Deep Learning from first principles in Python, R and Octave – Part 6


“Today you are You, that is truer than true. There is no one alive who is Youer than You.”
Dr. Seuss

“Explanations exist; they have existed for all time; there is always a well-known solution to every human problem — neat, plausible, and wrong.”
H L Mencken

Introduction

In this 6th instalment of ‘Deep Learning from first principles in Python, R and Octave-Part6’, I look at a couple of different initialization techniques used in Deep Learning, L2 regularization and the ‘dropout’ method. Specifically, I implement “He initialization” & “Xavier Initialization”. My earlier posts in this series of Deep Learning included

1. Part 1 – In the 1st part, I implemented logistic regression as a simple 2 layer Neural Network
2. Part 2 – In part 2, implemented the most basic of Neural Networks, with just 1 hidden layer, and any number of activation units in that hidden layer. The implementation was in vectorized Python, R and Octave
3. Part 3 -In part 3, I derive the equations and also implement a L-Layer Deep Learning network with either the relu, tanh or sigmoid activation function in Python, R and Octave. The output activation unit was a sigmoid function for logistic classification
4. Part 4 – This part looks at multi-class classification, and I derive the Jacobian of a Softmax function and implement a simple problem to perform multi-class classification.
5. Part 5 – In the 5th part, I extend the L-Layer Deep Learning network implemented in Part 3, to include the Softmax classification. I also use this L-layer implementation to classify MNIST handwritten digits with Python, R and Octave.

The code in Python, R and Octave are identical, and just take into account some of the minor idiosyncrasies of the individual language. In this post, I implement different initialization techniques (random, He, Xavier), L2 regularization and finally dropout. Hence my generic L-Layer Deep Learning network includes these additional enhancements for enabling/disabling initialization methods, regularization or dropout in the algorithm. It already included sigmoid & softmax output activation for binary and multi-class classification, besides allowing relu, tanh and sigmoid activation for hidden units.

A video presentation of regularization and initialization techniques can be also be viewed in Neural Networks 6

This R Markdown file and the code for Python, R and Octave can be cloned/downloaded from Github at DeepLearning-Part6

Checkout my book ‘Deep Learning from first principles: Second Edition – In vectorized Python, R and Octave’. My book starts with the implementation of a simple 2-layer Neural Network and works its way to a generic L-Layer Deep Learning Network, with all the bells and whistles. The derivations have been discussed in detail. The code has been extensively commented and included in its entirety in the Appendix sections. My book is available on Amazon as paperback ($18.99) and in kindle version($9.99/Rs449).

You may also like my companion book “Practical Machine Learning with R and Python:Second Edition- Machine Learning in stereo” available in Amazon in paperback($10.99) and Kindle($7.99/Rs449) versions. This book is ideal for a quick reference of the various ML functions and associated measurements in both R and Python which are essential to delve deep into Deep Learning.

1. Initialization techniques

The usual initialization technique is to generate Gaussian or uniform random numbers and multiply it by a small value like 0.01. Two techniques which are used to speed up convergence is the He initialization or Xavier. These initialization techniques enable gradient descent to converge faster.

1.1 a Default initialization – Python

This technique just initializes the weights to small random values based on Gaussian or uniform distribution

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import sklearn.linear_model
import pandas as pd
import sklearn
import sklearn.datasets
exec(open("DLfunctions61.py").read())
#Load the data
train_X, train_Y, test_X, test_Y = load_dataset()
# Set the layers dimensions
layersDimensions = [2,7,1]

# Train a deep learning network with random initialization
parameters = L_Layer_DeepModel(train_X, train_Y, layersDimensions, hiddenActivationFunc='relu', outputActivationFunc="sigmoid",learningRate = 0.6, num_iterations = 9000, initType="default", print_cost = True,figure="fig1.png")

# Clear the plot
plt.clf()
plt.close()

# Plot the decision boundary
plot_decision_boundary(lambda x: predict(parameters, x.T), train_X, train_Y,str(0.6),figure1="fig2.png")

1.1 b He initialization – Python

‘He’ initialization attributed to He et al, multiplies the random weights by
\sqrt{\frac{2}{dimension\ of\ previous\ layer}}

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import sklearn.linear_model
import pandas as pd
import sklearn
import sklearn.datasets
exec(open("DLfunctions61.py").read())

#Load the data
train_X, train_Y, test_X, test_Y = load_dataset()
# Set the layers dimensions
layersDimensions = [2,7,1]

# Train a deep learning network with He  initialization
parameters = L_Layer_DeepModel(train_X, train_Y, layersDimensions, hiddenActivationFunc='relu', outputActivationFunc="sigmoid", learningRate =0.6,    num_iterations = 10000,initType="He",print_cost = True,                           figure="fig3.png")

plt.clf()
plt.close()
# Plot the decision boundary
plot_decision_boundary(lambda x: predict(parameters, x.T), train_X, train_Y,str(0.6),figure1="fig4.png")


1.1 c Xavier initialization – Python

Xavier  initialization multiply the random weights by
\sqrt{\frac{1}{dimension\ of\ previous\ layer}}

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import sklearn.linear_model
import pandas as pd
import sklearn
import sklearn.datasets
exec(open("DLfunctions61.py").read())

#Load the data
train_X, train_Y, test_X, test_Y = load_dataset()
# Set the layers dimensions
layersDimensions = [2,7,1]
 
# Train a L layer Deep Learning network
parameters = L_Layer_DeepModel(train_X, train_Y, layersDimensions, hiddenActivationFunc='relu', outputActivationFunc="sigmoid",
                            learningRate = 0.6,num_iterations = 10000, initType="Xavier",print_cost = True,
                            figure="fig5.png")

# Plot the decision boundary
plot_decision_boundary(lambda x: predict(parameters, x.T), train_X, train_Y,str(0.6),figure1="fig6.png")


1.2a Default initialization – R

source("DLfunctions61.R")
#Load the data
z <- as.matrix(read.csv("circles.csv",header=FALSE)) 
x <- z[,1:2]
y <- z[,3]
X <- t(x)
Y <- t(y)
#Set the layer dimensions
layersDimensions = c(2,11,1)
# Train a deep learning network
retvals = L_Layer_DeepModel(X, Y, layersDimensions,
                            hiddenActivationFunc='relu',
                            outputActivationFunc="sigmoid",
                            learningRate = 0.5,
                            numIterations = 8000, 
                            initType="default",
                            print_cost = True)
#Plot the cost vs iterations
iterations <- seq(0,8000,1000)
costs=retvals$costs
df=data.frame(iterations,costs)
ggplot(df,aes(x=iterations,y=costs)) + geom_point() + geom_line(color="blue") +
 ggtitle("Costs vs iterations") + xlab("No of iterations") + ylab("Cost")

# Plot the decision boundary
plotDecisionBoundary(z,retvals,hiddenActivationFunc="relu",lr=0.5)

1.2b He initialization – R

The code for ‘He’ initilaization in R is included below

# He Initialization model for L layers
# Input : List of units in each layer
# Returns: Initial weights and biases matrices for all layers
# He initilization multiplies the random numbers with sqrt(2/layerDimensions[previouslayer])
HeInitializeDeepModel <- function(layerDimensions){
    set.seed(2)
    
    # Initialize empty list
    layerParams <- list()
    
    # Note the Weight matrix at layer 'l' is a matrix of size (l,l-1)
    # The Bias is a vectors of size (l,1)
    
    # Loop through the layer dimension from 1.. L
    # Indices in R start from 1
    for(l in 2:length(layersDimensions)){
        # Initialize a matrix of small random numbers of size l x l-1
        # Create random numbers of size  l x l-1
        w=rnorm(layersDimensions[l]*layersDimensions[l-1])
        
        # Create a weight matrix of size l x l-1 with this initial weights and
        # Add to list W1,W2... WL
        # He initialization - Divide by sqrt(2/layerDimensions[previous layer])
        layerParams[[paste('W',l-1,sep="")]] = matrix(w,nrow=layersDimensions[l],
                                                      ncol=layersDimensions[l-1])*sqrt(2/layersDimensions[l-1])
        layerParams[[paste('b',l-1,sep="")]] = matrix(rep(0,layersDimensions[l]),
                                                      nrow=layersDimensions[l],ncol=1)
    }
    return(layerParams)
}

The code in R below uses He initialization to learn the data

source("DLfunctions61.R")
# Load the data
z <- as.matrix(read.csv("circles.csv",header=FALSE)) 
x <- z[,1:2]
y <- z[,3]
X <- t(x)
Y <- t(y)
# Set the layer dimensions
layersDimensions = c(2,11,1)
# Train a deep learning network
retvals = L_Layer_DeepModel(X, Y, layersDimensions,
                            hiddenActivationFunc='relu',
                            outputActivationFunc="sigmoid",
                            learningRate = 0.5,
                            numIterations = 9000, 
                            initType="He",
                            print_cost = True)
#Plot the cost vs iterations
iterations <- seq(0,9000,1000)
costs=retvals$costs
df=data.frame(iterations,costs)
ggplot(df,aes(x=iterations,y=costs)) + geom_point() + geom_line(color="blue") +
    ggtitle("Costs vs iterations") + xlab("No of iterations") + ylab("Cost")

# Plot the decision boundary
plotDecisionBoundary(z,retvals,hiddenActivationFunc="relu",0.5,lr=0.5)

1.2c Xavier initialization – R

## Xav initialization 
# Set the layer dimensions
layersDimensions = c(2,11,1)
# Train a deep learning network
retvals = L_Layer_DeepModel(X, Y, layersDimensions,
                            hiddenActivationFunc='relu',
                            outputActivationFunc="sigmoid",
                            learningRate = 0.5,
                            numIterations = 9000, 
                            initType="Xav",
                            print_cost = True)
#Plot the cost vs iterations
iterations <- seq(0,9000,1000)
costs=retvals$costs
df=data.frame(iterations,costs)
ggplot(df,aes(x=iterations,y=costs)) + geom_point() + geom_line(color="blue") +
    ggtitle("Costs vs iterations") + xlab("No of iterations") + ylab("Cost")

# Plot the decision boundary
plotDecisionBoundary(z,retvals,hiddenActivationFunc="relu",0.5)

1.3a Default initialization – Octave

source("DL61functions.m")
# Read the data
data=csvread("circles.csv");

X=data(:,1:2);
Y=data(:,3);
# Set the layer dimensions
layersDimensions = [2 11  1]; #tanh=-0.5(ok), #relu=0.1 best!

# Train a deep learning network
[weights biases costs]=L_Layer_DeepModel(X', Y', layersDimensions,
                               hiddenActivationFunc='relu', 
                               outputActivationFunc="sigmoid",
                               learningRate = 0.5,
                               lambd=0, 
                               keep_prob=1,
                               numIterations = 10000,
                               initType="default");
# Plot cost vs iterations
plotCostVsIterations(10000,costs)  
#Plot decision boundary                            
plotDecisionBoundary(data,weights, biases,keep_prob=1, hiddenActivationFunc="relu")

 

1.3b He initialization – Octave

source("DL61functions.m")
#Load data
data=csvread("circles.csv");
X=data(:,1:2);
Y=data(:,3);
# Set the layer dimensions
layersDimensions = [2 11  1]; #tanh=-0.5(ok), #relu=0.1 best!

# Train a deep learning network
[weights biases costs]=L_Layer_DeepModel(X', Y', layersDimensions,
                               hiddenActivationFunc='relu', 
                               outputActivationFunc="sigmoid",
                               learningRate = 0.5,
                               lambd=0, 
                               keep_prob=1,
                               numIterations = 8000,
                               initType="He");
plotCostVsIterations(8000,costs)   
#Plot decision boundary                              
plotDecisionBoundary(data,weights, biases,keep_prob=1,hiddenActivationFunc="relu")

1.3c Xavier initialization – Octave

The code snippet for Xavier initialization in Octave is shown below

source("DL61functions.m")
# Xavier Initialization for L layers
# Input : List of units in each layer
# Returns: Initial weights and biases matrices for all layers
function [W b] = XavInitializeDeepModel(layerDimensions)
    rand ("seed", 3);
    # note the Weight matrix at layer 'l' is a matrix of size (l,l-1)
    # The Bias is a vectors of size (l,1)
    
    # Loop through the layer dimension from 1.. L
    # Create cell arrays for Weights and biases

    for l =2:size(layerDimensions)(2)
         W{l-1} = rand(layerDimensions(l),layerDimensions(l-1))* sqrt(1/layerDimensions(l-1)); #  Multiply by .01 
         b{l-1} = zeros(layerDimensions(l),1);       
   
    endfor
end

The Octave code below uses Xavier initialization

source("DL61functions.m")
#Load data
data=csvread("circles.csv");
X=data(:,1:2);
Y=data(:,3);
#Set layer dimensions
layersDimensions = [2 11 1]; #tanh=-0.5(ok), #relu=0.1 best!

# Train a deep learning network
[weights biases costs]=L_Layer_DeepModel(X', Y', layersDimensions,
hiddenActivationFunc='relu',
outputActivationFunc="sigmoid",
learningRate = 0.5,
lambd=0,
keep_prob=1,
numIterations = 8000,
initType="Xav");

plotCostVsIterations(8000,costs)
plotDecisionBoundary(data,weights, biases,keep_prob=1,hiddenActivationFunc="relu")



 

2.1a Regularization : Circles data – Python

The cross entropy cost for Logistic classification is given as J = \frac{1}{m}\sum_{i=1}^{m}y^{i}log((a^{L})^{(i)}) - (1-y^{i})log((a^{L})^{(i)}) The regularized L2 cost is given by J = \frac{1}{m}\sum_{i=1}^{m}y^{i}log((a^{L})^{(i)}) - (1-y^{i})log((a^{L})^{(i)}) + \frac{\lambda}{2m}\sum \sum \sum W_{kj}^{l}

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import sklearn.linear_model
import pandas as pd
import sklearn
import sklearn.datasets
exec(open("DLfunctions61.py").read())

#Load the data
train_X, train_Y, test_X, test_Y = load_dataset()
# Set the layers dimensions
layersDimensions = [2,7,1]

# Train a deep learning network
parameters = L_Layer_DeepModel(train_X, train_Y, layersDimensions, hiddenActivationFunc='relu',  
                               outputActivationFunc="sigmoid",learningRate = 0.6, lambd=0.1, num_iterations = 9000, 
                               initType="default", print_cost = True,figure="fig7.png")

# Clear the plot
plt.clf()
plt.close()

# Plot the decision boundary
plot_decision_boundary(lambda x: predict(parameters, x.T), train_X, train_Y,str(0.6),figure1="fig8.png")


plt.clf()
plt.close()
#Plot the decision boundary
plot_decision_boundary(lambda x: predict(parameters, x.T,keep_prob=0.9), train_X, train_Y,str(2.2),"fig8.png",)

2.1 b Regularization: Spiral data  – Python

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import sklearn.linear_model
import pandas as pd
import sklearn
import sklearn.datasets
exec(open("DLfunctions61.py").read())
N = 100 # number of points per class
D = 2 # dimensionality
K = 3 # number of classes
X = np.zeros((N*K,D)) # data matrix (each row = single example)
y = np.zeros(N*K, dtype='uint8') # class labels
for j in range(K):
  ix = range(N*j,N*(j+1))
  r = np.linspace(0.0,1,N) # radius
  t = np.linspace(j*4,(j+1)*4,N) + np.random.randn(N)*0.2 # theta
  X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
  y[ix] = j


# Plot the data
plt.scatter(X[:, 0], X[:, 1], c=y, s=40, cmap=plt.cm.Spectral)
plt.clf()
plt.close() 
#Set layer dimensions 
layersDimensions = [2,100,3]
y1=y.reshape(-1,1).T
# Train a deep learning network
parameters = L_Layer_DeepModel(X.T, y1, layersDimensions, hiddenActivationFunc='relu', outputActivationFunc="softmax",
                           learningRate = 1,lambd=1e-3, num_iterations = 5000, print_cost = True,figure="fig9.png")

plt.clf()
plt.close()  
W1=parameters['W1']
b1=parameters['b1']
W2=parameters['W2']
b2=parameters['b2']
plot_decision_boundary1(X, y1,W1,b1,W2,b2,figure2="fig10.png")

 

2.2a Regularization: Circles data  – R

source("DLfunctions61.R")
#Load data
df=read.csv("circles.csv",header=FALSE)
z <- as.matrix(read.csv("circles.csv",header=FALSE)) 
x <- z[,1:2]
y <- z[,3]
X <- t(x)
Y <- t(y)
#Set layer dimensions
layersDimensions = c(2,11,1)
# Train a deep learning network
retvals = L_Layer_DeepModel(X, Y, layersDimensions,
                            hiddenActivationFunc='relu',
                            outputActivationFunc="sigmoid",
                            learningRate = 0.5,
                            lambd=0.1,
                            numIterations = 9000, 
                            initType="default",
                            print_cost = True)
#Plot the cost vs iterations
iterations <- seq(0,9000,1000)
costs=retvals$costs
df=data.frame(iterations,costs)
ggplot(df,aes(x=iterations,y=costs)) + geom_point() + geom_line(color="blue") +
    ggtitle("Costs vs iterations") + xlab("No of iterations") + ylab("Cost")

# Plot the decision boundary
plotDecisionBoundary(z,retvals,hiddenActivationFunc="relu",0.5)

2.2b Regularization:Spiral data – R

# Read the spiral dataset
#Load the data
source("DLfunctions61.R")
Z <- as.matrix(read.csv("spiral.csv",header=FALSE)) 

# Setup the data
X <- Z[,1:2]
y <- Z[,3]
X <- t(X)
Y <- t(y)
layersDimensions = c(2, 100, 3)
# Train a deep learning network
retvals = L_Layer_DeepModel(X, Y, layersDimensions,
hiddenActivationFunc='relu',
outputActivationFunc="softmax",
learningRate = 0.5,
lambd=0.01,
numIterations = 9000,
print_cost = True)
print_cost = True)
parameters<-retvals$parameters
plotDecisionBoundary1(Z,parameters)


2.3a Regularization: Circles data – Octave

source("DL61functions.m")
#Load data
data=csvread("circles.csv");
X=data(:,1:2);
Y=data(:,3);
layersDimensions = [2 11  1]; #tanh=-0.5(ok), #relu=0.1 best!

# Train a deep learning network
[weights biases costs]=L_Layer_DeepModel(X', Y', layersDimensions,
                               hiddenActivationFunc='relu', 
                               outputActivationFunc="sigmoid",
                               learningRate = 0.5,
                               lambd=0.2,
                               keep_prob=1,
                               numIterations = 8000,
                               initType="default");

plotCostVsIterations(8000,costs)  
#Plot decision boundary                              
plotDecisionBoundary(data,weights, biases,keep_prob=1,hiddenActivationFunc="relu")

2.3b Regularization:Spiral data  2 – Octave

source("DL61functions.m")
data=csvread("spiral.csv");

# Setup the data
X=data(:,1:2);
Y=data(:,3);
layersDimensions = [2 100 3]
# Train a deep learning network
[weights biases costs]=L_Layer_DeepModel(X', Y', layersDimensions,
                               hiddenActivationFunc='relu', 
                               outputActivationFunc="softmax",
                               learningRate = 0.6,
                               lambd=0.2,
                               keep_prob=1,
                               numIterations = 10000);
                              
plotCostVsIterations(10000,costs)
#Plot decision boundary
plotDecisionBoundary1(data,weights, biases,keep_prob=1,hiddenActivationFunc="relu")  

3.1 a Dropout: Circles data – Python

The ‘dropout’ regularization technique was used with great effectiveness, to prevent overfitting  by Alex Krizhevsky, Ilya Sutskever and Prof Geoffrey E. Hinton in the Imagenet classification with Deep Convolutional Neural Networks

The technique of dropout works by dropping a random set of activation units in each hidden layer, based on a ‘keep_prob’ criteria in the forward propagation cycle. Here is the code for Octave. A ‘dropoutMat’ is created for each layer which specifies which units to drop Note: The same ‘dropoutMat has to be used which computing the gradients in the backward propagation cycle. Hence the dropout matrices are stored in a cell array.

 for l =1:L-1  
    ...      
    D=rand(size(A)(1),size(A)(2));
    D = (D < keep_prob) ;
    # Zero out some hidden units
    A= A .* D;    
    # Divide by keep_prob to keep the expected value of A the same                                  
    A = A ./ keep_prob; 
    # Store D in a dropoutMat cell array
    dropoutMat{l}=D;
    ...
 endfor

In the backward propagation cycle we have

    for l =(L-1):-1:1
          ...
          D = dropoutMat{l};  
          # Zero out the dAl based on same dropout matrix       
          dAl= dAl .* D;   
          # Divide by keep_prob to maintain the expected value                                       
          dAl = dAl ./ keep_prob;
          ...
    endfor 
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import sklearn.linear_model
import pandas as pd
import sklearn
import sklearn.datasets
exec(open("DLfunctions61.py").read())
#Load the data
train_X, train_Y, test_X, test_Y = load_dataset()
# Set the layers dimensions
layersDimensions = [2,7,1]

# Train a deep learning network
parameters = L_Layer_DeepModel(train_X, train_Y, layersDimensions, hiddenActivationFunc='relu',  
                               outputActivationFunc="sigmoid",learningRate = 0.6, keep_prob=0.7, num_iterations = 9000, 
                               initType="default", print_cost = True,figure="fig11.png")

# Clear the plot
plt.clf()
plt.close()

# Plot the decision boundary
plot_decision_boundary(lambda x: predict(parameters, x.T,keep_prob=0.7), train_X, train_Y,str(0.6),figure1="fig12.png")

3.1b Dropout: Spiral data – Python

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import sklearn.linear_model
import pandas as pd
import sklearn
import sklearn.datasets
exec(open("DLfunctions61.py").read())
# Create an input data set - Taken from CS231n Convolutional Neural networks,
# http://cs231n.github.io/neural-networks-case-study/
               

N = 100 # number of points per class
D = 2 # dimensionality
K = 3 # number of classes
X = np.zeros((N*K,D)) # data matrix (each row = single example)
y = np.zeros(N*K, dtype='uint8') # class labels
for j in range(K):
  ix = range(N*j,N*(j+1))
  r = np.linspace(0.0,1,N) # radius
  t = np.linspace(j*4,(j+1)*4,N) + np.random.randn(N)*0.2 # theta
  X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
  y[ix] = j


# Plot the data
plt.scatter(X[:, 0], X[:, 1], c=y, s=40, cmap=plt.cm.Spectral)
plt.clf()
plt.close()  
layersDimensions = [2,100,3]
y1=y.reshape(-1,1).T
# Train a deep learning network
parameters = L_Layer_DeepModel(X.T, y1, layersDimensions, hiddenActivationFunc='relu', outputActivationFunc="softmax",
                           learningRate = 1,keep_prob=0.9, num_iterations = 5000, print_cost = True,figure="fig13.png")

plt.clf()
plt.close()  
W1=parameters['W1']
b1=parameters['b1']
W2=parameters['W2']
b2=parameters['b2']
#Plot decision boundary
plot_decision_boundary1(X, y1,W1,b1,W2,b2,figure2="fig14.png")

3.2a Dropout: Circles data – R

source("DLfunctions61.R")
#Load data
df=read.csv("circles.csv",header=FALSE)
z <- as.matrix(read.csv("circles.csv",header=FALSE)) 

x <- z[,1:2]
y <- z[,3]
X <- t(x)
Y <- t(y)
layersDimensions = c(2,11,1)
# Train a deep learning network
retvals = L_Layer_DeepModel(X, Y, layersDimensions,
                            hiddenActivationFunc='relu',
                            outputActivationFunc="sigmoid",
                            learningRate = 0.5,
                            keep_prob=0.8,
                            numIterations = 9000, 
                            initType="default",
                            print_cost = True)
# Plot the decision boundary
plotDecisionBoundary(z,retvals,keep_prob=0.6, hiddenActivationFunc="relu",0.5)

3.2b Dropout: Spiral data – R

# Read the spiral dataset
source("DLfunctions61.R")
# Load data
Z <- as.matrix(read.csv("spiral.csv",header=FALSE)) 

# Setup the data
X <- Z[,1:2]
y <- Z[,3]
X <- t(X)
Y <- t(y)

# Train a deep learning network
retvals = L_Layer_DeepModel(X, Y, layersDimensions,
                            hiddenActivationFunc='relu',
                            outputActivationFunc="softmax",
                            learningRate = 0.1,
                            keep_prob=0.90,
                            numIterations = 9000, 
                            print_cost = True)

parameters<-retvals$parameters
#Plot decision boundary
plotDecisionBoundary1(Z,parameters)

3.3a Dropout: Circles data – Octave

data=csvread("circles.csv");

X=data(:,1:2);
Y=data(:,3);
layersDimensions = [2 11  1]; #tanh=-0.5(ok), #relu=0.1 best!

# Train a deep learning network
[weights biases costs]=L_Layer_DeepModel(X', Y', layersDimensions,
                               hiddenActivationFunc='relu', 
                               outputActivationFunc="sigmoid",
                               learningRate = 0.5,
                               lambd=0,
                               keep_prob=0.8,
                               numIterations = 10000,
                               initType="default");
plotCostVsIterations(10000,costs) 
#Plot decision boundary
plotDecisionBoundary1(data,weights, biases,keep_prob=1, hiddenActivationFunc="relu") 

3.3b Dropout  Spiral data – Octave

source("DL61functions.m")
data=csvread("spiral.csv");

# Setup the data
X=data(:,1:2);
Y=data(:,3);

layersDimensions = [numFeats numHidden  numOutput];  
# Train a deep learning network
[weights biases costs]=L_Layer_DeepModel(X', Y', layersDimensions,
                               hiddenActivationFunc='relu', 
                               outputActivationFunc="softmax",
                               learningRate = 0.1,
                               lambd=0,
                               keep_prob=0.8,
                               numIterations = 10000); 

plotCostVsIterations(10000,costs)    
#Plot decision boundary                            
plotDecisionBoundary1(data,weights, biases,keep_prob=1, hiddenActivationFunc="relu")  

Note: The Python, R and Octave code can be cloned/downloaded from Github at DeepLearning-Part6
Conclusion
This post further enhances my earlier L-Layer generic implementation of a Deep Learning network to include options for initialization techniques, L2 regularization or dropout regularization

References
1. Deep Learning Specialization
2. Neural Networks for Machine Learning

Also see
1. Architecting a cloud based IP Multimedia System (IMS)
2. Using Linear Programming (LP) for optimizing bowling change or batting lineup in T20 cricket
3. My book ‘Practical Machine Learning with R and Python’ on Amazon
4. Simulating a Web Joint in Android
5. Inswinger: yorkr swings into International T20s
6. Introducing QCSimulator: A 5-qubit quantum computing simulator in R
7. Computer Vision: Ramblings on derivatives, histograms and contours
8. Bend it like Bluemix, MongoDB using Auto-scale – Part 1!
9. The 3rd paperback & kindle editions of my books on Cricket, now on Amazon

To see all posts click Index of posts

Simplifying ML: Impact of degree of polynomial degree on bias & variance and other insights


This post takes off from my earlier post Simplifying Machine Learning: Bias, variance, regularization and odd facts- Part 4. As discussed earlier a poor hypothesis function could either underfit or overfit the data.  If the number of features selected were small of the order of 1 or 2 features, then we could plot the data and try to determine how the hypothesis function fits the data. We could also see whether the function is capable of predicting output target values for new data.

 However if the number of features were large for e.g. of the order of 10’s of features then there needs to be method by which one can determine if the learned hypotheses is a ‘just right’ fit for all the data.

Checkout out my book  on Amazon available in both  Paperback ($9.99) and a Kindle version($6.99/Rs449/). (see ‘Practical Machine Learning with R and Python – Machine Learning in stereo‘)

The following technique can be used to determine the ‘goodness’ of a hypothesis or how well the hypothesis can fit the data and can also generalize to new examples not in the training set.

Several insights on how to evaluate a hypothesis is  given below

Consider a hypothesis function

hƟ (x) = Ɵ0 + Ɵ1x1 + Ɵ2x22 + Ɵ3x33  +  Ɵ4x44

a1

The above hypothesis does not generalize well enough for new examples in the data set.

Let us assume that there 100 training examples or data sets. Instead of using the entire set of 100 examples to learn the hypothesis function, the data set is divided into training set and test set in a 70%:30% ratio respectively

The hypothesis is learned from the training set. The learned hypothesis is then checked against the 30% test set data to determine whether the hypothesis is able to generalize on the test set also.

This is done by determining the error when the hypothesis is used against the test set.

For linear regression the error is computed by determining the average mean square error of the output value against the actual value as follows

The test set error is computed as follows

Jtest(Ɵ) = 1/2mtest Σ(hƟ (xtest – ytesti)2

For logistic regression the test set error is similarly determined as

Jtest(Ɵ) = = 1/mtest Σ -ytest * log(hƟ (xtest))  – (1-ytest) * (log(1 – hƟ (xtest))

The idea is that the test set error should as low as possible.

Model selection

A typical problem in determining the hypothesis is to choose the degree of the polynomial or to choose an appropriate model for the hypothesis

The method that can be followed is to choose 10 polynomial models

  1. hƟ (x) = Ɵ0 + Ɵ1x1
  2. hƟ (x) = Ɵ0 + Ɵ1x1 + Ɵ2x22
  3. hƟ (x) = Ɵ0 + Ɵ1x12 + Ɵ2x22 + Ɵ3x33

Here‘d’ is the degree of the polynomial. One method is to train all the 10 models. Run each of the model’s hypotheses against the test set and then choose the model with the smallest error cost.

While this appears to a good technique to choose the best fit hypothesis, in reality it is not so. The reason is that the hypothesis chosen is based on the best fit and the least error for the test data. However this does not generalize well for examples not in the training or test set.

So the correct method is to divide the data into 3 sets  as 60:20:20 where 60% is the training set, 20% is used as a test set to determine the best fit and the remaining 20% is the cross-validation set.

The steps carried out against the data is

  1. Train all 10 models against the training set (60%)
  2. Compute the cost value J against the cross-validation set (20%)
  3. Determine the lowest cost model
  4. Use this model against the test set and determine the generalization error.

Degree of the polynomial versus bias and variance

How does the degree of the polynomial affect the bias and variance of a hypothesis?

Clearly for a given training set when the degree is low the hypothesis will underfit the data and there will be a high bias error. However when the degree of the polynomial is high then the fit will get better and better on the training set (Note: This does not imply a good generalization)

We run all the models with different polynomial degrees on the cross validation set. What we will observe is that when the degree of the polynomial is low then the error will be high. This error will decrease as the degree of the polynomial increases as we will tend to get a better fit. However the error will again increase as higher degree polynomials that overfit the training set will be a poor fit for the cross validation set.

This is shown below

a2

Effect of regularization on bias & variance

Here is the technique to choose the optimum value for the regularization parameter λ

When λ is small then Ɵi values are large and we tend to overfit the data set. Hence the training error will be low but the cross validation error will be high. However when λ is large then the values of Ɵi become negligible almost leading to a polynomial degree of 1. These will underfit the data and result in a high training error and a cross validation error. Hence the chosen value of λ should be such that the cross validation error is the lowest

a3

Plotting learning curves

This is another technique to identify if the learned hypothesis has a high bias or a high variance based on the number of training examples

A high bias indicates an underfit. When the number of samples in training set if low then the training error and cross validation error will be low as it will be easy to create a hypothesis if there are few training examples. As the number of samples increase the error will increase for the training set and will slightly decrease for the cross validation set. However for a high bias, or underfit, after a certain point increasing the number of samples will not change the error. This is the case of a high bias

a4

In the case of high variance where a high degree polynomial is used for the hypothesis the training error will be low for smaller number of training examples. As the number of training examples increase the error will increase slowly. The cross validation error will be high for lesser number of training samples but will slowly decrease as the number of samples grow as the hypothesis will learn better. Hence for the case of high variance increasing the number of samples in the training set size will decrease the gap between the cross validation and the training error as shown below

a5

Note: This post, line previous posts on Machine Learning,  is based on the Coursera course on Machine Learning by Professor Andrew Ng

Also see
1.My book ‘Practical Machine Learning with R and Python’ on Amazon
2. Applying the principles of Machine Learning
3. Informed choices through Machine Learning : Analyzing Kohli, Tendulkar and Dravid
4. Informed choices through Machine Learning-2: Pitting together Kumble, Kapil, Chandra


Find me on Google+

Simplifying Machine Learning: Bias, Variance, regularization and odd facts – Part 4


In both linear and logistic regression the choice of the degree of the polynomial for the hypothesis function is extremely critical. A low degree for the polynomial can result in an underfit, while a very high degree can overfit the data as shown below

41

The figure on the left the data is underfit as we try to fit the data with a first order polynomial which is a straight line. This is a case of strong ‘bias’

The rightmost figure a much higher polynomial is used. All the data points are covered by the polynomial curve however it is not effective in predicting other values. This is a case of overfitting or a high variance.

The middle figure is just right as it intuitively fits the data points the best possible way.

A similar problem exists with logistic regression as shown below

42

There are 2 ways to handle overfitting

a)      Reducing the number of features selected

b)      Using regularization

In regularization the magnitude of the parameters Ɵ is decreased to reduce the effect of overfitting

Hence if we choose a hypothesis function

hƟ (x) = Ɵ0 + Ɵ1x12 + Ɵ2x22 + Ɵ3x33 +  Ɵ4x44

 

The cost function for this without regularization as mentioned in earlier posts

J(Ɵ) = 1/2m Σ(hƟ (xi  – yi)2

Where the key is minimize the above function for the least error

The cost function with regularization becomes

J(Ɵ) = 1/2m Σ(hƟ (xi  – yi)2 + λ Σ Ɵj2

 

As can be seen the regularization now adds a factor Ɵj2  as a part of the cost function which needs to be minimized.

Hence with the regularization factor the problem of underfitting/overfitting can be solved

43

However the trick is determine the value of λ. If λ is too big then it would result in underfitting or resulting in a high bias.

Similarly the regularized equation for logistic regression is as shown below

J(Ɵ) = |1/m Σ  -y * log(hƟ (x))  – (1-y) * (log(1 – hƟ (x))  | + λ/2m Σ Ɵj2

Some tips suggested by Prof Andrew Ng while determining the parameters and features for regression

a)      Get as many training examples. It is worth spending more effort in getting as much examples

b)      Add additional features

c)      Observe changes to the learning algorithm with different values of λ

This post is continued in my next post – Simplifying ML: Impact of degree of polynomial on bias, variance and other insights

Note: This post, in line with my previous posts on Machine Learning,  is based on the Coursera course on Machine Learning by Professor Andrew Ng


Find me on Google+