# De-blurring revisited with Wiener filter using OpenCV

In this post I continue to experiment with the de-blurring of images using the Wiener filter. For details on the Wiener filter, please look at my earlier post “Dabbling with Wiener filter using OpenCV”.  Thanks to Egli Simon, Switzerland for pointing out a bug in the earlier post which I have now fixed.  The Wiener filter attempts to de-blur by assuming that the source signal is convolved with a blur kernel in the presence of noise.   I have also included the blur kernel as estimated by E. Simon in the code. I am including the de-blurring with 3 different blur kernel radii and different values for the Wiener constant K.  While the de-blurring is still a long way off there is some success.

One of the reasons I have assumed a non-blind blur kernel and try to de-convolve with that. The Wiener filter tries to minimize the Mean Square Error (MSE)  which can be expressed as
e(f) = E[X(f) – X1(f)]^2                                – (1)

where e(f) is the Mean Square Error(MSE) in the frequency domain, X(f) is the original image and X1(f) is the estimated signal which we get by de-convolving the Wiener filter with the observed blurred image i.e. and E[] is the expectation

X1(f) = G(f) * Y(f)                                        -(2)
where G(f) is the Wiener de-convolution filter and Y(f) is the observed blurred image
Substituting (2) in (1) we get
e(f) = E[X(f) – G(f) *Y(f)]^2

If the above equation is solved we can effectively remove the blur.
Feel free to post comments, opinions or ideas.

Watch this space …
I will be back! Hasta la Vista!

Note: You can clone the code below from Git Hib – Another implementation of Weiner filter in OpenCV

The complete code is included below and should work as is

/*
============================================================================
Name : deblur_wiener.c
Author : Tinniam V Ganesh & Egli Simon
Version :
Description : Implementation of Wiener filter in OpenCV
============================================================================
*/

#include <stdio.h>
#include <stdlib.h>
#include “cxcore.h”
#include “cv.h”
#include “highgui.h”

#define kappa 10.0

int main(int argc, char ** argv)
{
int height,width,step,channels,depth;
uchar* data1;

CvMat *dft_A;
CvMat *dft_B;

CvMat *dft_C;
IplImage* im;
IplImage* im1;

IplImage* image_ReB;
IplImage* image_ImB;

IplImage* image_ReC;
IplImage* image_ImC;
IplImage* complex_ImC;
CvScalar val;

IplImage* k_image_hdr;
int i,j,k;
char str[80];
FILE *fp;
fp = fopen(“test.txt”,”w+”);

int dft_M,dft_N;
int dft_M1,dft_N1;

CvMat* cvShowDFT1(IplImage*, int, int,char*);
void cvShowInvDFT1(IplImage*, CvMat*, int, int,char*);

cvNamedWindow(“Original-color”, 0);
cvShowImage(“Original-color”, im1);
if( !im )
return -1;

cvNamedWindow(“Original-gray”, 0);
cvShowImage(“Original-gray”, im);

// Create a random noise matrix
fp = fopen(“test.txt”,”w+”);
int val_noise[357*383];
for(i=0; i <im->height;i++){
for(j=0;j<im->width;j++){
fprintf(fp, “%d “,(383*i+j));
val_noise[383*i+j] = rand() % 128;
}
fprintf(fp, “\n”);
}

CvMat noise = cvMat(im->height,im->width, CV_8UC1,val_noise);

// Add the random noise matric to the image

cvNamedWindow(“Original + Noise”, 0);
cvShowImage(“Original + Noise”, im);

cvSmooth( im, im, CV_GAUSSIAN, 7, 7, 0.5, 0.5 );
cvNamedWindow(“Gaussian Smooth”, 0);
cvShowImage(“Gaussian Smooth”, im);

// Create a blur kernel
IplImage* k_image;

printf(“rowlength %d\n”,rowLength);
float kernels[rowLength*rowLength];
printf(“rowl: %i”,rowLength);
int norm=0; //Normalization factor
int x,y;
CvMat kernel;
for(x = 0; x < rowLength; x++)
for (y = 0; y < rowLength; y++)
norm++;
// Populate matrix
for (y = 0; y < rowLength; y++) //populate array with values
{
for (x = 0; x < rowLength; x++) {
//kernels[y * rowLength + x] = 255;
kernels[y * rowLength + x] =1.0/norm;
printf(“%f “,1.0/norm);
}
else{
kernels[y * rowLength + x] =0;
}
}
}

/*for (i=0; i < rowLength; i++){
for(j=0;j < rowLength;j++){
printf(“%f “, kernels[i*rowLength +j]);
}
}*/

kernel= cvMat(rowLength, // number of rows
rowLength, // number of columns
CV_32FC1, // matrix data type
&kernels);
k_image = cvGetImage(&kernel,k_image_hdr);

height = k_image->height;
width = k_image->width;
step = k_image->widthStep/sizeof(float);
depth = k_image->depth;

channels = k_image->nChannels;
//data1 = (float *)(k_image->imageData);
data1 = (uchar *)(k_image->imageData);
cvNamedWindow(“blur kernel”, 0);
cvShowImage(“blur kernel”, k_image);

dft_M = cvGetOptimalDFTSize( im->height – 1 );
dft_N = cvGetOptimalDFTSize( im->width – 1 );

//dft_M1 = cvGetOptimalDFTSize( im->height+99 – 1 );
//dft_N1 = cvGetOptimalDFTSize( im->width+99 – 1 );

dft_M1 = cvGetOptimalDFTSize( im->height+3 – 1 );
dft_N1 = cvGetOptimalDFTSize( im->width+3 – 1 );

printf(“dft_N1=%d,dft_M1=%d\n”,dft_N1,dft_M1);

// Perform DFT of original image
dft_A = cvShowDFT1(im, dft_M1, dft_N1,”original”);
//Perform inverse (check)
//cvShowInvDFT1(im,dft_A,dft_M1,dft_N1, “original”); – Commented as it overwrites the DFT

// Perform DFT of kernel
dft_B = cvShowDFT1(k_image,dft_M1,dft_N1,”kernel”);
//Perform inverse of kernel (check)
//cvShowInvDFT1(k_image,dft_B,dft_M1,dft_N1, “kernel”);- Commented as it overwrites the DFT

// Multiply numerator with complex conjugate
dft_C = cvCreateMat( dft_M1, dft_N1, CV_64FC2 );

printf(“%d %d %d %d\n”,dft_M,dft_N,dft_M1,dft_N1);

// Multiply DFT(blurred image) * complex conjugate of blur kernel
cvMulSpectrums(dft_A,dft_B,dft_C,CV_DXT_MUL_CONJ);
//cvShowInvDFT1(im,dft_C,dft_M1,dft_N1,”blur1″);

// Split Fourier in real and imaginary parts
image_ReC = cvCreateImage( cvSize(dft_N1, dft_M1), IPL_DEPTH_64F, 1);
image_ImC = cvCreateImage( cvSize(dft_N1, dft_M1), IPL_DEPTH_64F, 1);
complex_ImC = cvCreateImage( cvSize(dft_N1, dft_M1), IPL_DEPTH_64F, 2);
printf(“%d %d %d %d\n”,dft_M,dft_N,dft_M1,dft_N1);

//cvSplit( dft_C, image_ReC, image_ImC, 0, 0 );
cvSplit( dft_C, image_ReC, image_ImC, 0, 0 );

// Compute A^2 + B^2 of denominator or blur kernel
image_ReB = cvCreateImage( cvSize(dft_N1, dft_M1), IPL_DEPTH_64F, 1);
image_ImB = cvCreateImage( cvSize(dft_N1, dft_M1), IPL_DEPTH_64F, 1);

// Split Real and imaginary parts
cvSplit( dft_B, image_ReB, image_ImB, 0, 0 );
cvPow( image_ReB, image_ReB, 2.0);
cvPow( image_ImB, image_ImB, 2.0);
val = cvScalarAll(kappa);

//Divide Numerator/A^2 + B^2
cvDiv(image_ReC, image_ReB, image_ReC, 1.0);
cvDiv(image_ImC, image_ReB, image_ImC, 1.0);

// Merge Real and complex parts
cvMerge(image_ReC, image_ImC, NULL, NULL, complex_ImC);

// Perform Inverse
cvShowInvDFT1(im, (CvMat *)complex_ImC,dft_M1,dft_N1,str);

cvWaitKey(-1);
return 0;
}

CvMat* cvShowDFT1(IplImage* im, int dft_M, int dft_N,char* src)
{
IplImage* realInput;
IplImage* imaginaryInput;
IplImage* complexInput;
CvMat* dft_A, tmp;
IplImage* image_Re;
IplImage* image_Im;
char str[80];
double m, M;
realInput = cvCreateImage( cvGetSize(im), IPL_DEPTH_64F, 1);
imaginaryInput = cvCreateImage( cvGetSize(im), IPL_DEPTH_64F, 1);
complexInput = cvCreateImage( cvGetSize(im), IPL_DEPTH_64F, 2);
cvScale(im, realInput, 1.0, 0.0);
cvZero(imaginaryInput);
cvMerge(realInput, imaginaryInput, NULL, NULL, complexInput);

dft_A = cvCreateMat( dft_M, dft_N, CV_64FC2 );
image_Re = cvCreateImage( cvSize(dft_N, dft_M), IPL_DEPTH_64F, 1);
image_Im = cvCreateImage( cvSize(dft_N, dft_M), IPL_DEPTH_64F, 1);

// copy A to dft_A and pad dft_A with zeros
cvGetSubRect( dft_A, &tmp, cvRect(0,0, im->width, im->height));
cvCopy( complexInput, &tmp, NULL );
if( dft_A->cols > im->width )
{
cvGetSubRect( dft_A, &tmp, cvRect(im->width,0, dft_A->cols – im->width, im->height));
cvZero( &tmp );
}

// no need to pad bottom part of dft_A with zeros because of
// use nonzero_rows parameter in cvDFT() call below
cvDFT( dft_A, dft_A, CV_DXT_FORWARD, complexInput->height );
strcpy(str,”DFT -“);
strcat(str,src);
cvNamedWindow(str, 0);

// Split Fourier in real and imaginary parts
cvSplit( dft_A, image_Re, image_Im, 0, 0 );

// Compute the magnitude of the spectrum Mag = sqrt(Re^2 + Im^2)
cvPow( image_Re, image_Re, 2.0);
cvPow( image_Im, image_Im, 2.0);
cvPow( image_Re, image_Re, 0.5 );

// Compute log(1 + Mag)
cvAddS( image_Re, cvScalarAll(1.0), image_Re, NULL ); // 1 + Mag
cvLog( image_Re, image_Re ); // log(1 + Mag)

cvMinMaxLoc(image_Re, &m, &M, NULL, NULL, NULL);
cvScale(image_Re, image_Re, 1.0/(M-m), 1.0*(-m)/(M-m));
cvShowImage(str, image_Re);
return(dft_A);
}

void cvShowInvDFT1(IplImage* im, CvMat* dft_A, int dft_M, int dft_N,char* src)
{
IplImage* realInput;
IplImage* imaginaryInput;
IplImage* complexInput;
IplImage * image_Re;
IplImage * image_Im;
double m, M;
char str[80];
realInput = cvCreateImage( cvGetSize(im), IPL_DEPTH_64F, 1);
imaginaryInput = cvCreateImage( cvGetSize(im), IPL_DEPTH_64F, 1);
complexInput = cvCreateImage( cvGetSize(im), IPL_DEPTH_64F, 2);
image_Re = cvCreateImage( cvSize(dft_N, dft_M), IPL_DEPTH_64F, 1);
image_Im = cvCreateImage( cvSize(dft_N, dft_M), IPL_DEPTH_64F, 1);

//cvDFT( dft_A, dft_A, CV_DXT_INV_SCALE, complexInput->height );
cvDFT( dft_A, dft_A, CV_DXT_INV_SCALE, dft_M);
strcpy(str,”DFT INVERSE – “);
strcat(str,src);
cvNamedWindow(str, 0);

// Split Fourier in real and imaginary parts
cvSplit( dft_A, image_Re, image_Im, 0, 0 );

// Compute the magnitude of the spectrum Mag = sqrt(Re^2 + Im^2)
cvPow( image_Re, image_Re, 2.0);
cvPow( image_Im, image_Im, 2.0);
cvPow( image_Re, image_Re, 0.5 );

// Compute log(1 + Mag)
cvAddS( image_Re, cvScalarAll(1.0), image_Re, NULL ); // 1 + Mag
cvLog( image_Re, image_Re ); // log(1 + Mag)

cvMinMaxLoc(image_Re, &m, &M, NULL, NULL, NULL);
cvScale(image_Re, image_Re, 1.0/(M-m), 1.0*(-m)/(M-m));
//cvCvtColor(image_Re, image, CV_GRAY2RGBA);
cvShowImage(str, image_Re);
}