Bend it like Bluemix, MongoDB with auto-scaling – Part 3

In this last post of this series, I test the performance of Bluemix & MongoDB against  concurrent queries and deletes to the cloud based app with Mongo DB, with auto-scaling on. Before I started these series of tests I moved the Overload policy a couple of notches higher and made it scale out if  memory utilization > 75% for 120 secs and < 30% for 120 secs (from the earlier 55% memory utilization) as shown below.

27

The code for bluemixMongo app can be forked from Devops at bluemixMongo or can be cloned from GitHub at  bluemix-mongo-autoscale. The multi-mechanize scripts can be downloaded from GitHub at multi-mechanize     Before starting the testing I checked the current number of documents inserted by the concurrent inserts (see Bend it like Bluemix., MongoDB using Auto-scaling – Part 2). The total number as determined by checking the logs was 1380 17   Sure enough with the scaling policy change after 2 minutes the number of instanced dropped from 3 to 2

18

1. Querying the bluemixMongo app with Multi-mechanize

The Multi-mechanize Python script used for querying the bluemixMongo app simply invokes the app’s userlist URL (resp=br.open(“http://bluemixmongo.mybluemix.net/userlist/&#8221;)

v_user.py

def run(self):
# create a Browser instance
br = mechanize.Browser()
# don"t bother with robots.txt
br.set_handle_robots(False)
# start the timer
start_timer = time.time()
#print("Display userlist")
# Display 5 random documents
resp=br.open("http://bluemixmongo.mybluemix.net/userlist/")
assert("Example Mongo Page" in resp.get_data())
# stop the timer
latency = time.time() - start_timer
self.custom_timers["Userlist"] = latency
r = random.uniform(1, 2)
time.sleep(r)
self.custom_timers['Example_Timer'] = r

The configuration setup for this script creates 2 sets of 10 concurrent threads

config.cfg
run_time = 300
rampup = 0
results_ts_interval = 10
progress_bar = on
console_logging = off
xml_report = off
[user_group-1]
threads = 10
script = v_user.py
[user_group-2]
threads = 10
script = v_user.py

The corresponding userlist.js for querying the app is shown below. Here the query is constructed by creating a ‘RegularExpression’ with  a random Firstname, consisting of a random letter and a random number. Also the query is also limited to 5 documents.

function(callback)
{
// Display a random set of 5 records based on a regular expression made with random letter, number
var randnum = Math.floor((Math.random() * 10) + 1);
var alpha = ['A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','X','Y','Z'];
var randletter = alpha[Math.floor(Math.random() * alpha.length)];
var val =  randletter + ".*" + randnum + ".*";
// Limit the display to 5 documents
var results = collection.find({"FirstName": new RegExp(val)}).limit(5).toArray(function(err, items){
if(err) {
console.log(err + " Error getting items for display");
}
else {
res.render('userlist',
{ "userlist" : items
}); // end res.render
} //end else
db.close(); // Ensure that the open connection is closed
}); // end toArray function
callback(null, 'two');
}

2. Running the userlist query

The following screenshot shows the userlist query being executed concurrently with Multi-mechanize. Note that the number of  instances also drops down to 1

18

3. Deleting documents with Multi-mechanize

The multi-mechanize script for deleting a document is shown below. This script calls the URL with resp = br.open(“http://bluemixmongo.mybluemix.net/remuser&#8221;). No values are required to be entered into the form and the ‘submit’ is simulated.

v_user.py
def run(self):
# create a Browser instance
br = mechanize.Browser()
# don"t bother with robots.txt
br.set_handle_robots(False)
br.addheaders = [("User-agent", "Mozilla/5.0Compatible")]
# start the timer
start_timer = time.time()
# submit the request
resp = br.open("http://bluemixmongo.mybluemix.net/remuser")
#resp = br.open("http://localhost:3000/remuser")
resp.read()
# stop the timer
latency = time.time() - start_timer
# store the custom timer
self.custom_timers["Load_Front_Page"] = latency
# think-time
time.sleep(2)
# select first (zero-based) form on page
br.select_form(nr=0)
# set form field
br.form["firstname"] = ""
br.form["lastname"] = ""
br.form["mobile"] = ""
# start the timer
start_timer = time.time()
# submit the form
resp = br.submit()
resp.read()
print("Removed")
# stop the timer
latency = time.time() - start_timer
# store the custom timer
self.custom_timers["Delete"] = latency
# think-time
time.sleep(2)

config.cfg

The config file is set to start 2 sets of 10 concurrent threads and execute for 300 secs

[global]
run_time = 300
rampup = 0
results_ts_interval = 10
progress_bar = on
console_logging = off
xml_report = off
[user_group-1]
threads = 10
script = v_user.py
[user_group-2]
threads = 10
script = v_user.py
;

deleteuser.js

This Node.js script does a findOne() document and does a remove with the ‘justOne’ set to true

collection.findOne(function(err, item) {
// Delete just a single record
collection.remove(item, {justOne:true},(function (err, doc) {
if (err) {
// If it failed, return error
res.send("There was a problem removing the information to the database.");
}
else {
// If it worked redirect to userlist
res.location("userlist");
// And forward to success page
res.redirect("userlist");
}
}));
});
collection.find().toArray(function(err, items) {
console.log("Length =----------------" + items.length);
db.close();
});
callback(null, 'two');

4. Running the deleteuser multimechanize script

The output of the script executing and the reduction of the number of instances because of the change in the memory utilization policy is shown

21

5. Multi-mechanize

As mentioned in the previous posts

The multi-mechanize commands are executed as follows
To create a new project
multimech-newproject.exe userlist
This will create 2 folders a) results b) test_scripts and the file c) config.cfg. The v_user.py needs to be updated as required

To run the script
multimech-run.exe userlist

The details of the response times for the query is shown below .

All_Transactions_response_times_intervals

 

More details on latency and throughput for the queries and the deletes are included in the results folder of multi-mechanize    

6. Autoscaling The details of the auto-scaling service is shown below

a. Scaling Metric Statistics

22

b. Scaling history 23

7. Monitoring and Analytics (M & A) The output from M & A is shown  below

 

a. Performance Monitoring 24  

b. Log Analysis output The log analysis give a detailed report on the calls made to the app, the console log output and other useful information

25

The series of the 3 posts Bend it like Bluemix, MongoDB with auto-scaling demonstrated the ability of the cloud to expand and shrink based on the load on the cloud.An important requirement for Cloud Architects is design applications that can  scale horizontally without impacting the performance while keeping the costs optimum. The real challenge to auto-scaling is the need to make the application really distributed as opposed to the monolithic architectures we are generally used to.   I hope to write another post on creating simple distributed application later.

Hasta la Vista!

Also see
1.  Bend it like Bluemix, MongoDB with autoscaling – Part 1
2. Bend it like Bluemix, MongoDB with autoscaling – Part 2

You may like :
a) Latency, throughput implications for the cloud
b) The many faces of latency
c) Brewing a potion with Bluemix, PostgreSQL & Node.js in the cloud
d)  A Bluemix recipe with MongoDB and Node.js
e)Spicing up IBM Bluemix with MongoDB and NodeExpress
f) Rock N’ Roll with Bluemix, Cloudant & NodeExpress

Disclaimer: This article represents the author’s viewpoint only and doesn’t necessarily represent IBM’s positions, strategies or opinions

Bend it like Bluemix, MongoDB using Auto-scaling – Part 2!

This post takes off from my previous post Bend it like Bluemix, MongoDB using Auto-scale –  Part 1! In this post I generate traffic using Multi-Mechanize a performance test framework and check out the auto-scaling on Bluemix, besides also doing some rudimentary check on the latency and throughput for this test application. In this particular post I generate concurrent threads which insert documents into MongoDB.

Note: As mentioned in my earlier post this is more of a prototype and the typical situation when architecting cloud applications. Clearly I have not optimized my cloud app (bluemixMongo) for maximum efficiency. Also this a simple 2 tier application with a rudimentary Web interface and a NoSQL DB at This is more of a Proof of Concept (PoC) for the auto-scaling service on Bluemix.

As earlier mentioned the bluemixMongo app is a modification of my earlier post Spicing up a IBM Bluemix cloud app with MongoDB and NodeExpress. The bluemixMongo cloud app that was used for this auto-scaling test can be forked from Devops at bluemixMongo or from GitHib at bluemix-mongo-autoscale. The Multi-mechanize config file, scripts and results can be found at GitHub in multi-mechanize

The document to be inserted into MongoDB consists of 3 fields – Firstname, Lastname and Mobile. To simulate the insertion of records into MongoDB I created a Multi-Mechanize script that will generate random combination of letters and numbers for the First and Last names and a random 9 digit number for the mobile. The code for this script is shown below

1. The snippet below measure the latency for loading the ‘New User’ page

v_user.py
def run(self):
# create a Browser instance
br = mechanize.Browser()
# don"t bother with robots.txt
br.set_handle_robots(False)
print("Rendering new user")
br.addheaders = [("User-agent", "Mozilla/5.0Compatible")]
# start the timer
start_timer = time.time()
# submit the request
resp = br.open("http://bluemixmongo.mybluemix.net/newuser")
#resp = br.open("http://localhost:3000/newuser")
resp.read()
# stop the timer
latency = time.time() - start_timer
# store the custom timer
self.custom_timers["Load Add User Page"] = latency
# think-time
time.sleep(2)

The script also measures the time taken to submit the form containing the Firstname, Lastname and Mobile

# select first (zero-based) form on page
br.select_form(nr=0)
# Create random Firstname
a = (''.join(random.choice(string.ascii_uppercase) for i in range(5)))
b = (''.join(random.choice(string.digits) for i in range(5)))
firstname = a + b
# Create random Lastname
a = (''.join(random.choice(string.ascii_uppercase) for i in range(5)))
b = (''.join(random.choice(string.digits) for i in range(5)))
lastname = a + b
# Create a random mobile number
mobile = (''.join(random.choice(string.digits) for i in range(9)))
# set form field
br.form["firstname"] = firstname
br.form["lastname"] = lastname
br.form["mobile"] = mobile
# start the timer
start_timer = time.time()
# submit the form
resp = br.submit()
print("Submitted.")
resp.read()
# stop the timer
latency = time.time() - start_timer
# store the custom timer
self.custom_timers["Add User"] = latency

2. The config.cfg file is setup to generate 2 asynchronous thread pools of 10 threads for about 400 seconds

config.cfg
run_time = 400
rampup = 0
results_ts_interval = 10
progress_bar = on
console_logging = off
xml_report = off
[user_group-1]
threads = 10
script = v_user.py
[user_group-2]
threads = 10
script = v_user.py

3. The code to add a new user in the app (adduser.js) uses the ‘async’ Node module to enforce sequential processing.

adduser.js
async.series([
function(callback)
{
collection = db.collection('phonebook', function(error, response) {
if( error ) {
return; // Return immediately
}
else {
console.log("Connected to phonebook");
}
});
callback(null, 'one');
},
function(callback)
// Insert the record into the DB
collection.insert({
"FirstName" : FirstName,
"LastName" : LastName,
"Mobile" : Mobile
}, function (err, doc) {
if (err) {
// If it failed, return error
res.send("There was a problem adding the information to the database.");
}
else {
// If it worked, redirect to userlist - Display users
res.location("userlist");
// And forward to success page
res.redirect("userlist")
}
});
collection.find().toArray(function(err, items) {
console.log("**************************>>>>>>>Length =" + items.length);
db.close(); // Make sure that the open DB connection is close
});
callback(null, 'two');
}
]);

4. To checkout auto-scaling the instance memory was kept at 128 MB. Also the scale-up policy was memory based and based on the memory of the instance exceeding 55% of 128 MB for 120 secs. The scale up based on CPU utilization was to happen when the utilization exceed 80% for 300 secs.

6

5. Check the auto-scaling policy

7

6. Initially as seen there is just a single instance

9

7. At around 48% of the script with around 623 transactions the instance is increased by 1. Note that the available memory is decreased by 640 MB – 128 MB = 512 MB.

10

8. At around 1324 transactions another instance is added

Note: Bear in mind

a) The memory threshold was artificially brought down to 55% of 128 MB.b) The app itself is not optimized for maximum efficiency

12

9. The Metric Statistics tab for the Autoscaling service shows this memory breach and the trigger for autoscaling

13

10. The Scaling history Tab for the Auto-scaling service displays the scale-up and scale-down and the policy rules based on which the scaling happened

14

11. If you go to the results folder for the Multi-mechanize tool the response and throughput are captured.

The multi-mechanize commands are executed as follows
To create a new project
multimech-newproject.exe adduser
This will create 2 folders a) results b) test_scripts and the file c) config.cfg. The v_user.py needs to be updated as required

To run the script
multimech-run.exe adduser

12.The results are shown below

a) Load Add User page (Latency)

Load Add User Page_response_times_intervals

b) Load Add User (Throughput)

Load Add User Page_throughput

c)Load Add User (Latency)

Add User_response_times_intervals

d) Load Add User (Throughput)

Add User_throughput

The detailed results can be seen at GitHub at multi-mechanize

13. Check the Monitoring and Analytics Page

a) Availability

16

b) Performance monitoring

15

So once the auto-scaling happens the application can be fine-tuned and for performance. Obviously one could do it the other way around too.

As can be seen adding NoSQL Databases like MongoDB, Redis, Cloudant DB etc. Setting up the auto-scaling policy is also painless as seen above.

Of course the real challenge in cloud applications is to make them distributed and scalable while keeping the applications themselves lean and mean!

See also

Also see
1.  Bend it like Bluemix, MongoDB with autoscaling – Part 1
3. Bend it like Bluemix, MongoDB with autoscaling – Part 3

You may like :
a) Latency, throughput implications for the cloud
b) The many faces of latency
c) Brewing a potion with Bluemix, PostgreSQL & Node.js in the cloud
d)  A Bluemix recipe with MongoDB and Node.js
e)Spicing up IBM Bluemix with MongoDB and NodeExpress
f) Rock N’ Roll with Bluemix, Cloudant & NodeExpress

a) Latency, throughput implications for the cloud

b) The many faces of latency

c) Design principles of scalable, distributed systems

Disclaimer: This article represents the author’s viewpoint only and doesn’t necessarily represent IBM’s positions, strategies or opinions

Bend it like Bluemix, MongoDB using Auto-scale – Part 1!

In the next series of posts I turn on the heat on my cloud deployment in IBM Bluemix and check out the elastic nature of this PaaS offering. Handling traffic load and elastically expanding and contracting is what the cloud does best. This is  where the ‘rubber really meets the road”. In this series of posts I generate the traffic load using Multi –Mechanize a performance test framework created by Corey Goldberg.

This post is based on an earlier cloud app that I created on Bluemix namely Spicing up a IBM Bluemix Cloud app with MongoDB and NodeExpress. I had to make changes to this code to iron out issues while handling concurrent  inserts, displays and deletes issued from the multi-mechanize tool and also to manage the asynchronous nightmare of Nodejs.

The code for this Bluemix, MongoDB with Auto-scaling can be forked  from Devops at bluemixMongo. The code can also be cloned from GitHub at bluemix-mongo-autoscale

1.  To get started, fork the code from Devops at bluemixMongo. Then change the host name in manifest.yml to something unique and click the Build and Deploy button on the top right in the page.

26

1a.  Alternatively the code can be cloned from GitHub at bluemix-mongo-autoscale. From the directory where the code is cloned push the code using Cloud Foundry’s cf command as follows

cf login -a https://api.ng.bluemix.net

cf push bluemixMongo –p . –m 128M

2. Now add the MongoDB service and click ‘OK’ to restage the server.

3

3. Add the Monitoring and Analytics (M & A) and also the Auto-scaling service. The M& A gives a good report on the Availability, Performance logging, and also provides Logging Analysis. The Auto-scaling service is the service that allows the app to expand elastically to changing traffic loads.

4

4. You should see the bluemixMongo app running with 3 services MongoDB, Autoscaling and M&A

5

5. You should now be able click the bluemixMongo.mybluemix.net and check the application out.

6.Now you configure the Overload Policy (auto scaling) policy. This is a slightly contrived example and the scaling policy is set to scale up if the Memory exceeds 55%. (Typically the scale up would be configured for > 80% memory usage)

6

7. Now check the configured Auto-scaling policy

7

8. Change the Memory Quota as appropriate. In my case I have kept the memory quota as 128 MB. Note the available memory is 640 MB and hence allows up to 5 instances. (By the way it is also possible to set any other value like 100 MB).

5

9. Click the Monitoring and Analytics service and take a look at the output in the different tabs

8

10. Next you need to set up the Performance test tool – Multi mechanize. Multi-mechanize creates concurrent threads to generate the load on a Web site or service. It is based on Python which  makes it easy to modify the scripts for hitting a website, making a REST call or submitting a form.

To setup Multi-mechanize you also need additional packages like numpy  matplotlib etc as the tool generates traffic based on a user provided script, measures latency and throughput besides also generating graphs for these.

For a detailed steps for setup of Multi mechanize please follow the steps in Trying out multi-mechanize web performance and load testing framework. Note: I would suggest that you install Python 2.7.2 and not the later 3.x version as some of the packages are based on the 2.7 version which has a slightly different syntax for certain Python statements

In the next post I will run a traffic test on the bluemixMongo application using Multi-mechanize and observe how the cloud app responds to the load.

Watch this space!
Also see
Bend it like Bluemix, MongoDB with autoscaling – Part 2!
Bend it like Bluemix, MongoDB with autoscaling – Part 3

You may like :
a) Latency, throughput implications for the cloud
b) The many faces of latency
c) Brewing a potion with Bluemix, PostgreSQL & Node.js in the cloud
d)  A Bluemix recipe with MongoDB and Node.js
e)Spicing up IBM Bluemix with MongoDB and NodeExpress
f) Rock N’ Roll with Bluemix, Cloudant & NodeExpress

Disclaimer: This article represents the author’s viewpoint only and doesn’t necessarily represent IBM’s positions, strategies or opinions

Introducing the Software Defined Computing Pattern

We are on the verge of a new ‘Software Defined’ revolution. The phrase ‘software defined’ refers to the ability to be able to programmatically control computing elements namely compute, storage, network. We are entering into a bold, brave ‘software defined’ era. Before we delve into the ‘whats’ of this revolution I would rather like to outline the ‘whys’. What motivated this new thinking in computing?

Why “Software Defined’?

In the late 90s, IT infrastructure was unwieldy and unmanageable, Whenever new IT infrastructure had to be procured there was the need to accurately size the required hardware infrastructure, software, software licenses, routers, switches and storage elements The problem in those days had to do with dimensioning. The CIO and IT managers had to be able to calculate the requisite hardware, and software elements. The problem was that if the estimate was too conservative the infrastructure would be under-dimensioned and would not be able to handle the load. On the other hand if it was over-dimensioned then hardware and software would lie idle and would result in a wasted resources and money. So it used to be a fine balancing act. Even if the IT managers got lucky and got the size right, it is quite likely that conditions in the enterprise changed resulting in them having to take a relook at their infrastructure.

This problem of dimensioning IT infrastructure was effectively solved by a technology called ‘virtualization’. In the mid 1960s IBM created a CP-67 Mainframe computer, which had the elements of virtualization. Much later in 1998, VMWare created the VMWare workstation that could run multiple Operating Systems (OS’es). In essence virtualization abstracts the hardware of the computer, storage and network ports through a software known as the hypervisor. Over the hypervisor, the user can run any operating system like Windows, Linux, AIX etc. These OS’es which run on top of the hypervisor are known as guest OS’es. Besides, virtualization technology, enables different virtual servers to share one physical server. This process, called server consolidation, helps to increase hardware utilization, load balancing, and optimization of the IT resources.

The ability to virtualize the computer hardware really triggered some major advancements in computing. Prior to virtualization each server would run a single OS with a single application resulting in the server being idle for close to 60% of the time. Virtualization now made it possible for enterprises to run several OS’es each with its own application on a single computer. Hence the computing resources were used more effectively and efficiently. This is shown below

a

Virtualization and the dotcom bust around the year 2000 effectively paved the way for a ‘Software Defined’ future. In others words there was a need to control resources programmatically aimed at more efficient utilization of the resources.

The move to the Cloud: Prior to the advent of the cloud, enterprises hosted their applications in their internal IT infrastructure with virtualization technology. With the pay-per-use, utility style computing, spearheaded by the likes of Amazon, many enterprises moved their applications to shared, multi-tenant (multiple customers) , 3rd party hosting service provider, also known as the cloud providers

With the advent of Cloud Computing the software defined era made major advances. Here is the reason why. Computing as such stands on 3 main pillars- computing, storage and networking.

As mentioned earlier in the post, one of the thorny issues in procuring & managing IT infrastructure is the problem of dimensioning or right sizing. Virtualization did solve this problem to some extent but there was a need to provide more control to the user. This is where the ‘Software Defined’ technologies emerged. This ‘Software Defined’ paradigm is based on prudence and sound engineering judgment. The whole premise of making anything ‘software defined’ is to ensure that resources allocated for any task (computing, storage or networking) are optimal. The idea is that resources should be allocated exactly as needed and released and included into a shared, common pool, when idle. Hence we have the advent of

  • Software Defined Compute
  • Software Defined Storage
  • Software Defined Network

Software Defined Compute (SDC): In the clouds these days it is possible to precisely control the computing elements that will make up your application. So you can choose your CPU type, CPU speed, hypervisor, OS, RAM size, disks etc. You can also provision your application to expand or contract elastically to the demands of the times rather than under-provisioning or over-provisioning, This is done through a process called auto scaling. The desired configuration can be controlled through APIs provided by the Cloud Provider.

Software Defined Storage (SDS): There are multiple storage technologies that span DAS, SATA drives, SAN and NAS storage. These different storage technologies address different needs of price, storage capacity and performance, The Software Defined Storage allows the user to control the type of storage that is needed for the application through software APIs. In storage the initial allocation to each application is rather conservative. Additional storage is assigned from a common pool of storage to the applications that needs it the most. Once the storage is no longer needed it is reclaimed.

Software Defined Network(SDN): SDN is the result of pioneering effort by Stanford University and University of California, Berkeley and is based on the Open Flow Protocol and represents a paradigm shift to the way networking elements operate. Software Defined Networks (SDN) decouples the routing and switching of the data flows and moves the control of the flow to a separate network element namely, the flow controller.   The motivation for this is that the flow of data packets through the network can be controlled in a programmatic manner allowing for multiple data streams to flow over the communicating paths with each stream individually defined for speed, latency, QoS etc.

Software Defined Datacenter (SDDC): A datacenter has racks and racks of servers, storage boxes, and networking equipment. A datacenter where one is able to provision, manage and operate these equipment through APIs or through programs is a Software Defined Datacenter. Imagine being able to put together a car with the body of a BMW, the interior of a Merc, the engine of a Ferrari and the electronics of a Tesla! That is what a SDDC allows you to do!

Software Defined Computing Pattern (SDCP): Once the SDC, SDS and SDN reach a level of maturity I think the next logical step would be a move to Software Defined Computing Patterns. This is what I am implying by this. Theoretically we can reduce the different types of enterprise applications to a set of computing patterns for e.g. e-commerce, social network, email server, Web portal etc. The Software Defined Computing Pattern would allow the user to choose a computing pattern based on the enterprise application. This would result in the setting up of the appropriate computing resources, storage resources, middleware and networking elements in a cloud. . The user would them need to host their applications on this environment. Here is a good link to cloud patterns.

In this context I would like to bring to your notice that there is another parallel trend called Software Defined Architecture (SDA) coined by Gartner in 2014. The SDA Gateway is responsible for virtualizing the internal API, protocols and models used to external API, User Interface and resources. Here is a diagram of SDA

sda-2

The pace of progress in the last couple of years has been really scorching. The ability to have solve most large problem through a Software Defined Computing Pattern is sure to happen.

Designing a Scalable Architecture for the Cloud

The promise of the cloud is the unlimited computing power and storage capacities coupled with the pay-per-use policy. This makes the cloud particularly irresistible for hosting web applications and applications whose demand vary periodically. In order to take full advantage of the cloud the application must be designed for optimum performance. Though the cloud provides resources on-demand a badly designed application can hog resources and prove to be extremely expensive in the long run.

One of the first requirements for deploying applications on the cloud is that it should be scalable. Scalability denotes the ability to handle increasing traffic simply by adding more computing resources of the same kind rather than adding resources with greater horse power. This is also referred to scaling horizontally.

Assuming that the application has been sufficiently profiled and tuned for high performance there are certain key considerations that need to be taken into account while deploying on the cloud – public or private.  Some of them are being able to scale on demand, providing for high availability, resiliency and having sufficient safeguards against failures.

Given these requirements a scalable design for the Cloud can be viewed as being made up of the following 5 tiers of layers

The DNS tier – In this tier the user domain is hosted on a DNS service like Ultra DNS or Route 53. These DNS services distribute the DNS lookups geographically. This results in connecting to a DNS Server that is geographically closer to the user thus speeding the DNS lookup times. Moreover since the DNS lookups are distributed geographically it also builds geographic resiliency as far as DNS lookups are concerned

Load Balancer-Auto Scaling Tier – This tier is responsible for balancing the incoming traffic among compute instances in the cloud. The load balancing may be made on a simple round-robin technique or may be based on the actual CPU utilization of the individual instances. Typically at this layer we should also have an auto-scaling policy which will add more instances if the traffic to the application increases above a threshold or terminate instances when the traffic falls below a specific threshold.

Compute-Instance Tier – This layer hosts the actual application in individual compute instances on the cloud. It is assumed that the application has been tuned for maximum performance. The choice of small, medium or large CPU should be based on the traffic handling capacity of the instance type versus the cost/hr of the instance.

Cache Tier – This is an important layer in the cloud application where there are multiple instances. The cache tier provides a distributed cache for all the instances. With a distributed caching system like memcached it is possible to share global data between instances. The memcached application uses a consistent-hashing technique to distribute data among a set of participating servers. The consistent hashing method allow for handling of server crashes and new servers joining into the cache layer.

Database Tier – The Database tier is one of the most critical layers of the application. At a minimum the database should be configured in an active-standby mode. Ideally it is always better to have the active and standby in different availability zones to better handle disasters in a particular zone. Another consideration is have separate read replicas that handle reads to database while the primary database handles the write operations

Besides the above considerations it is always good to host the web application in different availability zone thus safeguarding against disasters in a particular region.

Cloud Computing – Design Considerations

Cloud Computing is definitely turning out to be the proverbial carrot for enterprises to host their applications on the public cloud. The cloud promises many benefits to users of the cloud. Cloud Computing obviates the need for upfront capital expenses for computing infrastructure, real estate and maintenance personnel. This technology allows for scaling up or scaling down as demand on the application fluctuates.

While the advantages are many, migrating application onto the cloud is no trivial task.  The cloud is essentially composed of commodity servers. The cloud creates multiple instances of the application and runs it on the same or on different servers. The benefit of executing in parallel is that the same task can be completed faster. The cloud offers enterprises the ability to quickly scale to handle increasing demands,

But the process of deploying applications on to the cloud requires that the application be re architected to take advantage of this parallelism that the cloud provides. But the ability to handle parallelization is no simple task. The key attributes that need to be handled by distributed systems is the need for consistency and availability. If there are variables that need to be shared across the parallel instances then the application must make special provisions to handle this and ensure consistency. Similarly the application must be designed to handle failures.

Applications that are intended to be deployed on the cloud must be designed to scale-out rather than having the ability to scale-up. Scaling up refers to the process of adding more horse power by way of faster CPUs, more RAM and faster throughput.  But applications that need to be deployed on the cloud need to have the ability to scale out or scale horizontally where more servers are added without any change in processing horsepower.  The design for horizontal scalability is the key to cloud computing architectures.

Some of the key principles to keep in mind while designing for the cloud is to ensure that the application is composed of loosely coupled processes preferably based on SOA principles.  While a multi-threaded architecture where resource sharing through mutexes works in monolithic applications such a architecture is of no help when there are multiple instances of the same application running on different servers. How does one maintain consistency of the shared resource across instances?  This is a tough problem to solve. Ideally the application should be thread safe and should be based on a shared – nothing kind of architecture. One such technique is to use queues that the cloud provides as a means of sharing across instances. However this may impact the performance of the system.  Other methods include using ‘memcached’ which has been used successfully by Facebook, Twitter, Livejournal, Zynga etc deployed on the cloud. Still another method is to use the Map-Reduce algorithm where the variables across instances are handled by ‘map’ and the ‘reduce’ part handles the consistency across instances.

Another key consideration is the need to support availability requirements. Since the cloud is made up of commodity hardware there is every possibility of servers failing.  The application must be designed with inbuilt resilience to handle such failures. This could by designing active-standby architecture or by providing for checkpointing so that application can restart from some known previous point.

Hence while cloud computing is the way to go in the future there is a need to be able to carefully design the application so that full advantage of the cloud can be taken.