GooglyPlusPlus2021 with IPL 2021, as-it-happens!

A brand new season of IPL 2021 is on its way, and I intend to keep my Shiny app GooglyPlusPlus updated with all the analysis “as-it-happens”. I had written a post earlier Big Data 7: yorkr waltzes with Apache NiFi, where I used my R package yorkr in a NiFi pipeline to automate downloading, converting and generating appropriate data for GooglyPlusPlus. However, using Apache NiFi for daily updates would be an overkill. So, I have created a ‘big bash script’ (with shell,R,python scripts) and scheduled daily with CRON, which will get daily updates from Cricsheet, convert the yaml files, generate the necessary data files for GooglyPlusPlus in an automated way, using my R package yorkr, and integrate with the Shiny app

Now, you should be able to do detailed analysis of batsmen, bowlers, IPL matches, IPL teams and also do the ranking of the batsmen and bowlers as new data is added on a daily basis. Also remember that GooglyPlusPlus2021 can do similar analysis for all T20 formats (Intl. T20 (men,women), BBL, NTB, PSL, CPL, WBB etc.)

Check out GooglyPlusPlus2021-IPL 2021

I will be keeping the app updated as data becomes available after the match. Do check it out. Here are some random analysis of the the completed 29 matches (see included matches in table below)

You can download/clone the code for GooglyPlusPlus2021 from Github at gpp2021-1

You can perform analysis of the completed matches in the ‘IPL Match’ tab as shown below

A) Mumbai Indians-Royal Challengers Bangalore-2021-04-09

a) Match scorecard – Mumbai Indians

Note: The scorecards are computed in real time.

b) Batting Partnerships – Royal Challengers Bangalore

c) Bowling Wicket Kind – Royal Challengers Bangalore

B) Chennai Super Kings vs Delhi Capitals – 2021-04-10

d) Batting Partnerships (table) – Delhi Capitals

e) Match Worm Graph

C) Kolkata Knight Riders vs Sunrisers Hyderabad – 2021-04-11

f) Batsmen vs Bowlers

D) Final ranks of IPL 2021 batsmen

E) Final ranks of IPL 2021 bowlers

Incidentally GooglyPlusPlus2021 has also been updated with all matches PSL 2021. Here is a sample

PSL 2021

F) Quetta Gladiators vs Lahore Qalanders – 22-02-2021

G) Ranks of batsmen PSL 2021

H) Ranks bowlers PSL 2021

Important note :

Note: 1) The GooglyPlusPlus2021 Shiny app also includes functions for performing the following analysis namely

  • detailed analysis of batsmen
  • detailed analysis of bowlers
  • match analysis
  • Head-to-head between 2 IPL teams
  • Analysis of IPL team against all other teams
  • Ranking of batsmen based on number of years and matches played
  • Ranking of bowlers based on number of years and matches played

So do check the other tabs of this app

2) GooglyPlusPlus2021 can do similar analysis for other T20 games like Intl. T20 (men,women), BBL, NTB, PSL and so on.

Give GooglyPlusPlus2021 a spin!!

Download/clone the code for GooglyPlusPlus2021 from Github at gpp2021-1

GooglyPlusPlus2021 has been updated with all the completed 29 matches

Mumbai Indians-Royal Challengers Bangalore-2021-04-09Chennai Super Kings-Delhi Capitals-2021-04-10
Kolkata Knight Riders-Sunrisers Hyderabad-2021-04-11Punjab Kings-Rajasthan Royals-2021-04-12
Mumbai Indians-Kolkata Knight Riders-2021-04-13Royal Challengers Bangalore-Sunrisers Hyderabad-2021-04-14
Delhi Capitals-Rajasthan Royals-2021-04-15Punjab Kings-Chennai Super Kings-2021-04-16
Mumbai Indians-Sunrisers Hyderabad-2021-04-17Royal Challengers Bangalore-Kolkata Knight Riders-2021-04-18
Punjab Kings-Delhi Capitals-2021-04-18Chennai Super Kings-Rajasthan Royals-2021-04-19
Mumbai Indians-Delhi Capitals-2021-04-20Punjab Kings-Sunrisers Hyderabad-2021-04-21
Chennai Super Kings-Kolkata Knight Riders-2021-04-21Rajasthan Royals-Royal Challengers Bangalore-2021-04-22
Mumbai Indians-Punjab Kings-2021-04-23Kolkata Knight Riders-Rajasthan Royals-2021-04-24
Chennai Super Kings-Royal Challengers Bangalore-2021-04-25Delhi Capitals-Sunrisers Hyderabad-2021-04-25
Punjab Kings-Kolkata Knight Riders-2021-04-26Royal Challengers Bangalore-Delhi Capitals-2021-04-27
Sunrisers Hyderabad-Chennai Super Kings-2021-04-28Rajasthan Royals-Mumbai Indians-2021-04-29
Kolkata Knight Riders-Delhi Capitals-2021-04-29Punjab Kings-Royal Challengers Bangalore-2021-04-30.RData
Chennai Super Kings-Mumbai Indians-2021-05-01Rajasthan Royals-Sunrisers Hyderabad-2021-05-02
Punjab Kings-Delhi Capitals-2021-05-02

Watch this space!

Also see

  1. Introducing GooglyPlusPlus!!!
  2. Introducing cricket package yorkr: Part 1- Beaten by sheer pace!
  3. Cricketr adds team analytics to its repertoire!!!
  4. Deep Learning from first principles in Python, R and Octave – Part 3
  5. Introducing QCSimulator: A 5-qubit quantum computing simulator in R
  6. Practical Machine Learning with R and Python – Part 5

To see all posts click Index of posts

GooglyPlusPlus 2020!!

I have updated my GooglyPlusPlus Shiny app with data from latest IPL 2020. GooglyPlusPlus  2020 is also based on my R package yorkr.  To know more about yorkr (see Revitalizing R package yorkr.) Now you should be able to analyze IPL matches, teams, players upto IPL 2020. Note: My latest GooglyPlusPlus 2020 can analyze all formats of T20 matches. yorkr uses data from Cricsheet

There are 5 tabs in each of the T20 formats

i) Analyze T20 batsmen ii) Analyze T20 bowlers. iii) Analyze T20 match iv) Analyze T20 team

vs another T20 team v) Analyze overall performance of T20 against all other teams

I plan to update GooglyPlusPlus  at least twice a year  to keep it abreast of all the latest data of all T20 formats

In GooglyPlusPlus 2020 you can check out IPL data upto 2020, besides other T20 formats like BBL, PSL, NTB, WBBL, Intl. T20 etc.

Try out GooglyPlusPlus 2020 Shiny app!!

You can clone/fork the code from Github GooglyPlusPlus2020

Important note: My earlier app GooglyPlusPlus handled all T20 formats including ODI (men and women). Due to an issue with Shiny, I could not include ODI matches in GooglyPlusPlus 2020

Here are some snapshots from GooglyPlusPlus 2020

A. Batting – Runs vs Deliveries (Shreyas Iyer)

 

 

B. Batting – Cumulative Batting Average (Shubman Gill)

 

C. Bowling – Mean Economy Rate (T. Natarajan)

 

D. Bowling -Bowler’s wickets against opposition (N A Saini)

E. Match scorecard – CSK vs DC 2020-10-17

The scorecards batting and bowling are computed on the fly for all T20 matches

 

F. Match – Batsmen vs Bowlers (DD vs KKR 2015-04-20)

 

G. Head-to-head: MI vs  KXIP all matches – Batting scorecard

H. Overall team performance- Team Bowler Wicket kind: Rajasthan Royals

Clone/fork the code from Github GooglyPlusPlus2020

Do take GooglyPlusPlus 2020 for a drive! While I have highlighted only IPL T20, because I have updated with the latest data, GooglyPlusPlus 2020 can also handle other T20 formats like BBL, Natwest, PSL, Intl. T20 (men &women) and WBB

 

Hope you have fun!

Also see

1.Big Data 7: yorkr waltzes with Apache NiFi

2. Deep Learning from first principles in Python, R and Octave – Part 6

3. Deconstructing Convolutional Neural Networks with Tensorflow and Keras

4. Sea shells on the seashore

5. Practical Machine Learning with R and Python – Part 3

6. Benford’s law meets IPL, Intl. T20 and ODI cricket

To see all posts click Index of posts

Ranking T20 players in Intl T20, IPL, BBL and Natwest using yorkpy

There is a voice that doesn’t use words, listen.
When someone beats a rug, the blows are not against the rug, but against the dust in it.
I lost my hat while gazing at the moon, and then I lost my mind.
Rumi

Introduction

After a long hiatus, I am back to my big, bad, blogging ways! In this post I rank T20 players from several different leagues namely

  • International T20
  • Indian Premier League (IPL) T20
  • Big Bash League (BBL) T20
  • Natwest Blast (NTB) T20

I have added 8 new functions to my Python Package yorkpy, which will perform the ranking for the above 4 T20 League formats. To know more about my Python package see Pitching yorkpy . short of good length to IPL – Part 1, and the related posts on yorkpy. The code can be easily extended to other leagues which have a the same ‘yaml’ format for the matches. I also fixed some issues which started to crop up, possibly because a few things have changed in the new data.

The new functions are

  1. rankIntlT20Batting()
  2. rankIntlT20Batting()
  3. rankIPLT20Batting()
  4. rankIPLT20Batting
  5. rankBBLT20Batting()
  6. rankBBLT20Batting()
  7. rankNTBT20Batting()
  8. rankNTBT20Batting()

The yorkpy package uses data from Cricsheet

You can clone/fork the code for yorkpy at yorkpy

You can download the PDF of the post from Rank T20

yorkpy can be installed with ‘pip install yorkpy

1. International T20

The steps to do before ranking for International T20 matches are 1. Download International T20 zip file from Cricsheet Intl T20 2. Unzip the file. This will create a folder with yaml files

import yorkpy.analytics as yka
#yka.convertAllYaml2PandasDataframesT20("../t20s","../data")

This above step will convert the yaml files into CSV files. Now do the ranking as below

1a. Ranking of International T20 batsmen

import yorkpy.analytics as yka
intlT20RankBatting=yka.rankIntlT20Batting("C:\\software\\cricket-package\\yorkpyPkg\\data\\data")
intlT20RankBatting.head(15)
##                      matches  runs_mean     SR_mean
## batsman                                            
## V Kohli                   58  38.672414  125.212402
## KS Williamson             42  32.595238  122.884631
## Mohammad Shahzad          52  31.942308  118.212288
## CH Gayle                  50  31.140000  111.869984
## BB McCullum               69  29.492754  117.011666
## MM Lanning                48  28.812500   98.582663
## SJ Taylor                 44  28.659091   98.684856
## MJ Guptill                68  28.573529  117.673702
## DA Warner                 71  28.507042  121.142746
## DPMD Jayawardene          53  27.584906  107.787092
## KC Sangakkara             54  26.407407  106.039838
## JP Duminy                 68  26.294118  114.606717
## TM Dilshan                78  26.243590   97.910384
## RG Sharma                 65  25.907692  113.056548
## H Masakadza               53  25.566038   99.453880

1b. Ranking of International T20 bowlers

import yorkpy.analytics as yka
intlT20RankBowling=yka.rankIntlT20Bowling("C:\\software\\cricket-package\\yorkpyPkg\\data\\data")
intlT20RankBowling.head(15)
##                       matches  wicket_mean  econrate_mean
## bowler                                                   
## Umar Gul                   58     1.603448       7.637931
## SL Malinga                 78     1.500000       7.409188
## Saeed Ajmal                63     1.492063       6.451058
## DW Steyn                   46     1.478261       7.014855
## A Shrubsole                45     1.422222       6.294444
## M Morkel                   41     1.292683       7.680894
## KMDN Kulasekara            57     1.280702       7.476608
## TG Southee                 51     1.274510       8.759804
## SCJ Broad                  53     1.264151            inf
## Shakib Al Hasan            58     1.241379       6.836207
## R Ashwin                   44     1.204545       7.162879
## Nida Dar                   44     1.204545       6.083333
## KH Brunt                   44     1.204545       5.982955
## KD Mills                   42     1.166667       8.289683
## SR Watson                  46     1.152174       8.246377

2. Indian Premier League (IPL) T20

The steps to do before ranking for IPL T20 matches are 1. Download IPL T20 zip file from Cricsheet IPL T20 2. Unzip the file. This will create a folder with yaml files

import yorkpy.analytics as yka
#yka.convertAllYaml2PandasDataframesT20("../ipl","../ipldata")

This above step will convert the yaml files into CSV files in the /ipldata folder. Now do the ranking as below

2a. Ranking of batsmen in IPL T20

import yorkpy.analytics as yka
IPLT20RankBatting=yka.rankIPLT20Batting("C:\\software\\cricket-package\\yorkpyPkg\\data\\ipldata")
IPLT20RankBatting.head(15)
##                    matches  runs_mean     SR_mean
## batsman                                          
## DA Warner              129  37.589147  119.917864
## CH Gayle               123  36.723577  125.256818
## SE Marsh                70  36.314286  114.707578
## KL Rahul                59  33.542373  123.424971
## MEK Hussey              60  33.400000  100.439187
## V Kohli                174  32.413793  115.830849
## KS Williamson           42  31.690476  120.443172
## AB de Villiers         143  30.923077  128.967081
## JC Buttler              45  30.800000  132.561154
## AM Rahane              118  30.330508  102.240398
## SR Tendulkar            79  29.949367  101.651959
## F du Plessis            65  29.415385  112.462114
## Q de Kock               51  29.333333  110.973836
## SS Iyer                 47  29.170213  102.144222
## G Gambhir              155  28.741935  103.997558

2b. Ranking of bowlers in IPL T20

import yorkpy.analytics as yka
IPLT20RankBowling=yka.rankIPLT20Bowling("C:\\software\\cricket-package\\yorkpyPkg\\data\\ipldata")
IPLT20RankBowling.head(15)
##                      matches  wicket_mean  econrate_mean
## bowler                                                  
## SL Malinga               122     1.540984       7.173361
## Imran Tahir               43     1.465116       8.155039
## A Nehra                   88     1.375000       7.923295
## MJ McClenaghan            56     1.339286       8.638393
## Rashid Khan               46     1.304348       6.543478
## Sandeep Sharma            79     1.303797       7.860759
## MM Patel                  63     1.301587       7.530423
## DJ Bravo                 131     1.282443       8.458333
## M Morkel                  70     1.257143       7.760714
## SP Narine                109     1.256881       6.747706
## YS Chahal                 83     1.228916       8.103659
## R Vinay Kumar            104     1.221154       8.556090
## RP Singh                  82     1.219512       8.149390
## CH Morris                 52     1.211538       7.854167
## B Kumar                  117     1.205128       7.536325

3. Natwest T20

The steps to do before ranking for Natwest T20 matches are 1. Download Natwest T20 zip file from Cricsheet NTB T20 2. Unzip the file. This will create a folder with yaml files

import yorkpy.analytics as yka
#yka.convertAllYaml2PandasDataframesT20("../ntb","../ntbdata")

This above step will convert the yaml files into CSV files in the /ntbdata folder. Now do the ranking as below

3a. Ranking of NTB batsmen

import yorkpy.analytics as yka
NTBT20RankBatting=yka.rankNTBT20Batting("C:\\software\\cricket-package\\yorkpyPkg\\data\\ntbdata")
NTBT20RankBatting.head(15)
##                      matches  runs_mean     SR_mean
## batsman                                            
## Babar Azam                13  44.461538  121.268809
## T Banton                  13  42.230769  139.376274
## JJ Roy                    12  41.250000  142.182147
## DJM Short                 12  40.250000  131.182294
## AN Petersen               12  37.916667  132.522727
## IR Bell                   13  37.615385  130.104721
## M Klinger                 26  35.346154  112.682922
## EJG Morgan                16  35.062500  129.817650
## AJ Finch                  19  34.578947  137.093465
## MH Wessels                26  33.884615  116.300969
## S Steel                   11  33.545455  140.118207
## DJ Bell-Drummond          21  33.142857  108.566309
## Ashar Zaidi               11  33.000000  178.553331
## DJ Malan                  26  33.000000  120.127202
## T Kohler-Cadmore          23  32.956522  112.493019

3b. Ranking of NTB bowlers

import yorkpy.analytics as yka
NTBT20RankBowling=yka.rankNTBT20Bowling("C:\\software\\cricket-package\\yorkpyPkg\\data\\ntbdata")
NTBT20RankBowling.head(15)
##                        matches  wicket_mean  econrate_mean
## bowler                                                    
## MW Parkinson                11     2.000000       7.628788
## HF Gurney                   23     1.956522       8.831884
## GR Napier                   12     1.916667       8.694444
## R Rampaul                   19     1.736842       7.131579
## P Coughlin                  11     1.727273       8.909091
## AJ Tye                      26     1.692308       8.227564
## GC Viljoen                  12     1.666667       7.708333
## BAC Howell                  21     1.666667       6.857143
## BW Sanderson                12     1.583333       7.902778
## KJ Abbott                   14     1.571429       9.398810
## JE Taylor                   13     1.538462       9.839744
## JDS Neesham                 12     1.500000      10.812500
## MJ Potts                    12     1.500000       8.486111
## TT Bresnan                  21     1.476190       8.817460
## T van der Gugten            13     1.461538       7.211538

4. Big Bash Leagure (BBL) T20

The steps to do before ranking for BBL T20 matches are 1. Download BBL T20 zip file from Cricsheet BBL T20 2. Unzip the file. This will create a folder with yaml files

import yorkpy.analytics as yka
#yka.convertAllYaml2PandasDataframesT20("../bbl","../bbldata")

This above step will convert the yaml files into CSV files in the /bbldata folder. Now do the ranking as below

4a. Ranking of BBL batsmen

import yorkpy.analytics as yka
BBLT20RankBatting=yka.rankBBLT20Batting("C:\\software\\cricket-package\\yorkpyPkg\\data\\bbldata")
BBLT20RankBatting.head(15)
##                 matches  runs_mean     SR_mean
## batsman                                       
## DJM Short            43  40.883721  118.773047
## SE Marsh             47  39.148936  113.616053
## AJ Finch             62  36.306452  120.271231
## AT Carey             37  34.945946  120.125341
## UT Khawaja           41  31.268293  107.355655
## CA Lynn              74  31.162162  121.746578
## MS Wade              46  30.782609  120.310081
## TM Head              45  30.000000  126.769564
## MEK Hussey           23  29.173913  109.492934
## BJ Hodge             29  29.000000  124.438040
## BR Dunk              39  28.230769  106.149913
## AD Hales             31  27.161290  117.678008
## BB McCullum          34  27.058824  115.486392
## GJ Bailey            57  27.000000  121.159220
## MR Marsh             47  26.510638  114.994909

4b. Ranking of BBL bowlers

import yorkpy.analytics as yka
BBLT20RankBowling=yka.rankBBLT20Bowling("C:\\software\\cricket-package\\yorkpyPkg\\data\\bbldata")
BBLT20RankBowling.head(15)
##                    matches  wicket_mean  econrate_mean
## bowler                                                
## Yasir Arafat            15     2.000000       7.587778
## CH Morris               15     1.733333       8.572222
## TK Curran               27     1.629630       8.716049
## TT Bresnan              13     1.615385       8.775641
## JR Hazlewood            18     1.555556       7.361111
## CJ McKay                15     1.533333       8.555556
## DR Sams                 36     1.527778       8.581019
## AC McDermott            14     1.500000       9.166667
## JP Faulkner             20     1.500000       8.345833
## SP Narine               12     1.500000       7.395833
## AJ Tye                  51     1.490196       8.101307
## M Kelly                 21     1.476190       8.908730
## SA Abbott               73     1.438356       8.737443
## B Laughlin              82     1.426829       8.332317
## SW Tait                 31     1.419355       8.895161

Conclusion

You should be able to now rank players in the above formats as new data is added to Cricsheet. yorkpy can also be used for other leagues which follow the Cricsheet format.

Also see
1. Deep Learning from first principles in Python, R and Octave – Part 5
2. Using Linear Programming (LP) for optimizing bowling change or batting lineup in T20 cricket
3. Using Reinforcement Learning to solve Gridworld
4. Big Data-4: Webserver log analysis with RDDs, Pyspark, SparkR and SparklyR
5. My book ‘Practical Machine Learning in R and Python: Third edition’ on Amazon
6. Deblurring with OpenCV: Weiner filter reloaded
7. Rock N’ Roll with Bluemix, Cloudant & NodeExpress
8. Modeling a Car in Android

To see all posts click Index of posts

Analyzing cricketers’ and cricket team’s performances with cricketr template

This post includes a template which you can use for analyzing the performances of cricketers, both batsmen and bowlers in Test, ODI and Twenty 20 cricket. Additionally this template can also be used for analyzing performances of teams in Test, ODI and T20 matches using my R package cricketr. To see actual usage of functions related to players in the R package cricketr see Introducing cricketr! : An R package to analyze performances of cricketers and associated posts on cricket in Index of posts. For the analyses on team performances see https://gigadom.in/2019/06/21/cricpy-adds-team-analytics-to-its-repertoire/

The ‘cricketr’ package uses the statistics info available in ESPN Cricinfo Statsguru. The current version of this package supports all formats of the game including Test, ODI and Twenty20 versions.

You should be able to install the package from GitHub and use the many functions available in the package. Please mindful of the ESPN Cricinfo Terms of Use

Take a look at my short video tutorial on my R package cricketr on Youtube – R package cricketr – A short tutorial

Do check out my interactive Shiny app implementation using the cricketr package – Sixer – R package cricketr’s new Shiny avatar

You can download this RMarkdown file from Github at cricketr-template

The cricketr package

The cricketr package has several functions that perform several different analyses on both batsman and bowlers. The package can also analyze performances of teams The package has function that plot percentage frequency runs or wickets, runs likelihood for a batsman, relative run/strike rates of batsman and relative performance/economy rate for bowlers are available. Other interesting functions include batting performance moving average, forecast and a function to check whether the batsmans in in-form or out-of-form.

In addition performances of teams against different oppositions at different venues can be computed and plotted. The timeline of wins & losses can be plotted.

A. Performances of batsmen and bowlers

The data for a particular player can be obtained with the getPlayerData() function. To do you will need to go to ESPN CricInfo Player and type in the name of the player for e.g Ricky Ponting, Sachin Tendulkar etc. This will bring up a page which have the profile number for the player e.g. for Sachin Tendulkar this would be http://www.espncricinfo.com/india/content/player/35320.html. Hence, Sachin’s profile is 35320. This can be used to get the data for Tendulkar as shown below

The cricketr package is now available from CRAN!!! You should be able to install as below

1. Install the cricketr package

if (!require("cricketr")){
    install.packages("cricketr",lib = "c:/test")
}
library(cricketr)

The cricketr package includes some pre-packaged sample (.csv) files. You can use these sample to test functions as shown below
# Retrieve the file path of a data file installed with cricketr
#pathToFile <- system.file("data", "tendulkar.csv", package = "cricketr")
#batsman4s(pathToFile, "Sachin Tendulkar")

# The general format is pkg-function(pathToFile,par1,...)
#batsman4s(<path-To-File>,"Sachin Tendulkar")

The pre-packaged files can be accessed as shown above. To get the data of any player use the function in Test, ODI and Twenty20 use the following

2. For Test cricket

#tendulkar <- getPlayerData(35320,dir="..",file="tendulkar.csv",type="batting",homeOrAway=c(1,2), result=c(1,2,4))

2a. For ODI cricket

#tendulkarOD <- getPlayerDataOD(35320,dir="..",file="tendulkarOD.csv",type="batting")

2b For Twenty 20 cricket

#tendulkarT20 <- getPlayerDataTT(35320,dir="..",file="tendulkarT20.csv",type="batting")

Important Note 1: This needs to be done only once for a player. This function stores the player’s data in a CSV file (for e.g. tendulkar.csv as above) which can then be reused for all other functions. Once we have the data for the players many analyses can be done. This post will use the stored CSV file obtained with a prior getPlayerData for all subsequent analyses

Important Note 2: The same set of functions can be used for Tests, ODI and T20s. I have mentioned wherever you may need special functions for ODI and T20 below

Sachin Tendulkar’s performance – Basic Analyses

The 3 plots below provide the following for Tendulkar

  1. Frequency percentage of runs in each run range over the whole career
  2. Mean Strike Rate for runs scored in the given range
  3. A histogram of runs frequency percentages in runs ranges For example

3. Basic analyses

par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
#batsmanRunsFreqPerf("./tendulkar.csv","Tendulkar")
#batsmanMeanStrikeRate("./tendulkar.csv","Tendulkar")
#batsmanRunsRanges("./tendulkar.csv","Tendulkar")
dev.off()
## null device 
##           1
  1. Player 1
  2. Player 2
  3. Player 3
  4. Player 4

4. More analyses

par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
#batsman4s("./player1.csv","Player1")
#batsman6s("./player1.csv","Player1")
#batsmanMeanStrikeRate("./player1.csv","Player1")

# For ODI and T20
#batsmanScoringRateODTT("./player1.csv","Player1")
dev.off()
## null device 
##           1
par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
#batsman4s("./player2.csv","Player2")
#batsman6s("./player2.csv","Player2")
#batsmanMeanStrikeRate("./player2.csv","Player2")
# For ODI and T20
#batsmanScoringRateODTT("./player1.csv","Player1")
dev.off()
## null device 
##           1
par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
#batsman4s("./player3.csv","Player3")
#batsman6s("./player3.csv","Player3")
#batsmanMeanStrikeRate("./player3.csv","Player3")
# For ODI and T20
#batsmanScoringRateODTT("./player1.csv","Player1")

dev.off()
## null device 
##           1
par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
#batsman4s("./player4.csv","Player4")
#batsman6s("./player4.csv","Player4")
#batsmanMeanStrikeRate("./player4.csv","Player4")
# For ODI and T20
#batsmanScoringRateODTT("./player1.csv","Player1")
dev.off()
## null device 
##           1

Note: For mean strike rate in ODI and Twenty20 use the function batsmanScoringRateODTT()

5.Boxplot histogram plot

This plot shows a combined boxplot of the Runs ranges and a histogram of the Runs Frequency

#batsmanPerfBoxHist("./player1.csv","Player1")
#batsmanPerfBoxHist("./player2.csv","Player2")
#batsmanPerfBoxHist("./player3.csv","Player3")
#batsmanPerfBoxHist("./player4.csv","Player4")

6. Contribution to won and lost matches

For the 2 functions below you will have to use the getPlayerDataSp() function. I have commented this as I already have these files. This function can only be used for Test matches

#player1sp <- getPlayerDataSp(xxxx,tdir=".",tfile="player1sp.csv",ttype="batting")
#player2sp <- getPlayerDataSp(xxxx,tdir=".",tfile="player2sp.csv",ttype="batting")
#player3sp <- getPlayerDataSp(xxxx,tdir=".",tfile="player3sp.csv",ttype="batting")
#player4sp <- getPlayerDataSp(xxxx,tdir=".",tfile="player4sp.csv",ttype="batting")
par(mfrow=c(2,2))
par(mar=c(4,4,2,2))
#batsmanContributionWonLost("player1sp.csv","Player1")
#batsmanContributionWonLost("player2sp.csv","Player2")
#batsmanContributionWonLost("player3sp.csv","Player3")
#batsmanContributionWonLost("player4sp.csv","Player4")
dev.off()
## null device 
##           1

7, Performance at home and overseas

This function also requires the use of getPlayerDataSp() as shown above. This can only be used for Test matches

par(mfrow=c(2,2))
par(mar=c(4,4,2,2))
#batsmanPerfHomeAway("player1sp.csv","Player1")
#batsmanPerfHomeAway("player2sp.csv","Player2")
#batsmanPerfHomeAway("player3sp.csv","Player3")
#batsmanPerfHomeAway("player4sp.csv","Player4")
dev.off()
## null device 
##           1

8. Batsman average at different venues

par(mfrow=c(2,2))
par(mar=c(4,4,2,2))
#batsmanAvgRunsGround("./player1.csv","Player1")
#batsmanAvgRunsGround("./player2.csv","Player2")
#batsmanAvgRunsGround("./player3.csv","Ponting")
#batsmanAvgRunsGround("./player4.csv","Player4")
dev.off()
## null device 
##           1

9. Batsman average against different opposition

par(mfrow=c(2,2))
par(mar=c(4,4,2,2))
#batsmanAvgRunsOpposition("./player1.csv","Player1")
#batsmanAvgRunsOpposition("./player2.csv","Player2")
#batsmanAvgRunsOpposition("./player3.csv","Ponting")
#batsmanAvgRunsOpposition("./player4.csv","Player4")
dev.off()
## null device 
##           1

10. Runs Likelihood of batsman

par(mfrow=c(2,2))
par(mar=c(4,4,2,2))
#batsmanRunsLikelihood("./player1.csv","Player1")
#batsmanRunsLikelihood("./player2.csv","Player2")
#batsmanRunsLikelihood("./player3.csv","Ponting")
#batsmanRunsLikelihood("./player4.csv","Player4")
dev.off()
## null device 
##           1

11. Moving Average of runs in career

par(mfrow=c(2,2))
par(mar=c(4,4,2,2))
#batsmanMovingAverage("./player1.csv","Player1")
#batsmanMovingAverage("./player2.csv","Player2")
#batsmanMovingAverage("./player3.csv","Ponting")
#batsmanMovingAverage("./player4.csv","Player4")
dev.off()
## null device 
##           1

12. Cumulative Average runs of batsman in career

par(mfrow=c(2,2))
par(mar=c(4,4,2,2))
#batsmanCumulativeAverageRuns("./player1.csv","Player1")
#batsmanCumulativeAverageRuns("./player2.csv","Player2")
#batsmanCumulativeAverageRuns("./player3.csv","Ponting")
#batsmanCumulativeAverageRuns("./player4.csv","Player4")
dev.off()
## null device 
##           1

13. Cumulative Average strike rate of batsman in career

par(mfrow=c(2,2))
par(mar=c(4,4,2,2))
#batsmanCumulativeStrikeRate("./player1.csv","Player1")
#batsmanCumulativeStrikeRate("./player2.csv","Player2")
#batsmanCumulativeStrikeRate("./player3.csv","Ponting")
#batsmanCumulativeStrikeRate("./player4.csv","Player4")
dev.off()
## null device 
##           1

14. Future Runs forecast

Here are plots that forecast how the batsman will perform in future. In this case 90% of the career runs trend is uses as the training set. the remaining 10% is the test set.

A Holt-Winters forecating model is used to forecast future performance based on the 90% training set. The forecated runs trend is plotted. The test set is also plotted to see how close the forecast and the actual matches

Take a look at the runs forecasted for the batsman below.

par(mfrow=c(2,2))
par(mar=c(4,4,2,2))
#batsmanPerfForecast("./player1.csv","Player1")
#batsmanPerfForecast("./player2.csv","Player2")
#batsmanPerfForecast("./player3.csv","Player3")
#batsmanPerfForecast("./player4.csv","Player4")
dev.off()
## null device 
##           1

15. Relative Mean Strike Rate plot

The plot below compares the Mean Strike Rate of the batsman for each of the runs ranges of 10 and plots them. The plot indicate the following

frames <- list("./player1.csv","./player2.csv","player3.csv","player4.csv")
names <- list("Player1","Player2","Player3","Player4")
#relativeBatsmanSR(frames,names)

16. Relative Runs Frequency plot

The plot below gives the relative Runs Frequency Percetages for each 10 run bucket. The plot below show

frames <- list("./player1.csv","./player2.csv","player3.csv","player4.csv")
names <- list("Player1","Player2","Player3","Player4")
#relativeRunsFreqPerf(frames,names)

17. Relative cumulative average runs in career

frames <- list("./player1.csv","./player2.csv","player3.csv","player4.csv")
names <- list("Player1","Player2","Player3","Player4")
#relativeBatsmanCumulativeAvgRuns(frames,names)

18. Relative cumulative average strike rate in career

frames <- list("./player1.csv","./player2.csv","player3.csv","player4.csv")
names <- list("Player1","Player2","Player3","player4")
#relativeBatsmanCumulativeStrikeRate(frames,names)

19. Check Batsman In-Form or Out-of-Form

The below computation uses Null Hypothesis testing and p-value to determine if the batsman is in-form or out-of-form. For this 90% of the career runs is chosen as the population and the mean computed. The last 10% is chosen to be the sample set and the sample Mean and the sample Standard Deviation are caculated.

The Null Hypothesis (H0) assumes that the batsman continues to stay in-form where the sample mean is within 95% confidence interval of population mean The Alternative (Ha) assumes that the batsman is out of form the sample mean is beyond the 95% confidence interval of the population mean.

A significance value of 0.05 is chosen and p-value us computed If p-value >= .05 – Batsman In-Form If p-value < 0.05 – Batsman Out-of-Form

Note Ideally the p-value should be done for a population that follows the Normal Distribution. But the runs population is usually left skewed. So some correction may be needed. I will revisit this later

This is done for the Top 4 batsman

#checkBatsmanInForm("./player1.csv","Player1")
#checkBatsmanInForm("./player2.csv","Player2")
#checkBatsmanInForm("./player3.csv","Player3")
#checkBatsmanInForm("./player4.csv","Player4")

20. 3D plot of Runs vs Balls Faced and Minutes at Crease

The plot is a scatter plot of Runs vs Balls faced and Minutes at Crease. A prediction plane is fitted

par(mfrow=c(1,2))
par(mar=c(4,4,2,2))
#battingPerf3d("./player1.csv","Player1")
#battingPerf3d("./player2.csv","Player2")
par(mfrow=c(1,2))
par(mar=c(4,4,2,2))
#battingPerf3d("./player3.csv","Player3")
#battingPerf3d("./player4.csv","player4")
dev.off()
## null device 
##           1

21. Predicting Runs given Balls Faced and Minutes at Crease

A multi-variate regression plane is fitted between Runs and Balls faced +Minutes at crease.

BF <- seq( 10, 400,length=15)
Mins <- seq(30,600,length=15)
newDF <- data.frame(BF,Mins)
#Player1 <- batsmanRunsPredict("./player1.csv","Player1",newdataframe=newDF)
#Player2 <- batsmanRunsPredict("./player2.csv","Player2",newdataframe=newDF)
#ponting <- batsmanRunsPredict("./player3.csv","Player3",newdataframe=newDF)
#sangakkara <- batsmanRunsPredict("./player4.csv","Player4",newdataframe=newDF)
#batsmen <-cbind(round(Player1$Runs),round(Player2$Runs),round(Player3$Runs),round(Player4$Runs))
#colnames(batsmen) <- c("Player1","Player2","Player3","Player4")
#newDF <- data.frame(round(newDF$BF),round(newDF$Mins))
#colnames(newDF) <- c("BallsFaced","MinsAtCrease")
#predictedRuns <- cbind(newDF,batsmen)
#predictedRuns

Analysis of bowlers

  1. Bowler1
  2. Bowler2
  3. Bowler3
  4. Bowler4

player1 <- getPlayerData(xxxx,dir=“..”,file=“player1.csv”,type=“bowling”) Note For One day you will have to use getPlayerDataOD() and for Twenty20 it is getPlayerDataTT()

21. Wicket Frequency Plot

This plot below computes the percentage frequency of number of wickets taken for e.g 1 wicket x%, 2 wickets y% etc and plots them as a continuous line

par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
#bowlerWktsFreqPercent("./bowler1.csv","Bowler1")
#bowlerWktsFreqPercent("./bowler2.csv","Bowler2")
#bowlerWktsFreqPercent("./bowler3.csv","Bowler3")
dev.off()
## null device 
##           1

22. Wickets Runs plot

par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
#bowlerWktsRunsPlot("./bowler1.csv","Bowler1")
#bowlerWktsRunsPlot("./bowler2.csv","Bowler2")
#bowlerWktsRunsPlot("./bowler3.csv","Bowler3")
dev.off()
## null device 
##           1

23. Average wickets at different venues

#bowlerAvgWktsGround("./bowler3.csv","Bowler3")

24. Average wickets against different opposition

#bowlerAvgWktsOpposition("./bowler3.csv","Bowler3")

25. Wickets taken moving average

par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
#bowlerMovingAverage("./bowler1.csv","Bowler1")
#bowlerMovingAverage("./bowler2.csv","Bowler2")
#bowlerMovingAverage("./bowler3.csv","Bowler3")

dev.off()
## null device 
##           1

26. Cumulative Wickets taken

par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
#bowlerCumulativeAvgWickets("./bowler1.csv","Bowler1")
#bowlerCumulativeAvgWickets("./bowler2.csv","Bowler2")
#bowlerCumulativeAvgWickets("./bowler3.csv","Bowler3")
dev.off()
## null device 
##           1

27. Cumulative Economy rate

par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
#bowlerCumulativeAvgEconRate("./bowler1.csv","Bowler1")
#bowlerCumulativeAvgEconRate("./bowler2.csv","Bowler2")
#bowlerCumulativeAvgEconRate("./bowler3.csv","Bowler3")
dev.off()
## null device 
##           1

28. Future Wickets forecast

Here are plots that forecast how the bowler will perform in future. In this case 90% of the career wickets trend is used as the training set. the remaining 10% is the test set.

A Holt-Winters forecating model is used to forecast future performance based on the 90% training set. The forecated wickets trend is plotted. The test set is also plotted to see how close the forecast and the actual matches

par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
#bowlerPerfForecast("./bowler1.csv","Bowler1")
#bowlerPerfForecast("./bowler2.csv","Bowler2")
#bowlerPerfForecast("./bowler3.csv","Bowler3")
dev.off()
## null device 
##           1

29. Contribution to matches won and lost

As discussed above the next 2 charts require the use of getPlayerDataSp(). This can only be done for Test matches

#bowler1sp <- getPlayerDataSp(xxxx,tdir=".",tfile="bowler1sp.csv",ttype="bowling")
#bowler2sp <- getPlayerDataSp(xxxx,tdir=".",tfile="bowler2sp.csv",ttype="bowling")
#bowler3sp <- getPlayerDataSp(xxxx,tdir=".",tfile="bowler3sp.csv",ttype="bowling")
par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
#bowlerContributionWonLost("bowler1sp","Bowler1")
#bowlerContributionWonLost("bowler2sp","Bowler2")
#bowlerContributionWonLost("bowler3sp","Bowler3")
dev.off()
## null device 
##           1

30. Performance home and overseas.

This can only be done for Test matches

par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
#bowlerPerfHomeAway("bowler1sp","Bowler1")
#bowlerPerfHomeAway("bowler2sp","Bowler2")
#bowlerPerfHomeAway("bowler3sp","Bowler3")
dev.off()
## null device 
##           1

31 Relative Wickets Frequency Percentage

frames <- list("./bowler1.csv","./bowler3.csv","bowler2.csv")
names <- list("Bowler1","Bowler3","Bowler2")
#relativeBowlingPerf(frames,names)

32 Relative Economy Rate against wickets taken

frames <- list("./bowler1.csv","./bowler3.csv","bowler2.csv")
names <- list("Bowler1","Bowler3","Bowler2")
#relativeBowlingER(frames,names)

33 Relative cumulative average wickets of bowlers in career

frames <- list("./bowler1.csv","./bowler3.csv","bowler2.csv")
names <- list("Bowler1","Bowler3","Bowler2")
#relativeBowlerCumulativeAvgWickets(frames,names)

34 Relative cumulative average economy rate of bowlers

frames <- list("./bowler1.csv","./bowler3.csv","bowler2.csv")
names <- list("Bowler1","Bowler3","Bowler2")
#relativeBowlerCumulativeAvgEconRate(frames,names)

35 Check for bowler in-form/out-of-form

The below computation uses Null Hypothesis testing and p-value to determine if the bowler is in-form or out-of-form. For this 90% of the career wickets is chosen as the population and the mean computed. The last 10% is chosen to be the sample set and the sample Mean and the sample Standard Deviation are caculated.

The Null Hypothesis (H0) assumes that the bowler continues to stay in-form where the sample mean is within 95% confidence interval of population mean The Alternative (Ha) assumes that the bowler is out of form the sample mean is beyond the 95% confidence interval of the population mean.

A significance value of 0.05 is chosen and p-value us computed If p-value >= .05 – Batsman In-Form If p-value < 0.05 – Batsman Out-of-Form

Note Ideally the p-value should be done for a population that follows the Normal Distribution. But the runs population is usually left skewed. So some correction may be needed. I will revisit this later

Note: The check for the form status of the bowlers indicate

#checkBowlerInForm("./bowler1.csv","Bowler1")
#checkBowlerInForm("./bowler2.csv","Bowler2")
#checkBowlerInForm("./bowler3.csv","Bowler3")
dev.off()
## null device 
##           1

36. Performing granular analysis of batsmen and bowlers

To perform granular analysis of batsmen and bowlers do the following 2 steps

  1. Step 1: getPlayerDataHA – This function is a wrapper around getPlayerData(), getPlayerDataOD() and getPlayerDataTT(), and adds an extra column ‘homeOrAway’ which says whether the match was played at home/away/neutral venues. A CSV file is created with this new column.
  2. Step2:getPlayerDataOppnHA – This function allows you to slice & dice the data for batsmen and bowlers against specific oppositions, at home/away/neutral venues and between certain periods. This reduced subset of data can be used to perform analyses. A CSV file is created as an output based on the parameters of opposition, home or away and the interval of time

37. GetPlayerDataHA (Batsmen, Tests)

#This saves a file playerTestHA.csv
#df=getPlayerDataHA(<profileNo>,tfile="playerTestHA.csv",type="batting", matchType="Test")

#Use the generate file to create a subset of data
#df1=getPlayerDataOppnHA(infile="playerTestHA.csv",outfile="playerTestFile1.csv",
#                         startDate=<start Date>,endDate=<end Date>)

38. GetPlayerDataHA (Bowlers, Tests)

#This saves a file playerTestHA.csv
#df=getPlayerDataHA(<profileNo>,tfile="playerTestHA.csv",type="bowling", matchType="Test")

#Use the generate file to create a subset of data
#df1=getPlayerDataOppnHA(infile="playerTestHA.csv",outfile="playerTestFile1.csv",
#                         startDate=<start Date>,endDate=<end Date>)

39. GetPlayerDataHA (Batsmen, ODI)

#This saves a file playerTestHA.csv
#df=getPlayerDataHA(<profileNo>,tfile="playerODIHA.csv",type="batting", matchType="ODI")

#Use the generate file to create a subset of data
#df1=getPlayerDataOppnHA(infile="playerODIHA.csv",outfile="playerODIFile1.csv",
#                         startDate=<start Date>,endDate=<end Date>)

40. GetPlayerDataHA (Bowlers, ODI)

#This saves a file playerTestHA.csv
#df=getPlayerDataHA(<profileNo>,tfile="playerODIHA.csv",type="bowling", matchType="ODI")

#Use the generate file to create a subset of data
#df1=getPlayerDataOppnHA(infile="playerODIHA.csv",outfile="playerODIFile1.csv",
#                         startDate=<start Date>,endDate=<end Date>)

41. GetPlayerDataHA (Batsmen, T20)

#This saves a file playerTestHA.csv
#df=getPlayerDataHA(<profileNo>,tfile="playerT20HA.csv",type="batting", matchType="T20")

#Use the generate file to create a subset of data
#df1=getPlayerDataOppnHA(infile="playerT20HA.csv",outfile="playerT20File1.csv",
#                         startDate=<start Date>,endDate=<end Date>)

42. GetPlayerDataHA (Bowlers, T20)

#This saves a file playerTestHA.csv
#df=getPlayerDataHA(<profileNo>,tfile="playerT20HA.csv",type="bowling", matchType="T20")

#Use the generate file to create a subset of data
#df1=getPlayerDataOppnHA(infile="playerT20HA.csv",outfile="playerT20File1.csv",
#                         startDate=<start Date>,endDate=<end Date>)

Important Note Once you get the subset of data for batsmen and bowlers playerTestFile1.csv, playerODIFile1.csv or playerT20File1.csv , you can use any of the cricketr functions on the subset of data for a fine-grained analysis

B. Performances of teams

The following functions will get the team data for Tests, ODI and T20s

1a. Get Test team data

#country1Test= getTeamDataHomeAway(dir=".",teamView="bat",matchType="Test",file="country1Test.csv",save=True,teamName="Country1")
#country2Test= getTeamDataHomeAway(dir=".",teamView="bat",matchType="Test",file="country2Test.csv",save=True,teamName="Country2")
#country3Test= getTeamDataHomeAway(dir=".",teamView="bat",matchType="Test",file="country3Test.csv",save=True,teamName="Country3")

1b. Get ODI team data

#team1ODI=  getTeamDataHomeAway(dir=".",matchType="ODI",file="team1ODI.csv",save=True,teamName="team1")
#team2ODI=  getTeamDataHomeAway(dir=".",matchType="ODI",file="team2ODI.csv",save=True,teamName="team2")
#team3ODI=  getTeamDataHomeAway(dir=".",matchType="ODI",file="team3ODI.csv",save=True,teamName="team3")

1c. Get T20 team data

#team1T20 = getTeamDataHomeAway(matchType="T20",file="team1T20.csv",save=True,teamName="team1")
#team2T20 = getTeamDataHomeAway(matchType="T20",file="team2T20.csv",save=True,teamName="team2")
#team3T20 = getTeamDataHomeAway(matchType="T20",file="team3T20.csv",save=True,teamName="team3")

2a. Test – Analyzing test performances against opposition

# Get the performance of Indian test team against all teams at all venues as a dataframe
#df <- teamWinLossStatusVsOpposition("country1Test.csv",teamName="Country1",opposition=c("all"),homeOrAway=c("all"),matchType="Test",plot=FALSE)
#head(df)

# Plot the performance of Country1 Test team  against all teams at all venues
#teamWinLossStatusVsOpposition("country1Test.csv",teamName="Country1",opposition=c("all"),homeOrAway=c("all"),matchType="Test",plot=TRUE)

# Plot the performance of Country1 Test team  against specific teams at home/away venues
#teamWinLossStatusVsOpposition("country1Test.csv",teamName="Country1",opposition=c("Country2","Country3","Country4"),homeOrAway=c("home","away","neutral"),matchType="Test",plot=TRUE)

2b. Test – Analyzing test performances against opposition at different grounds

# Get the performance of Indian test team against all teams at all venues as a dataframe
#df <- teamWinLossStatusAtGrounds("country1Test.csv",teamName="Country1",opposition=c("all"),homeOrAway=c("all"),matchType="Test",plot=FALSE)
#head(df)

# Plot the performance of Country1 Test team  against all teams at all venues
#teamWinLossStatusAtGrounds("country1Test.csv",teamName="Country1",opposition=c("all"),homeOrAway=c("all"),matchType="Test",plot=TRUE)

# Plot the performance of Country1 Test team  against specific teams at home/away venues
#teamWinLossStatusAtGrounds("country1Test.csv",teamName="Country1",opposition=c("Country2","Country3","Country4"),homeOrAway=c("home","away","neutral"),matchType="Test",plot=TRUE)

2c. Test – Plot time lines of wins and losses

#plotTimelineofWinsLosses("country1Test.csv",team="Country1",opposition=c("all"), #startDate="1970-01-01",endDate="2017-01-01")
#plotTimelineofWinsLosses("country1Test.csv",team="Country1",opposition=c("Country2","Count#ry3","Country4"), homeOrAway=c("home",away","neutral"), startDate=<start Date> #,endDate=<endDate>)

3a. ODI – Analyzing test performances against opposition

#df <- teamWinLossStatusVsOpposition("team1ODI.csv",teamName="Team1",opposition=c("all"),homeOrAway=c("all"),matchType="ODI",plot=FALSE)
#head(df)

# Plot the performance of team1  in ODIs against Sri Lanka, India at all venues
#teamWinLossStatusVsOpposition("team1ODI.csv",teamName="Team1",opposition=c("all"),homeOrAway=c(all"),matchType="ODI",plot=TRUE)

# Plot the performance of Team1 ODI team  against specific teams at home/away venues
#teamWinLossStatusVsOpposition("team1ODI.csv",teamName="Team1",opposition=c("Team2","Team3","Team4"),homeOrAway=c("home","away","neutral"),matchType="ODI",plot=TRUE)

3b. ODI – Analyzing test performances against opposition at different venues

#df <- teamWinLossStatusAtGrounds("team1ODI.csv",teamName="Team1",opposition=c("all"),homeOrAway=c("all"),matchType="ODI",plot=FALSE)
#head(df)

# Plot the performance of Team1s in ODIs specific ODI teams at all venues
#teamWinLossStatusAtGrounds("team1ODI.csv",teamName="Team1",opposition=c("all"),homeOrAway=c(all"),matchType="ODI",plot=TRUE)

# Plot the performance of Team1 against specific ODI teams at home/away venues
#teamWinLossStatusAtGrounds("team1ODI.csv",teamName="Team1",opposition=c("Team2","Team3","Team4"),homeOrAway=c("home","away","neutral"),matchType="ODI",plot=TRUE)

3c. ODI – Plot time lines of wins and losses

#Plot the time line of wins/losses of Bangladesh ODI team between 2 dates all venues
#plotTimelineofWinsLosses("team1ODI.csv",team="Team1",startDate=<start date> ,endDa#te=<end date>,matchType="ODI")

#Plot the time line of wins/losses against specific opposition between 2 dates
#plotTimelineofWinsLosses("team1ODI.csv",team="Team1",opposition=c("Team2","Team2"), homeOrAway=c("home",away","neutral"), startDate=<start date>,endDate=<end date> ,matchType="ODI")

4a. T20 – Analyzing test performances against opposition

#df <- teamWinLossStatusVsOpposition("teamT20.csv",teamName="Team1",opposition=c("all"),homeOrAway=c("all"),matchType="T20",plot=FALSE)
#head(df)

# Plot the performance of Team1 in T20s  against  all opposition at all venues
#teamWinLossStatusVsOpposition("teamT20.csv",teamName="Team1",opposition=c("all"),homeOrAway=c(all"),matchType="T20",plot=TRUE)

# Plot the performance of T20 Test team  against specific teams at home/away venues
#teamWinLossStatusVsOpposition("teamT20.csv",teamName="Team1",opposition=c("Team2","Team3","Team4"),homeOrAway=c("home","away","neutral"),matchType="T20",plot=TRUE)

4b. T20 – Analyzing test performances against opposition at different venues

#df <- teamWinLossStatusAtGrounds("teamT20.csv",teamName="Team1",opposition=c("all"),homeOrAway=c("all"),matchType="T20",plot=FALSE)
#head(df)

# Plot the performance of Team1s in ODIs specific ODI teams at all venues
#teamWinLossStatusAtGrounds("teamT20.csv",teamName="Team1",opposition=c("all"),homeOrAway=c(all"),matchType="T20",plot=TRUE)

# Plot the performance of Team1 against specific ODI teams at home/away venues
#teamWinLossStatusAtGrounds("teamT20.csv",teamName="Team1",opposition=c("Team2","Team3","Team4"),homeOrAway=c("home","away","neutral"),matchType="T20",plot=TRUE)

4c. T20 – Plot time lines of wins and losses

#Plot the time line of wins/losses of Bangladesh ODI team between 2 dates all venues
#plotTimelineofWinsLosses("teamT20.csv",team="Team1",startDate=<start date> ,endDa#te=<end date>,matchType="T20")

#Plot the time line of wins/losses against specific opposition between 2 dates
#plotTimelineofWinsLosses("teamT20.csv",team="Team1",opposition=c("Team2","Team2"), homeOrAway=c("home",away","neutral"), startDate=<start date>,endDate=<end date> ,matchType="T20")

Key Findings

Analysis of batsman

Analysis of bowlers

Analysis of teams

Conclusion

Using the above template, analysis can be done for both batsmen and bowlers in Test, ODI and T20. Also analysis of any any team in Test, ODI and T20 against other specific opposition, at home/away and neutral venues can be performed.

Have fun with cricketr!!

Also see
1. Practical Machine Learning with R and Python – Part 5
2. Using Linear Programming (LP) for optimizing bowling change or batting lineup in T20 cricket
3. yorkr crashes the IPL party ! – Part 1
4. Deep Learning from first principles in Python, R and Octave – Part 6
5. Cricpy takes a swing at the ODIs
6. Bull in a china shop – Behind the scenes in Android
7. Eliminating the Performance Drag
To see all posts click Index of posts