy Rate of bowler
– Mean runs conceded by bowler
– Bowler’s Moving Average
– Bowler’s Cumulative Avg. Wickets
– Bowler’s Cumulative Avg. Economy Rate
– Bowler’s Wicket Plot
– Bowler’s Wickets against opposition
– Bowler’s Wickets at Venues
– Bowler’s wickets prediction

C) T20 match: This tab can be used for analyzing individual T20 matches. The available functions are
– Match Batting Scorecard – Table
– Batting Partnerships – Plot, Table
– Batsmen vs Bowlers – Plot, Table
– Match Bowling Scorecard   – Table
– Bowling Wicket Kind – Plot, Table
– Bowling Wicket Runs – Plot, Table
– Bowling Wicket Match – Plot, Table
– Bowler vs Batsmen – Plot, Table
– Match Worm Graph – Plot

D) Head to head: This tab can be used for analyzing head-to-head confrontations, between any 2 T20 teams for e.g. all matches between India vs Australia or West Indies vs Sri Lanka . The available functions are
-Team Batsmen Batting Partnerships All Matches – Plot, Table {Summary and Detailed}
-Team Batting Scorecard All Matches – Table
-Team Batsmen vs Bowlers all Matches – Plot, Table
-Team Wickets Opposition All Matches – Plot, Table
-Team Bowling Scorecard All Matches – Table
-Team Bowler vs Batsmen All Matches – Plot, Table
-Team Bowlers Wicket Kind All Matches – Plot, Table
-Team Bowler Wicket Runs All Matches – Plot, Table
– Win Loss All Matches – Plot

E) T20 team’s overall performance: this tab can be used analyze the overall performance of any T20 team. For this analysis all matches played by this team is considered. The available functions are
-Team Batsmen Partnerships Overall – Plot, Table {Summary and Detailed)}
-Team Batting Scorecard Overall –Table
-Team Batsmen vs Bowlers Overall – Plot, Table
-Team Bowler vs Batsmen Overall – Plot, Table
-Team Bowling Scorecard Overall – Table
-Team Bowler Wicket Kind Overall – Plot, Table

Below I include a random set of charts that are generated in each of the 5 tabs
A. IPL Batsman
a. Shakib-al-Hassan (Bangladesh) :  Runs vs Deliveries
untitled

b. Virat Kohli (India) – Cumulative Average
untitled

c.  AB Devilliers (South Africa) – Runs at venues
untitled

d. Glenn Maxwell (Australia)  – Predict runs vs deliveries faces
untitled

B. IPL Bowler
a. TG Southee (New Zealand) – Mean Economy Rate vs overs
untitled

b) DJ Bravo – Moving Average of wickets
untitled

c) AC Evans (Scotland) – Bowler Wickets Against Opposition
untitled

C.T20 Match
a. Match Score (Afghanistan vs Canada, 2012-03-18)
untitled

b)  Match batting partnerships (Plot) Hong Kong vs Oman (2015-11-21), Hong Kong
Hong Kong Partnerships
untitled

c) Match batting partnerships (Table) – Ireland vs Scotland(2012-03-18, Ireland)
Batting partnership can also be displayed as a table
untitled

d) Batsmen vs Bowlers (Plot) – India vs England (2012-12-22)
untitled

e) Match Worm Chart – Sri Lanka vs Pakistan (2015-08-01)
untitled

D.Head to head
a) Team Batsmen Partnership (Plot) – India vs Australia (all matches)
Virat Kohli has the highest total runs in partnerships against Australia
untitled

b)  Team Batsmen Partnership (Summary – Table) – Kenya vs Bangladesh
untitled

c) Team Bowling Scorecard (Table only) India vs South Africa all Matches
untitled

d) Wins- Losses New Zealand vs West Indies all Matches
untitled

C) Overall performances
a) Batting Scorecard All Matches  (Table only) – England’s overall batting performance
Eoin Morgan, Kevin Pieterson  & SJ Taylor have the best performance
untitled

b) Batsman vs Bowlers all Matches (Plot)
India’s best performing batsman (Rank=1) is Virat Kohli
untitled

c)  Batsman vs Bowlers all Matches (Table)
The plot above for Virat Kohli can also be displayed as a table. Kohli has score most runs DJ Bravo, SR Watson & Shahid Afridi
untitled

The Inswinger Shiny app can be accessed at Inswinger. Give it a swing!

The code for Inswinger is available at Github. Feel free to clone/download/fork  the code from Inswinger

Also see my other Shiny apps
1.GooglyPlus
2.What would Shakespeare say?
3.Sixer
4.Revisiting crimes against women in India

You may also like
1. Neural Networks: The mechanics of backpropagation
A primer on Qubits, Quantum gates and Quantum Operation
2. Re-working the Lucy Richardson algorithm in OpenCV
3.Design Principles of Scalable, Distributed Systems
4.Spicing up a IBM Bluemix cloud app with MongoDB and NodeExpress
5.Programming languages in layman’s language
7.Re-introducing cricketr! : An R package to analyze performances of cricketers

To see all posts take at a look at Index of Posts

yorkr ranks T20 batsmen and bowlers

Here is another short post which ranks T20 batsmen and bowlers. These are based on match data from Cricsheet. The ranking is done on

  1. average runs and average strike rate for batsmen and
  2. average wickets and average economy rate for bowlers.

If you are passionate about cricket, and love analyzing cricket performances, then check out my 2 racy books on cricket! In my books, I perform detailed yet compact analysis of performances of both batsmen, bowlers besides evaluating team & match performances in Tests , ODIs, T20s & IPL. You can buy my books on cricket from Amazon at $12.99 for the paperback and $4.99/$6.99 respectively for the kindle versions. The books can be accessed at Cricket analytics with cricketr  and Beaten by sheer pace-Cricket analytics with yorkr  A must read for any cricket lover! Check it out!!

1

.99/Rs 320 and $6.99/Rs448 respectively

 

This post has also been published in RPubs RankT20Players. You can download this as a pdf file at RankT20Players.pdf.

Checkout my interactive Shiny apps GooglyPlus (plots & tables) and Googly (only plots) which can be used to analyze IPL players, teams and matches.

You can take a look at the code at rankT20Players (available in yorkr_0.0.5)

rm(list=ls())
library(yorkr)
library(dplyr)
source("rankT20Batsmen.R")
source("rankT20Bowlers.R")

Rank T20 batsmen

Virat Kohli (Ind), Chris Gayle (WI) and Kevin Pietersen (Eng) top the T20 rankings. Virat Kohli stands tall among the batsmen with a average of 39.1935, followed by Chris Gayle who has an average of 32.69 and finally Kevin Pietersen.

Note: For T20 a cutoff of at least 30 matches played was chosen.

T20BatsmanRank <- rankT20Batsmen()
as.data.frame(T20BatsmanRank[1:30,])
##             batsman matches meanRuns   meanSR
## 1           V Kohli      31 39.19355 128.8371
## 2          CH Gayle      43 32.69767 119.6467
## 3      KP Pietersen      37 32.43243 138.6732
## 4     KS Williamson      31 32.25806 130.1255
## 5  Mohammad Shahzad      33 31.66667 115.4582
## 6       BB McCullum      69 30.98551 126.0610
## 7        MJ Guptill      54 30.83333 120.0669
## 8          AD Hales      37 30.75676 115.3511
## 9       H Masakadza      38 29.26316 109.6182
## 10         GC Smith      32 27.59375 114.1831
## 11        DA Warner      56 27.53571 123.2209
## 12        JP Duminy      58 26.84483 117.3952
## 13 DPMD Jayawardene      51 26.47059 112.4257
## 14        SR Watson      50 26.30000 118.9464
## 15    KC Sangakkara      52 26.23077 112.4665
## 16       TM Dilshan      66 26.18182 102.5683
## 17         SK Raina      43 25.90698 124.3044
## 18        RG Sharma      41 25.68293 123.3983
## 19        G Gambhir      36 25.66667 117.5764
## 20     Yuvraj Singh      41 25.12195 119.5846
## 21    Misbah-ul-Haq      32 25.09375 106.6762
## 22       EJG Morgan      52 24.71154 121.1462
## 23       MN Samuels      40 24.35000 105.8547
## 24       MEK Hussey      30 24.03333 129.1250
## 25    Ahmed Shehzad      41 23.82927 100.8805
## 26  Shakib Al Hasan      40 23.35000 109.3798
## 27          HM Amla      30 23.33333 111.2513
## 28         CL White      45 22.73333       NA
## 29      LMP Simmons      33 22.54545       NA
## 30       Umar Akmal      69 22.20290 108.3590

Rank T20 bowlers

The top 3 T20 bowlers are BAW Mendis (SL) Umar Gul (Pak) and Steyn(SA). R Ashwin is 13th. As with batsmen, a minimum of 30 matches played was taken into consideration.

T20BowlersRank <- rankT20Bowlers()
as.data.frame(T20BowlersRank[1:30,])
##             bowler matches meanWickets   meanER
## 1       BAW Mendis      36   1.6944444 6.581111
## 2         Umar Gul      57   1.5964912 7.306842
## 3         DW Steyn      38   1.5526316 6.407632
## 4      Saeed Ajmal      63   1.4920635 6.316190
## 5       SL Malinga      59   1.4576271 7.163898
## 6       TG Southee      37   1.4054054 8.840000
## 7       MG Johnson      30   1.4000000 7.080667
## 8         GP Swann      38   1.3947368 6.576842
## 9      JW Dernbach      33   1.3636364 8.550303
## 10        M Morkel      39   1.3333333 7.384872
## 11 Shakib Al Hasan      37   1.2972973 6.648649
## 12       SP Narine      32   1.2500000 5.757812
## 13        R Ashwin      33   1.2424242 7.247273
## 14 KMDN Kulasekara      42   1.2380952 6.938095
## 15       SCJ Broad      55   1.2363636 7.832182
## 16      WD Parnell      34   1.2058824 8.227941
## 17        KD Mills      41   1.1951220 8.077317
## 18      DL Vettori      34   1.1470588 5.708235
## 19   Shahid Afridi      85   1.1294118 6.748000
## 20       SR Watson      44   1.1136364 8.015227
## 21   Sohail Tanvir      48   1.1041667 7.354167
## 22   Sohail Tanvir      48   1.1041667 7.354167
## 23     NL McCullum      56   1.0535714 7.246964
## 24     NLTC Perera      34   1.0294118 8.916471
## 25         J Botha      39   1.0256410 6.647436
## 26        DJ Bravo      45   1.0222222 8.630000
## 27   Mohammad Nabi      32   0.9687500 7.208437
## 28       DJG Sammy      55   0.8909091 7.899818
## 29 Mohammad Hafeez      56   0.8392857 6.996964
## 30      AD Mathews      44   0.7954545 6.827727

Conclusion

Conclusion

As expected Virat Kohli stands head and shoulders above the rest. Hamid Hasan and Mohammed Shami figuring the top T20 bowlers was a bit of a surprise to me.

Important note: Do check out my other posts using yorkr at yorkr-posts

Watch this space!

  1. Introducing cricket package yorkr-Part1:Beaten by sheer pace!.
  2. yorkr pads up for the Twenty20s: Part 1- Analyzing team“s match performance.
  3. yorkr crashes the IPL party !Part 1
  4. Introducing cricketr! : An R package to analyze performances of cricketers
  5. Cricket analytics with cricketr in paperback and Kindle versions