Ranking T20 players in Intl T20, IPL, BBL and Natwest using yorkpy

There is a voice that doesn’t use words, listen.
When someone beats a rug, the blows are not against the rug, but against the dust in it.
I lost my hat while gazing at the moon, and then I lost my mind.
Rumi

Introduction

After a long hiatus, I am back to my big, bad, blogging ways! In this post I rank T20 players from several different leagues namely

  • International T20
  • Indian Premier League (IPL) T20
  • Big Bash League (BBL) T20
  • Natwest Blast (NTB) T20

I have added 8 new functions to my Python Package yorkpy, which will perform the ranking for the above 4 T20 League formats. To know more about my Python package see Pitching yorkpy . short of good length to IPL – Part 1, and the related posts on yorkpy. The code can be easily extended to other leagues which have a the same ‘yaml’ format for the matches. I also fixed some issues which started to crop up, possibly because a few things have changed in the new data.

The new functions are

  1. rankIntlT20Batting()
  2. rankIntlT20Batting()
  3. rankIPLT20Batting()
  4. rankIPLT20Batting
  5. rankBBLT20Batting()
  6. rankBBLT20Batting()
  7. rankNTBT20Batting()
  8. rankNTBT20Batting()

The yorkpy package uses data from Cricsheet

You can clone/fork the code for yorkpy at yorkpy

You can download the PDF of the post from Rank T20

yorkpy can be installed with ‘pip install yorkpy

1. International T20

The steps to do before ranking for International T20 matches are 1. Download International T20 zip file from Cricsheet Intl T20 2. Unzip the file. This will create a folder with yaml files

import yorkpy.analytics as yka
#yka.convertAllYaml2PandasDataframesT20("../t20s","../data")

This above step will convert the yaml files into CSV files. Now do the ranking as below

1a. Ranking of International T20 batsmen

import yorkpy.analytics as yka
intlT20RankBatting=yka.rankIntlT20Batting("C:\\software\\cricket-package\\yorkpyPkg\\data\\data")
intlT20RankBatting.head(15)
##                      matches  runs_mean     SR_mean
## batsman                                            
## V Kohli                   58  38.672414  125.212402
## KS Williamson             42  32.595238  122.884631
## Mohammad Shahzad          52  31.942308  118.212288
## CH Gayle                  50  31.140000  111.869984
## BB McCullum               69  29.492754  117.011666
## MM Lanning                48  28.812500   98.582663
## SJ Taylor                 44  28.659091   98.684856
## MJ Guptill                68  28.573529  117.673702
## DA Warner                 71  28.507042  121.142746
## DPMD Jayawardene          53  27.584906  107.787092
## KC Sangakkara             54  26.407407  106.039838
## JP Duminy                 68  26.294118  114.606717
## TM Dilshan                78  26.243590   97.910384
## RG Sharma                 65  25.907692  113.056548
## H Masakadza               53  25.566038   99.453880

1b. Ranking of International T20 bowlers

import yorkpy.analytics as yka
intlT20RankBowling=yka.rankIntlT20Bowling("C:\\software\\cricket-package\\yorkpyPkg\\data\\data")
intlT20RankBowling.head(15)
##                       matches  wicket_mean  econrate_mean
## bowler                                                   
## Umar Gul                   58     1.603448       7.637931
## SL Malinga                 78     1.500000       7.409188
## Saeed Ajmal                63     1.492063       6.451058
## DW Steyn                   46     1.478261       7.014855
## A Shrubsole                45     1.422222       6.294444
## M Morkel                   41     1.292683       7.680894
## KMDN Kulasekara            57     1.280702       7.476608
## TG Southee                 51     1.274510       8.759804
## SCJ Broad                  53     1.264151            inf
## Shakib Al Hasan            58     1.241379       6.836207
## R Ashwin                   44     1.204545       7.162879
## Nida Dar                   44     1.204545       6.083333
## KH Brunt                   44     1.204545       5.982955
## KD Mills                   42     1.166667       8.289683
## SR Watson                  46     1.152174       8.246377

2. Indian Premier League (IPL) T20

The steps to do before ranking for IPL T20 matches are 1. Download IPL T20 zip file from Cricsheet IPL T20 2. Unzip the file. This will create a folder with yaml files

import yorkpy.analytics as yka
#yka.convertAllYaml2PandasDataframesT20("../ipl","../ipldata")

This above step will convert the yaml files into CSV files in the /ipldata folder. Now do the ranking as below

2a. Ranking of batsmen in IPL T20

import yorkpy.analytics as yka
IPLT20RankBatting=yka.rankIPLT20Batting("C:\\software\\cricket-package\\yorkpyPkg\\data\\ipldata")
IPLT20RankBatting.head(15)
##                    matches  runs_mean     SR_mean
## batsman                                          
## DA Warner              129  37.589147  119.917864
## CH Gayle               123  36.723577  125.256818
## SE Marsh                70  36.314286  114.707578
## KL Rahul                59  33.542373  123.424971
## MEK Hussey              60  33.400000  100.439187
## V Kohli                174  32.413793  115.830849
## KS Williamson           42  31.690476  120.443172
## AB de Villiers         143  30.923077  128.967081
## JC Buttler              45  30.800000  132.561154
## AM Rahane              118  30.330508  102.240398
## SR Tendulkar            79  29.949367  101.651959
## F du Plessis            65  29.415385  112.462114
## Q de Kock               51  29.333333  110.973836
## SS Iyer                 47  29.170213  102.144222
## G Gambhir              155  28.741935  103.997558

2b. Ranking of bowlers in IPL T20

import yorkpy.analytics as yka
IPLT20RankBowling=yka.rankIPLT20Bowling("C:\\software\\cricket-package\\yorkpyPkg\\data\\ipldata")
IPLT20RankBowling.head(15)
##                      matches  wicket_mean  econrate_mean
## bowler                                                  
## SL Malinga               122     1.540984       7.173361
## Imran Tahir               43     1.465116       8.155039
## A Nehra                   88     1.375000       7.923295
## MJ McClenaghan            56     1.339286       8.638393
## Rashid Khan               46     1.304348       6.543478
## Sandeep Sharma            79     1.303797       7.860759
## MM Patel                  63     1.301587       7.530423
## DJ Bravo                 131     1.282443       8.458333
## M Morkel                  70     1.257143       7.760714
## SP Narine                109     1.256881       6.747706
## YS Chahal                 83     1.228916       8.103659
## R Vinay Kumar            104     1.221154       8.556090
## RP Singh                  82     1.219512       8.149390
## CH Morris                 52     1.211538       7.854167
## B Kumar                  117     1.205128       7.536325

3. Natwest T20

The steps to do before ranking for Natwest T20 matches are 1. Download Natwest T20 zip file from Cricsheet NTB T20 2. Unzip the file. This will create a folder with yaml files

import yorkpy.analytics as yka
#yka.convertAllYaml2PandasDataframesT20("../ntb","../ntbdata")

This above step will convert the yaml files into CSV files in the /ntbdata folder. Now do the ranking as below

3a. Ranking of NTB batsmen

import yorkpy.analytics as yka
NTBT20RankBatting=yka.rankNTBT20Batting("C:\\software\\cricket-package\\yorkpyPkg\\data\\ntbdata")
NTBT20RankBatting.head(15)
##                      matches  runs_mean     SR_mean
## batsman                                            
## Babar Azam                13  44.461538  121.268809
## T Banton                  13  42.230769  139.376274
## JJ Roy                    12  41.250000  142.182147
## DJM Short                 12  40.250000  131.182294
## AN Petersen               12  37.916667  132.522727
## IR Bell                   13  37.615385  130.104721
## M Klinger                 26  35.346154  112.682922
## EJG Morgan                16  35.062500  129.817650
## AJ Finch                  19  34.578947  137.093465
## MH Wessels                26  33.884615  116.300969
## S Steel                   11  33.545455  140.118207
## DJ Bell-Drummond          21  33.142857  108.566309
## Ashar Zaidi               11  33.000000  178.553331
## DJ Malan                  26  33.000000  120.127202
## T Kohler-Cadmore          23  32.956522  112.493019

3b. Ranking of NTB bowlers

import yorkpy.analytics as yka
NTBT20RankBowling=yka.rankNTBT20Bowling("C:\\software\\cricket-package\\yorkpyPkg\\data\\ntbdata")
NTBT20RankBowling.head(15)
##                        matches  wicket_mean  econrate_mean
## bowler                                                    
## MW Parkinson                11     2.000000       7.628788
## HF Gurney                   23     1.956522       8.831884
## GR Napier                   12     1.916667       8.694444
## R Rampaul                   19     1.736842       7.131579
## P Coughlin                  11     1.727273       8.909091
## AJ Tye                      26     1.692308       8.227564
## GC Viljoen                  12     1.666667       7.708333
## BAC Howell                  21     1.666667       6.857143
## BW Sanderson                12     1.583333       7.902778
## KJ Abbott                   14     1.571429       9.398810
## JE Taylor                   13     1.538462       9.839744
## JDS Neesham                 12     1.500000      10.812500
## MJ Potts                    12     1.500000       8.486111
## TT Bresnan                  21     1.476190       8.817460
## T van der Gugten            13     1.461538       7.211538

4. Big Bash Leagure (BBL) T20

The steps to do before ranking for BBL T20 matches are 1. Download BBL T20 zip file from Cricsheet BBL T20 2. Unzip the file. This will create a folder with yaml files

import yorkpy.analytics as yka
#yka.convertAllYaml2PandasDataframesT20("../bbl","../bbldata")

This above step will convert the yaml files into CSV files in the /bbldata folder. Now do the ranking as below

4a. Ranking of BBL batsmen

import yorkpy.analytics as yka
BBLT20RankBatting=yka.rankBBLT20Batting("C:\\software\\cricket-package\\yorkpyPkg\\data\\bbldata")
BBLT20RankBatting.head(15)
##                 matches  runs_mean     SR_mean
## batsman                                       
## DJM Short            43  40.883721  118.773047
## SE Marsh             47  39.148936  113.616053
## AJ Finch             62  36.306452  120.271231
## AT Carey             37  34.945946  120.125341
## UT Khawaja           41  31.268293  107.355655
## CA Lynn              74  31.162162  121.746578
## MS Wade              46  30.782609  120.310081
## TM Head              45  30.000000  126.769564
## MEK Hussey           23  29.173913  109.492934
## BJ Hodge             29  29.000000  124.438040
## BR Dunk              39  28.230769  106.149913
## AD Hales             31  27.161290  117.678008
## BB McCullum          34  27.058824  115.486392
## GJ Bailey            57  27.000000  121.159220
## MR Marsh             47  26.510638  114.994909

4b. Ranking of BBL bowlers

import yorkpy.analytics as yka
BBLT20RankBowling=yka.rankBBLT20Bowling("C:\\software\\cricket-package\\yorkpyPkg\\data\\bbldata")
BBLT20RankBowling.head(15)
##                    matches  wicket_mean  econrate_mean
## bowler                                                
## Yasir Arafat            15     2.000000       7.587778
## CH Morris               15     1.733333       8.572222
## TK Curran               27     1.629630       8.716049
## TT Bresnan              13     1.615385       8.775641
## JR Hazlewood            18     1.555556       7.361111
## CJ McKay                15     1.533333       8.555556
## DR Sams                 36     1.527778       8.581019
## AC McDermott            14     1.500000       9.166667
## JP Faulkner             20     1.500000       8.345833
## SP Narine               12     1.500000       7.395833
## AJ Tye                  51     1.490196       8.101307
## M Kelly                 21     1.476190       8.908730
## SA Abbott               73     1.438356       8.737443
## B Laughlin              82     1.426829       8.332317
## SW Tait                 31     1.419355       8.895161

Conclusion

You should be able to now rank players in the above formats as new data is added to Cricsheet. yorkpy can also be used for other leagues which follow the Cricsheet format.

Also see
1. Deep Learning from first principles in Python, R and Octave – Part 5
2. Using Linear Programming (LP) for optimizing bowling change or batting lineup in T20 cricket
3. Using Reinforcement Learning to solve Gridworld
4. Big Data-4: Webserver log analysis with RDDs, Pyspark, SparkR and SparklyR
5. My book ‘Practical Machine Learning in R and Python: Third edition’ on Amazon
6. Deblurring with OpenCV: Weiner filter reloaded
7. Rock N’ Roll with Bluemix, Cloudant & NodeExpress
8. Modeling a Car in Android

To see all posts click Index of posts