Pitching yorkpy … in the block hole – Part 4

A good programmer is someone who always looks both ways before crossing a one-way street.  Doug Linder

There are two ways to write error-free programs; only the third one works. Alan J. Perlis

In order to understand recursion, one must first understand recursion. Anonymous

This is the fourth and final part of my Python package yorkpy. In this part yorkpy, the python avatar of my R package yorkr see Introducing cricket package yorkr: Part 1- Beaten by sheer pace!, develops wings and is prepared for take-off. The yorkpy package uses data from Cricsheet

You can clone/download the code at Github yorkpy
This post has been published to RPubs at yorkpy-Part4
You can download this post as PDF at IPLT20-yorkpy-part4
You can download all the data used in this post and the previous post at yorkpyData

This post is a continuation of the earlier posts on yorkpy

1. Pitching yorkpy . short of good length to IPL – Part 1 In this part I included functions that convert the yaml data of IPL matches into Pandas dataframe which are then saved as CSV. This part can perform analysis of individual IPL matches. Note The converted data is available at yorkpyData
2. Pitching yorkpy.on the middle and outside off-stump to IPL – Part 2 This part included functions to create a large data frame for head-to-head confrontation between any 2IPL teams says CSK-MI, DD-KKR etc, which can be saved as CSV. Analysis is then performed on these team-2-team confrontations. Note The converted data is available at yorkpyData
3. Pitching yorkpy.swinging away from the leg stump to IPL – Part 3 The 3rd part includes the performance of any IPL team against all other IPL teams. The data can also be saved as CSV.Note The converted data is available at yorkpyData

Note: If you would like to do a similar analysis for a different set of batsman and bowlers, you can clone/download my skeleton yorkpy-template from Github (which is the R Markdown file I have used for the analysis below).

This 4th and final part includes analysis of batting and bowling performances of any IPL player. The batting and bowling details for all teams have already been converted and are available at IPLT20-Batting-BowlingDetails

This part includes the following new functions

Batsman functions

  1. batsmanRunsVsDeliveries
  2. batsmanFoursSixes
  3. batsmanDismissals
  4. batsmanRunsVsStrikeRate
  5. batsmanMovingAverage
  6. batsmanCumulativeAverageRuns
  7. batsmanCumulativeStrikeRate
  8. batsmanRunsAgainstOpposition
  9. batsmanRunsVenue

Bowler functions

  1. bowlerMeanEconomyRate
  2. bowlerMeanRunsConceded
  3. bowlerMovingAverage
  4. bowlerCumulativeAvgWickets
  5. bowlerCumulativeAvgEconRate
  6. bowlerWicketPlot
  7. bowlerWicketsAgainstOpposition
  8. bowlerWicketsVenue

A. Batsman functions

1. Get IPL Team Batting details

The function below gets the overall IPL team batting details based on the CSV files that were saved for IPL T20 matches. This is currently also available in Github at yorkpyData. The batting details of the IPL team in each match is created and a huge data frame is created by combining the batting details from each match. This can be saved as a csv file with name as for e.g. Delhi Daredevils-BattingDetails.csv.

dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
#csk_details = yka.getTeamBattingDetails("Chennai Super Kings",dir=dir1, save=True)
#dd_details = yka.getTeamBattingDetails("Delhi Daredevils",dir=dir1,save=True)
#kkr_details = yka.getTeamBattingDetails("Kolkata Knight Riders",dir=dir1,save=True)

2. Get IPL batsman details

This function is used to get the individual IPL T20 batting record for a the specified batsman of the team as in the functions below.

For the batsmen functions below I have chosen Rishabh Pant, Kane Williamson and Ambati Rayudu for the analysis as they top the batting lists. You can choose any IPL batsmen for the analysis

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
# 1. Rishabh Pant
name="RR Pant"
team='Delhi Daredevils'
rpant=yka.getBatsmanDetails(team,name,dir=dir1)

3 Batsman Runs vs Deliveries (in IPL matches)

This functions plots the runs vs deliveries faced for batsman

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
# 1. Rishabh Pant
name="RR Pant"
team='Delhi Daredevils'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanRunsVsDeliveries(df,name)

# 2. Kane Williamson
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
name="KS Williamson"
team='Sunrisers Hyderabad'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanRunsVsDeliveries(df,name)

#3. Ambati Rayudu
name="AT Rayudu"
team='Mumbai Indians'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanRunsVsDeliveries(df,name)

4. Batsman fours and sixes (in IPL matches)

This plots the fours, sixes and the total runs for a batsman

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
# 1. Rishabh Pant
name="RR Pant"
team='Delhi Daredevils'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanFoursSixes(df,name)


# 2. Kane Williamson
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
name="KS Williamson"
team='Sunrisers Hyderabad'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanFoursSixes(df,name)

#3. Ambati Rayudu
name="AT Rayudu"
team='Mumbai Indians'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanFoursSixes(df,name)

5. Batsman dismissals (in IPL matches)

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
# 1. Rishabh Pant
name="RR Pant"
team='Delhi Daredevils'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanDismissals(df,name)

# 2. Kane Williamson
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
name="KS Williamson"
team='Sunrisers Hyderabad'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanDismissals(df,name)

#3. Ambati Rayudu
name="AT Rayudu"
team='Mumbai Indians'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanDismissals(df,name)

6. Batsman Runs vs Strike Rate (in IPL matches)

The plots below give the Runs vs Strike rate for batsmen

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
# 1. Rishabh Pant
name="RR Pant"
team='Delhi Daredevils'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanRunsVsStrikeRate(df,name)

# 2. Kane Williamson
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
name="KS Williamson"
team='Sunrisers Hyderabad'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanRunsVsStrikeRate(df,name)

#3. Ambati Rayudu
name="AT Rayudu"
team='Mumbai Indians'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanRunsVsStrikeRate(df,name)

7. Batsman Moving average of runs (in IPL matches)

The plots below compute and plot the moving average of batsmen

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
# 1. Rishabh Pant
name="RR Pant"
team='Delhi Daredevils'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanMovingAverage(df,name)

# 2. Kane Williamson
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
name="KS Williamson"
team='Sunrisers Hyderabad'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanMovingAverage(df,name)

#3. Ambati Rayudu
name="AT Rayudu"
team='Mumbai Indians'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanMovingAverage(df,name)

8. Batsman Cumulative average of runs (in IPL matches)

The functions below plot the cumulative average of the batsmen

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
# 1. Rishabh Pant
name="RR Pant"
team='Delhi Daredevils'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanCumulativeAverageRuns(df,name)

# 2. Kane Williamson
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
name="KS Williamson"
team='Sunrisers Hyderabad'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanCumulativeAverageRuns(df,name)

#3. Ambati Rayudu
name="AT Rayudu"
team='Mumbai Indians'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanCumulativeAverageRuns(df,name)

9. Batsman Cumulative Strike Rate (in IPL matches)

The functions below plot the cumulative strike rate of the batsmen

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
# 1. Rishabh Pant
name="RR Pant"
team='Delhi Daredevils'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanCumulativeStrikeRate(df,name)

# 2. Kane Williamson
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
name="KS Williamson"
team='Sunrisers Hyderabad'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanCumulativeStrikeRate(df,name)

#3. Ambati Rayudu
name="AT Rayudu"
team='Mumbai Indians'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanCumulativeStrikeRate(df,name)

10. Batsman performance against opposition (in IPL matches)

The plots below show how the batsmen performed against other IPL teams

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
# 1. Rishabh Pant
name="RR Pant"
team='Delhi Daredevils'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanRunsAgainstOpposition(df,name)

# 2. Kane Williamson
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
name="KS Williamson"
team='Sunrisers Hyderabad'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanRunsAgainstOpposition(df,name)

#3. Ambati Rayudu
name="AT Rayudu"
team='Mumbai Indians'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanRunsAgainstOpposition(df,name)

11. Batsman performance at different venues (in IPL matches)

The plots below show how the batsmen performed at different venues

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
# 1. Rishabh Pant
name="RR Pant"
team='Delhi Daredevils'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanRunsVenue(df,name)

# 2. Kane Williamson
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
name="KS Williamson"
team='Sunrisers Hyderabad'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanRunsVenue(df,name)

#3. Ambati Rayudu
name="AT Rayudu"
team='Mumbai Indians'
df=yka.getBatsmanDetails(team,name,dir=dir1)
yka.batsmanRunsVenue(df,name)

B. Bowler functions

12. Get bowling details in IPL matches

The function below gets the overall team IPL T20 bowling details based on the RData file available in IPL T20 matches. This is currently also available in Github at yorkpyData. The IPL T20 bowling details of the IPL team in each match is created, and a huge data frame is created by stacking the individual dataframes. This can be saved as a CSV file for e.g. Chennai Super Kings-BowlingDetails.csv

dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
#kkr_bowling = yka.getTeamBowlingDetails("Kolkata Knight Riders",dir=dir1,save=True)
#csk_bowling = yka.getTeamBowlingDetails("Chennai Super Kings",dir=dir1,save=True)
#kxip_bowling = yka.getTeamBowlingDetails("Kings XI Punjab",dir=dir1,save=True)

13. Get bowling details of the individual IPL bowlers

This function is used to get the individual bowling record for a specified bowler of the country as in the functions below.

The plots below deal with bowler’s performance. For this analysis I have chosen Amit Mishra, Piyush Chawla and Bhuvaneshwar Kumar for the analysis. You can chose any other IPL bowler

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
# 1. Amit Mishra
name="A Mishra"
team='Delhi Daredevils'
#df=yka.getBowlerWicketDetails(team,name,dir=dir1)

14. Bowler Economy Rate (in IPL matches)

The plots below show the economy rate of the selected bowlers

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
# 1. Amit Mishra
name="A Mishra"
team='Delhi Daredevils'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerMeanEconomyRate(df,name)

# 2. Piyush Chawla
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
name="PP Chawla"
team='Kolkata Knight Riders'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerMeanEconomyRate(df,name)

#3. Bhuvneshwar Kumar
name="B Kumar"
team='Sunrisers Hyderabad'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerMeanEconomyRate(df,name)

15. Bowler Mean Runs conceded (in IPL matches)

The plots below show the mean runs conceded by the selected bowlers

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
# 1. Amit Mishra
name="A Mishra"
team='Delhi Daredevils'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerMeanRunsConceded(df,name)

# 2. Piyush Chawla
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
name="PP Chawla"
team='Kolkata Knight Riders'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerMeanRunsConceded(df,name)

#3. Bhuvneshwar Kumar
name="B Kumar"
team='Sunrisers Hyderabad'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerMeanRunsConceded(df,name)

16. Moving average of wickets for bowler (in IPL matches)

The moving average of the bowlers are plotted below

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
# 1. Amit Mishra
name="A Mishra"
team='Delhi Daredevils'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerMovingAverage(df,name)

# 2. Piyush Chawla
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
name="PP Chawla"
team='Kolkata Knight Riders'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerMovingAverage(df,name)

#3. Bhuvneshwar Kumar
name="B Kumar"
team='Sunrisers Hyderabad'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerMovingAverage(df,name)

17. Cumulative average wickets for bowler (in IPL matches)

The cumulative average wickets for each bowler is computed and plotted

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
# 1. Amit Mishra
name="A Mishra"
team='Delhi Daredevils'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerCumulativeAvgWickets(df,name)

# 2. Piyush Chawla
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
name="PP Chawla"
team='Kolkata Knight Riders'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerCumulativeAvgWickets(df,name)

#3. Bhuvneshwar Kumar
name="B Kumar"
team='Sunrisers Hyderabad'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerCumulativeAvgWickets(df,name)

18. Cumulative average economy rate for bowler (in IPL matches)

The plots below give the cumulative average economy rate for each bowler

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
# 1. Amit Mishra
name="A Mishra"
team='Delhi Daredevils'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerCumulativeAvgEconRate(df,name)

# 2. Piyush Chawla
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
name="PP Chawla"
team='Kolkata Knight Riders'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerCumulativeAvgEconRate(df,name)

#3. Bhuvneshwar Kumar
name="B Kumar"
team='Sunrisers Hyderabad'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerCumulativeAvgEconRate(df,name)

19. Bowler wicket plot (in IPL matches)

The plots below give the over vs wickets for bowlers

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
# 1. Amit Mishra
name="A Mishra"
team='Delhi Daredevils'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerWicketPlot(df,name)

# 2. Piyush Chawla
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
name="PP Chawla"
team='Kolkata Knight Riders'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerWicketPlot(df,name)

#3. Bhuvneshwar Kumar
name="B Kumar"
team='Sunrisers Hyderabad'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerWicketPlot(df,name)

20. Bowler wicket against opposition (in IPL matches)

The performance of the bowlers against different IPL teams is shown below

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
# 1. Amit Mishra
name="A Mishra"
team='Delhi Daredevils'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerWicketsAgainstOpposition(df,name)

# 2. Piyush Chawla
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
name="PP Chawla"
team='Kolkata Knight Riders'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerWicketsAgainstOpposition(df,name)

#3. Bhuvneshwar Kumar
name="B Kumar"
team='Sunrisers Hyderabad'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerWicketsAgainstOpposition(df,name)

21. Bowler wicket in different venues (in IPL matches)

The plots below show how the bowlers perform at different venues

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
# 1. Amit Mishra
name="A Mishra"
team='Delhi Daredevils'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerWicketsVenue(df,name)

# 2. Piyush Chawla
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data3"
name="PP Chawla"
team='Kolkata Knight Riders'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerWicketsVenue(df,name)

#3. Bhuvneshwar Kumar
name="B Kumar"
team='Sunrisers Hyderabad'
df=yka.getBowlerWicketDetails(team,name,dir=dir1)
yka.bowlerWicketsVenue(df,name)

Note:You can clone/download the code at Github yorkpy

Important note: Do check out my other posts using yorkpy at yorkpy-posts

Conclusion: This concludes the python package yorkpy. Go ahead and give yorkpy a spin!

Also see
1. Take 4+: Presentations on ‘Elements of Neural Networks and Deep Learning’ – Parts 1-8
2. My book ‘Practical Machine Learning in R and Python: Third edition’ on Amazon
3. Hand detection through Haartraining: A hands-on approach
4.My book ‘Deep Learning from first principles:Second Edition’ now on Amazon
5. Big Data-1: Move into the big league:Graduate from Python to Pyspark
6. Cricpy takes a swing at the ODIs

To see all posts click Index of posts

Pitching yorkpy…on the middle and outside off-stump to IPL – Part 2

When you come to a fork in the road, take it.
You’ve got to be very careful if you don’t know where you are going, because you might not get there

      Yogi Berra

Try taking his (Rahul Dravid’s) wicket in the first 15 minutes. If you can’t then only try to take the remaining wickets

      Steve Waugh
      

Introduction

This post is a follow-up to my previous post, Pitching yorkpy…short of good length to IPL-Part 1, in which I analyzed individual IPL matches. In this 2nd post I analyze the data in all matches between any 2 IPL teams, say CSK-RCB, MI-KKR or DD-RPS and so on. As I have already mentioned yorky is the python clone of my R packkage yorkr and this post is almost a mirror image of my post with yorkr namely yorkr crashes the IPL party! – Part 2. The signatures of yorkpy and yorkr are identical and will work in amost the same way. yorkpy, like yorkr, uses data from Cricsheet

You can clone/download the code at Github yorkpy
This post has been published to RPubs at yorkpy-Part2
You can download this post as PDF at IPLT20-yorkpy-part2
You can download all the data used in this post and the previous post at yorkpyData

Note: If you would like to do a similar analysis for a different set of batsman and bowlers, you can clone/download my skeleton yorkpy-template from Github (which is the R Markdown file I have used for the analysis below).

2. Get data for all T20 matches between 2 teams

We can get all IPL T20 matches between any 2 teams using the function below. The dir parameter should point to the folder which has the IPL T20 csv files of the individual matches (see Pitching yorkpy…short of good length to IPL-Part 1). This function creates a data frame of all the IPL T20 matches and and also saves the dataframe as CSV file if save=True. If save=False the dataframe is just returned and not saved.

import pandas as pd
import os
import yorkpy.analytics as yka
#dir1= "C:\\software\\cricket-package\\yorkpyPkg\\yorkpyData\\IPLConverted"
#yka.getAllMatchesBetweenTeams("Kolkata Knight Riders","Delhi Daredevils",dir=dir1,save=True)

3. Save data for all matches between all combination of 2 teams

This can be done locally using the function below. You could use this function to combine all IPL Twenty20 matches between any 2 IPL teams into a single dataframe and save it in the current folder. All the dataframes for all combinations have already been done and are available as CSV files in Github at yorkpyData

import pandas as pd
import os
import yorkpy.analytics as yka
#dir1= "C:\\software\\cricket-package\\yorkpyPkg\\yorkpyData\\IPLConverted"
#yka.saveAllMatchesBetween2IPLTeams(dir1)

Note: In the functions below, I have randomly chosen any 2 IPL teams and analyze how the teams have performed against each other in different areas. You are free to choose any 2 combination of IPL teams for your analysis

4.Team Batsmen partnership in Twenty20 (all matches with opposing IPL team – summary)

The function below computes the highest partnerships between the 2 IPL teams Chennai Superkings and Delhi Daredevils. Any other 2 IPL team could have also been chosen. The summary gives the top 3 batsmen for Delhi Daredevils namely Sehwag, Gambhir and Dinesh Karthik when the report=‘summary’

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data1"
path=os.path.join(dir1,"Chennai Super Kings-Delhi Daredevils-allMatches.csv")
csk_dd_matches = pd.read_csv(path)
m=yka.teamBatsmenPartnershiOppnAllMatches(csk_dd_matches,'Delhi Daredevils',report="summary")
print(m)
##            batsman  totalPartnershipRuns
## 49        V Sehwag                   233
## 12       G Gambhir                   200
## 21      KD Karthik                   180
## 10       DA Warner                   134
## 4   AB de Villiers                   133

5. Team Batsmen partnership in Twenty20 (all matches with opposing IPL team -detailed)

The function below gives the detailed breakup of partnerships between Deccan Chargers and Mumbai Indians for Deccan Chargers.

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data1"
path=os.path.join(dir1,"Deccan Chargers-Mumbai Indians-allMatches.csv")
dc_mi_matches = pd.read_csv(path)
theTeam='Deccan Chargers'
m=yka.teamBatsmenPartnershiOppnAllMatches(dc_mi_matches,theTeam,report="detailed", top=4)
print(m)
##          batsman  totalPartnershipRuns      non_striker  partnershipRuns
## 0   AC Gilchrist                   201        A Symonds                0
## 1   AC Gilchrist                   201         HH Gibbs               53
## 2   AC Gilchrist                   201        MD Mishra                0
## 3   AC Gilchrist                   201        RG Sharma               20
## 4   AC Gilchrist                   201    Shahid Afridi                6
## 5   AC Gilchrist                   201         TL Suman                7
## 6   AC Gilchrist                   201       VVS Laxman              115
## 7       S Dhawan                   122         A Mishra                9
## 8       S Dhawan                   122         B Chipli                1
## 9       S Dhawan                   122         CL White                2
## 10      S Dhawan                   122     DT Christian               52
## 11      S Dhawan                   122         IR Jaggi                2
## 12      S Dhawan                   122        JP Duminy                9
## 13      S Dhawan                   122    KC Sangakkara               16
## 14      S Dhawan                   122         PA Patel               22
## 15      S Dhawan                   122          S Sohal                9
## 16     RG Sharma                   103        A Symonds               11
## 17     RG Sharma                   103     AC Gilchrist               18
## 18     RG Sharma                   103         DR Smith                6
## 19     RG Sharma                   103         HH Gibbs                3
## 20     RG Sharma                   103   Jaskaran Singh               15
## 21     RG Sharma                   103        KAJ Roach                4
## 22     RG Sharma                   103        LPC Silva                0
## 23     RG Sharma                   103         TL Suman               14
## 24     RG Sharma                   103  Y Venugopal Rao               32
## 25      HH Gibbs                   102     AC Gilchrist               40
## 26      HH Gibbs                   102         DR Smith               24
## 27      HH Gibbs                   102        MD Mishra               27
## 28      HH Gibbs                   102        RG Sharma                8
## 29      HH Gibbs                   102       VVS Laxman                1
## 30      HH Gibbs                   102  Y Venugopal Rao                2

6. Team Batsmen partnership in Twenty20 – Chart (all matches with opposing IPL team)

The function below plots the partnerships in all matches between 2 IPL teams and plots as chart

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data1"
path=os.path.join(dir1,"Gujarat Lions-Kings XI Punjab-allMatches.csv")
gl_kxip_matches = pd.read_csv(path)
yka.teamBatsmenPartnershipOppnAllMatchesChart(gl_kxip_matches,'Kings XI Punjab','Gujarat Lions', plot=True, top=4, partnershipRuns=20)

7.Team Batsmen partnership in Twenty20 – Dataframe (all matches with opposing IPL team)

This function does not plot the data but returns the dataframe to the user to plot or manipulate.

Note: Many of the plots include an additional parameters for e.g. plot which is either True or False. The default value is plot=True. When plot=True the plot will be displayed. When plot=False the data frame will be returned to the user. The user can use this to create an interactive charts. The parameter top= specifies the number of top batsmen that need to be included in the chart, and partnershipRuns gives the minimum cutoff runs in partnerships to be considered

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data1"
path=os.path.join(dir1,"Kolkata Knight Riders-Rising Pune Supergiants-allMatches.csv")
kkr_rps_matches = pd.read_csv(path)
m=yka.teamBatsmenPartnershipOppnAllMatchesChart(kkr_rps_matches,'Rising Pune Supergiants','Kolkata Knight Riders', plot=False, top=5, partnershipRuns=20)
print(m)
##         batsman   non_striker  partnershipRuns
## 0     AM Rahane  F du Plessis               20
## 1     AM Rahane     JA Morkel               16
## 2     AM Rahane   NLTC Perera                6
## 3     AM Rahane     SPD Smith               25
## 4     AM Rahane    UT Khawaja                2
## 5     GJ Bailey     IK Pathan                4
## 6     GJ Bailey     SS Tiwary               28
## 7     GJ Bailey    UT Khawaja                1
## 8      MS Dhoni     IK Pathan                5
## 9      MS Dhoni     JA Morkel                1
## 10     MS Dhoni   NLTC Perera                2
## 11     MS Dhoni      R Ashwin                1
## 12     MS Dhoni      R Bhatia               22
## 13    SPD Smith     AM Rahane               31
## 14  NLTC Perera     AM Rahane               12
## 15  NLTC Perera      MS Dhoni               13

8. Team batsmen versus bowler in Twenty20-Chart (all matches with opposing IPL team)

The plots below provide information on how each of the top batsmen of the IPL teams fared against the opposition bowlers

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data1"
path=os.path.join(dir1,"Rajasthan Royals-Royal Challengers Bangalore-allMatches.csv")
rr_rcb_matches = pd.read_csv(path)
yka.teamBatsmenVsBowlersOppnAllMatches(rr_rcb_matches,'Rajasthan Royals',"Royal Challengers Bangalore",plot=True,top=3,runsScored=20)

9 Team batsmen versus bowler in Twenty20-Dataframe (all matches with opposing IPL team)

This function provides the bowling performance, the number of overs bowled, maidens, runs conceded. wickets taken and economy rate for the IPL match

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data1"
path=os.path.join(dir1,"Mumbai Indians-Delhi Daredevils-allMatches.csv")
mi_dd_matches = pd.read_csv(path)
m=yka.teamBatsmenVsBowlersOppnAllMatches(mi_dd_matches,'Delhi Daredevils',"Mumbai Indians",plot=False,top=2,runsScored=50)
print(m)
##       batsman           bowler  runsScored
## 0    V Sehwag          A Nehra         6.0
## 1    V Sehwag       AG Murtaza         6.0
## 2    V Sehwag         AM Nayar        14.0
## 3    V Sehwag         CJ McKay        10.0
## 4    V Sehwag     CRD Fernando         9.0
## 5    V Sehwag         DJ Bravo         9.0
## 6    V Sehwag      DJ Thornely         0.0
## 7    V Sehwag         DR Smith        13.0
## 8    V Sehwag      DS Kulkarni        20.0
## 9    V Sehwag  Harbhajan Singh        54.0
## 10   V Sehwag        JJ Bumrah        19.0
## 11   V Sehwag       KA Pollard        37.0
## 12   V Sehwag         MM Patel        27.0
## 13   V Sehwag          PP Ojha         7.0
## 14   V Sehwag         R Shukla         9.0
## 15   V Sehwag      RJ Peterson         7.0
## 16   V Sehwag         RP Singh        28.0
## 17   V Sehwag       SL Malinga        32.0
## 18   V Sehwag       SM Pollock        25.0
## 19   V Sehwag    ST Jayasuriya        29.0
## 20   V Sehwag           Z Khan        14.0
## 21  JP Duminy      CJ Anderson         3.0
## 22  JP Duminy        HH Pandya         7.0
## 23  JP Duminy  Harbhajan Singh        29.0
## 24  JP Duminy        J Suchith         5.0
## 25  JP Duminy        JJ Bumrah        70.0
## 26  JP Duminy       KA Pollard        29.0
## 27  JP Duminy        KH Pandya         8.0
## 28  JP Duminy       M de Lange         6.0
## 29  JP Duminy   MJ McClenaghan        14.0
## 30  JP Duminy           N Rana         1.0
## 31  JP Duminy          PP Ojha        16.0
## 32  JP Duminy    R Vinay Kumar        18.0
## 33  JP Duminy        RG Sharma         3.0
## 34  JP Duminy          S Gopal         8.0
## 35  JP Duminy       SL Malinga         8.0
## 36  JP Duminy       TG Southee         3.0

10. Team batting scorecard(all matches with opposing IPL team)

This function provides the overall scorecard for an IPL team in all matches against another IPL team. In the snippet below the batting scorecard of RCB is show against CSK. Kohli, Gayle and De villiers lead the pack.

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data1"
path=os.path.join(dir1,"Royal Challengers Bangalore-Chennai Super Kings-allMatches.csv")
rcb_csk_matches = pd.read_csv(path)
scorecard=yka.teamBattingScorecardOppnAllMatches(rcb_csk_matches,'Royal Challengers Bangalore',"Chennai Super Kings")
print(scorecard)
##              batsman  runs  balls  4s  6s          SR
## 5            V Kohli   706    570  51  30  123.859649
## 20          CH Gayle   270    228  12  23  118.421053
## 19    AB de Villiers   241    157  26   9  153.503185
## 6           R Dravid   133    117  18   0  113.675214
## 3          JH Kallis   123    113  21   0  108.849558
## 22        MA Agarwal   120    104  15   4  115.384615
## 2        LRPL Taylor   117    102   5   6  114.705882
## 11        RV Uthappa   115     77   7   8  149.350649
## 21         SS Tiwary    86     88   4   3   97.727273
## 17         MK Pandey    73     72  10   0  101.388889
## 32        KD Karthik    61     58   9   0  105.172414
## 34           D Wiese    51     43   4   2  118.604651
## 33           SN Khan    50     36   5   1  138.888889
## 1           W Jaffer    50     36   5   2  138.888889
## 7            P Kumar    39     25   2   2  156.000000
## 28      Yuvraj Singh    38     33   2   1  115.151515
## 4         MV Boucher    37     33   4   1  112.121212
## 23     LA Pomersbach    31     21   2   2  147.619048
## 8             Z Khan    29     27   3   0  107.407407
## 12      KP Pietersen    23     15   2   1  153.333333
## 38          CL White    21     13   2   1  161.538462
## 26       YV Takawale    19     17   4   0  111.764706
## 31          MS Bisla    17     14   3   0  121.428571
## 14     R Vinay Kumar    17     10   1   1  170.000000
## 25        RR Rossouw    15     13   1   1  115.384615
## 40        AUK Pathan    14      6   2   1  233.333333
## 42   JJ van der Wath    14     11   1   1  127.272727
## 27            VH Zol    13     12   0   1  108.333333
## 30          MA Starc    13     16   1   0   81.250000
## 24      MC Henriques    12      4   3   0  300.000000
## 44          A Mithun    11      8   2   0  137.500000
## 50          PA Patel    10     14   2   0   71.428571
## 36        SP Goswami    10     19   1   0   52.631579
## 0           B Chipli     8     12   1   0   66.666667
## 9            B Akhil     8     12   1   0   66.666667
## 29            S Rana     6      8   0   0   75.000000
## 16  RE van der Merwe     5     12   0   0   41.666667
## 49   KB Arun Karthik     5      5   0   0  100.000000
## 54     Mandeep Singh     4      7   0   0   57.142857
## 37     Misbah-ul-Haq     4      6   0   0   66.666667
## 52      NJ Maddinson     4      7   1   0   57.142857
## 51          AN Ahmed     4      1   1   0  400.000000
## 15          A Kumble     3      6   0   0   50.000000
## 43        DL Vettori     3      4   0   0   75.000000
## 47      DT Christian     2      2   0   0  100.000000
## 45   J Syed Mohammad     2      3   0   0   66.666667
## 35          HV Patel     2      5   0   0   40.000000
## 41         CA Pujara     2      6   0   0   33.333333
## 10          DW Steyn     1      5   0   0   20.000000
## 18        EJG Morgan     1      4   0   0   25.000000
## 46        RR Bhatkal     0      2   0   0    0.000000
## 48         R Rampaul     0      6   0   0    0.000000
## 13         R Bishnoi     0      1   0   0    0.000000
## 39        TM Dilshan     0      1   0   0    0.000000
## 53     Iqbal Abdulla     0      3   0   0    0.000000
## 55         S Aravind     0      1   0   0    0.000000

11.Team Bowling scorecard (all matches with opposing IPL team)

The output below gives the performance of Rajasthan Royals bowlers against Kolkata Knight Riders in all matches between the 2 IPL teams.

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data1"
path=os.path.join(dir1,"Kolkata Knight Riders-Rajasthan Royals-allMatches.csv")
rcb_csk_matches = pd.read_csv(path)
scorecard=yka.teamBowlingScorecardOppnAllMatches(rcb_csk_matches,'Rajasthan Royals',"Kolkata Knight Riders")
print(scorecard)
##               bowler  overs  runs  maidens  wicket   econrate
## 31   Shakib Al Hasan     25   153        0       9   6.120000
## 12          I Sharma     15   118        0       6   7.866667
## 33          Umar Gul      8    61        0       6   7.625000
## 29         SP Narine     24   155        0       6   6.458333
## 1           AB Dinda     20   126        0       6   6.300000
## 23     R Vinay Kumar      8    72        0       5   9.000000
## 22          R Bhatia     15   104        0       5   6.933333
## 0         AB Agarkar     12   105        0       4   8.750000
## 17         LR Shukla     12    87        0       4   7.250000
## 6              B Lee     15    90        0       4   6.000000
## 3         AD Russell      7    59        0       4   8.428571
## 34         YK Pathan      8    61        0       4   7.625000
## 14        JD Unadkat      4    26        0       3   6.500000
## 15         JH Kallis     20   149        0       3   7.450000
## 16          L Balaji     11    73        0       3   6.636364
## 27           SE Bond      8    52        1       3   6.500000
## 10     CK Langeveldt      4    15        0       3   3.750000
## 13     Iqbal Abdulla     10    70        0       3   7.000000
## 28   SMSM Senanayake      4    26        0       2   6.500000
## 7         BAW Mendis      4    19        0       2   4.750000
## 18          M Kartik      8    56        0       2   7.000000
## 4      Anureet Singh      4    35        0       2   8.750000
## 32          UT Yadav      7    67        0       2   9.571429
## 30         SS Sarkar      3    15        0       1   5.000000
## 26        SC Ganguly      6    61        0       1  10.166667
## 5      Azhar Mahmood      3    41        0       1  13.666667
## 19          M Morkel      8    78        0       1   9.750000
## 11         DJ Hussey      2    26        0       0  13.000000
## 2         AD Mathews      3    33        0       0  11.000000
## 8           BJ Hodge      2    34        0       0  17.000000
## 25          S Narwal      2    17        0       0   8.500000
## 24  RN ten Doeschate      2    14        0       0   7.000000
## 21         PP Chawla      4    39        0       0   9.750000
## 20    Mohammed Shami      3    26        0       0   8.666667
## 9           CH Gayle      4    20        0       0   5.000000

12. Team Bowling wicket kind -Chart (all matches with opposing IPL team)

The functions compute and display the kind of wickets taken(bowled, caught, lbw etc) by an IPL team in all matches against another IPL team

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data1"
path=os.path.join(dir1,"Chennai Super Kings-Rajasthan Royals-allMatches.csv")
csk_rr_matches = pd.read_csv(path)
yka.teamBowlingWicketKindOppositionAllMatches(csk_rr_matches,'Chennai Super Kings','Rajasthan Royals',plot=True,top=5,wickets=1)

13. Team Bowling wicket kind -Dataframe (all matches with opposing IPL team)

This gives the type of wickets taken

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data1"
path=os.path.join(dir1,"Delhi Daredevils-Pune Warriors-allMatches.csv")
dd_pw_matches = pd.read_csv(path)
m=yka.teamBowlingWicketKindOppositionAllMatches(dd_pw_matches,'Pune Warriors','Delhi Daredevils',plot=False,top=4,wickets=1)
print(m)
##       bowler    kind  wickets
## 0  IK Pathan  bowled        1
## 1  IK Pathan  caught        3
## 2   M Morkel  bowled        1
## 3   M Morkel  caught        3
## 4   S Nadeem  bowled        1
## 5   S Nadeem  caught        2
## 6   UT Yadav  caught        3

14 Team Bowler vs Batman -Plot (all matches with opposing IPL team)

The function below gives the performance of bowlers in all matches against another IPL team.

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data1"
path=os.path.join(dir1,"Sunrisers Hyderabad-Kolkata Knight Riders-allMatches.csv")
srh_kkr_matches = pd.read_csv(path)
yka.teamBowlersVsBatsmenOppnAllMatches(srh_kkr_matches,'Sunrisers Hyderabad','Kolkata Knight Riders',plot=True,top=5,runsConceded=10)

15 Team Bowler vs Batman – Dataframe (all matches with opposing IPL team)

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data1"
path=os.path.join(dir1,"Royal Challengers Bangalore-Kings XI Punjab-allMatches.csv")
srh_kkr_matches = pd.read_csv(path)
m=yka.teamBowlersVsBatsmenOppnAllMatches(srh_kkr_matches,'Royal Challengers Bangalore','Kings XI Punjab',plot=False,top=1,runsConceded=30)
print(m)
##        bowler           batsman  runsConceded
## 0   PP Chawla          A Kumble             1
## 1   PP Chawla          A Mithun             1
## 2   PP Chawla       AB McDonald             3
## 3   PP Chawla    AB de Villiers            29
## 4   PP Chawla         CA Pujara            13
## 5   PP Chawla          CH Gayle            62
## 6   PP Chawla     CK Langeveldt             1
## 7   PP Chawla          CL White             3
## 8   PP Chawla        DL Vettori             1
## 9   PP Chawla          DT Patil             4
## 10  PP Chawla         JH Kallis            17
## 11  PP Chawla   JJ van der Wath             1
## 12  PP Chawla   KB Arun Karthik             4
## 13  PP Chawla      KP Pietersen            14
## 14  PP Chawla       LRPL Taylor             6
## 15  PP Chawla            M Kaif             2
## 16  PP Chawla         MK Pandey            10
## 17  PP Chawla        MV Boucher             9
## 18  PP Chawla     Misbah-ul-Haq             0
## 19  PP Chawla           P Kumar             0
## 20  PP Chawla          R Dravid            28
## 21  PP Chawla  RE van der Merwe             7
## 22  PP Chawla        RV Uthappa            19
## 23  PP Chawla         SS Tiwary             6
## 24  PP Chawla           V Kohli            56
## 25  PP Chawla            Z Khan             0

16 Team Wins and Losses (all matches with opposing IPL team)

The function below computes and plot the number of wins and losses in a head-on confrontation between 2 IPL teams

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data1"
path=os.path.join(dir1,"Chennai Super Kings-Delhi Daredevils-allMatches.csv")
csk_dd_matches = pd.read_csv(path)
yka.plotWinLossBetweenTeams(csk_dd_matches,'Chennai Super Kings','Delhi Daredevils')

17 Team Wins by win type (all matches with opposing IPL team)

This function shows how the win happened whether by runs or by wickets

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data1"
path=os.path.join(dir1,"Chennai Super Kings-Delhi Daredevils-allMatches.csv")
csk_dd_matches = pd.read_csv(path)
yka.plotWinsByRunOrWickets(csk_dd_matches,'Chennai Super Kings')

18 Team Wins by toss decision-field (all matches with opposing IPL team)

This show how Rajasthan Royals fared when it chose to field on winning the toss

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data1"
path=os.path.join(dir1,"Rajasthan Royals-Kings XI Punjab-allMatches.csv")
rr_kxip_matches = pd.read_csv(path)
yka.plotWinsbyTossDecision(rr_kxip_matches,'Rajasthan Royals',tossDecision='field')

18 Team Wins by toss decision-bat (all matches with opposing IPL team)

This plot shows how Mumbai Indians fared when it chose to bat on winning the toss

import pandas as pd
import os
import yorkpy.analytics as yka
dir1= "C:\\software\\cricket-package\\yorkpyIPLData\\data1"
path=os.path.join(dir1,"Mumbai Indians-Royal Challengers Bangalore-allMatches.csv")
mi_rcb_matches = pd.read_csv(path)
yka.plotWinsbyTossDecision(mi_rcb_matches,'Mumbai Indians',tossDecision='bat')

Feel free to clone/download the code from Github yorkpy

Important note: Do check out my other posts using yorkpy at yorkpy-posts

Analyzing batsmen and bowlers with cricpy template

Introduction

This post shows how you can analyze batsmen and bowlers of Test, ODI and T20s using cricpy templates, using data from ESPN Cricinfo.

The cricpy package

The data for a particular player can be obtained with the getPlayerData() function. To do you will need to go to ESPN CricInfo Player and type in the name of the player for e.g Rahul Dravid, Virat Kohli  etc. This will bring up a page which have the profile number for the player e.g. for Rahul Dravid this would be http://www.espncricinfo.com/india/content/player/28114.html. Hence, Dravid’s profile is 28114. This can be used to get the data for Rahul Dravid as shown below

1. For Test players use batting and bowling.
2. For ODI use batting and bowling
3. For T20 use T20 Batting T20 Bowling

Please mindful of the  ESPN Cricinfo Terms of Use

My posts on Cripy were
a. Introducing cricpy:A python package to analyze performances of cricketers
b. Cricpy takes a swing at the ODIs
c. Cricpy takes guard for the Twenty20s

You can clone/download this cricpy template for your own analysis of players. This can be done using RStudio or IPython notebooks from Github at cricpy-template. You can uncomment the functions and use them.

The cricpy package is now available with pip install cricpy!!!

If you are passionate about cricket, and love analyzing cricket performances, then check out my racy book on cricket ‘Cricket analytics with cricketr and cricpy – Analytics harmony with R & Python’! This book discusses and shows how to use my R package ‘cricketr’ and my Python package ‘cricpy’ to analyze batsmen and bowlers in all formats of the game (Test, ODI and T20). The paperback is available on Amazon at $21.99 and  the kindle version at $9.99/Rs 449/-. A must read for any cricket lover! Check it out!!

Untitled

1 Importing cricpy – Python

# Install the package
# Do a pip install cricpy
# Import cricpy
import cricpy.analytics as ca 
## C:\Users\Ganesh\ANACON~1\lib\site-packages\statsmodels\compat\pandas.py:56: FutureWarning: The pandas.core.datetools module is deprecated and will be removed in a future version. Please use the pandas.tseries module instead.
##   from pandas.core import datetools

2. Invoking functions with Python package cricpy

import cricpy.analytics as ca 
#ca.batsman4s("aplayer.csv","A Player")

3. Getting help from cricpy – Python

import cricpy.analytics as ca
#help(ca.getPlayerData)

The details below will introduce the different functions that are available in cricpy.

4. Get the player data for a player using the function getPlayerData()

Important Note This needs to be done only once for a player. This function stores the player’s data in the specified CSV file (for e.g. dravid.csv as above) which can then be reused for all other functions). Once we have the data for the players many analyses can be done. This post will use the stored CSV file obtained with a prior getPlayerData for all subsequent analyses

4a. For Test players

import cricpy.analytics as ca
#player1 =ca.getPlayerData(profileNo1,dir="..",file="player1.csv",type="batting",homeOrAway=[1,2], result=[1,2,4])
#player1 =ca.getPlayerData(profileNo2,dir="..",file="player2.csv",type="batting",homeOrAway=[1,2], result=[1,2,4])

4b. For ODI players

import cricpy.analytics as ca
#player1 =ca.getPlayerDataOD(profileNo1,dir="..",file="player1.csv",type="batting")
#player1 =ca.getPlayerDataOD(profileNo2,dir="..",file="player2.csv",type="batting"")

4c For T20 players

import cricpy.analytics as ca
#player1 =ca.getPlayerDataTT(profileNo1,dir="..",file="player1.csv",type="batting")
#player1 =ca.getPlayerDataTT(profileNo2,dir="..",file="player2.csv",type="batting"")

5 A Player’s performance – Basic Analyses

The 3 plots below provide the following for Rahul Dravid

  1. Frequency percentage of runs in each run range over the whole career
  2. Mean Strike Rate for runs scored in the given range
  3. A histogram of runs frequency percentages in runs ranges
import cricpy.analytics as ca
import matplotlib.pyplot as plt
#ca.batsmanRunsFreqPerf("aplayer.csv","A Player")
#ca.batsmanMeanStrikeRate("aplayer.csv","A Player")
#ca.batsmanRunsRanges("aplayer.csv","A Player") 

6. More analyses

This gives details on the batsmen’s 4s, 6s and dismissals

import cricpy.analytics as ca
#ca.batsman4s("aplayer.csv","A Player")
#ca.batsman6s("aplayer.csv","A Player") 
#ca.batsmanDismissals("aplayer.csv","A Player")
# The below function is for ODI and T20 only
#ca.batsmanScoringRateODTT("./kohli.csv","Virat Kohli")  

7. 3D scatter plot and prediction plane

The plots below show the 3D scatter plot of Runs versus Balls Faced and Minutes at crease. A linear regression plane is then fitted between Runs and Balls Faced + Minutes at crease

import cricpy.analytics as ca
#ca.battingPerf3d("aplayer.csv","A Player")

8. Average runs at different venues

The plot below gives the average runs scored at different grounds. The plot also the number of innings at each ground as a label at x-axis.

import cricpy.analytics as ca
#ca.batsmanAvgRunsGround("aplayer.csv","A Player")

9. Average runs against different opposing teams

This plot computes the average runs scored against different countries.

import cricpy.analytics as ca
#ca.batsmanAvgRunsOpposition("aplayer.csv","A Player")

10. Highest Runs Likelihood

The plot below shows the Runs Likelihood for a batsman.

import cricpy.analytics as ca
#ca.batsmanRunsLikelihood("aplayer.csv","A Player")

11. A look at the Top 4 batsman

Choose any number of players

1.Player1 2.Player2 3.Player3 …

The following plots take a closer at their performances. The box plots show the median the 1st and 3rd quartile of the runs

12. Box Histogram Plot

This plot shows a combined boxplot of the Runs ranges and a histogram of the Runs Frequency

import cricpy.analytics as ca
#ca.batsmanPerfBoxHist("aplayer001.csv","A Player001")
#ca.batsmanPerfBoxHist("aplayer002.csv","A Player002")
#ca.batsmanPerfBoxHist("aplayer003.csv","A Player003")
#ca.batsmanPerfBoxHist("aplayer004.csv","A Player004")

13. Get Player Data special

import cricpy.analytics as ca
#player1sp = ca.getPlayerDataSp(profile1,tdir=".",tfile="player1sp.csv",ttype="batting")
#player2sp = ca.getPlayerDataSp(profile2,tdir=".",tfile="player2sp.csv",ttype="batting")
#player3sp = ca.getPlayerDataSp(profile3,tdir=".",tfile="player3sp.csv",ttype="batting")
#player4sp = ca.getPlayerDataSp(profile4,tdir=".",tfile="player4sp.csv",ttype="batting")

14. Contribution to won and lost matches

Note:This can only be used for Test matches

import cricpy.analytics as ca
#ca.batsmanContributionWonLost("player1sp.csv","A Player001")
#ca.batsmanContributionWonLost("player2sp.csv","A Player002")
#ca.batsmanContributionWonLost("player3sp.csv","A Player003")
#ca.batsmanContributionWonLost("player4sp.csv","A Player004")

15. Performance at home and overseas

Note:This can only be used for Test matches This function also requires the use of getPlayerDataSp() as shown above

import cricpy.analytics as ca
#ca.batsmanPerfHomeAway("player1sp.csv","A Player001")
#ca.batsmanPerfHomeAway("player2sp.csv","A Player002")
#ca.batsmanPerfHomeAway("player3sp.csv","A Player003")
#ca.batsmanPerfHomeAway("player4sp.csv","A Player004")

16 Moving Average of runs in career

import cricpy.analytics as ca
#ca.batsmanMovingAverage("aplayer001.csv","A Player001")
#ca.batsmanMovingAverage("aplayer002.csv","A Player002")
#ca.batsmanMovingAverage("aplayer003.csv","A Player003")
#ca.batsmanMovingAverage("aplayer004.csv","A Player004")

17 Cumulative Average runs of batsman in career

This function provides the cumulative average runs of the batsman over the career.

import cricpy.analytics as ca
#ca.batsmanCumulativeAverageRuns("aplayer001.csv","A Player001")
#ca.batsmanCumulativeAverageRuns("aplayer002.csv","A Player002")
#ca.batsmanCumulativeAverageRuns("aplayer003.csv","A Player003")
#ca.batsmanCumulativeAverageRuns("aplayer004.csv","A Player004")

18 Cumulative Average strike rate of batsman in career

.

import cricpy.analytics as ca
#ca.batsmanCumulativeStrikeRate("aplayer001.csv","A Player001")
#ca.batsmanCumulativeStrikeRate("aplayer002.csv","A Player002")
#ca.batsmanCumulativeStrikeRate("aplayer003.csv","A Player003")
#ca.batsmanCumulativeStrikeRate("aplayer004.csv","A Player004")

19 Future Runs forecast

import cricpy.analytics as ca
#ca.batsmanPerfForecast("aplayer001.csv","A Player001")

20 Relative Batsman Cumulative Average Runs

The plot below compares the Relative cumulative average runs of the batsman for each of the runs ranges of 10 and plots them.

import cricpy.analytics as ca
frames = ["aplayer1.csv","aplayer2.csv","aplayer3.csv","aplayer4.csv"]
names = ["A Player1","A Player2","A Player3","A Player4"]
#ca.relativeBatsmanCumulativeAvgRuns(frames,names)

21 Plot of 4s and 6s

import cricpy.analytics as ca
frames = ["aplayer1.csv","aplayer2.csv","aplayer3.csv","aplayer4.csv"]
names = ["A Player1","A Player2","A Player3","A Player4"]
#ca.batsman4s6s(frames,names)

22. Relative Batsman Strike Rate

The plot below gives the relative Runs Frequency Percetages for each 10 run bucket. The plot below show

import cricpy.analytics as ca
frames = ["aplayer1.csv","aplayer2.csv","aplayer3.csv","aplayer4.csv"]
names = ["A Player1","A Player2","A Player3","A Player4"]
#ca.relativeBatsmanCumulativeStrikeRate(frames,names)

23. 3D plot of Runs vs Balls Faced and Minutes at Crease

The plot is a scatter plot of Runs vs Balls faced and Minutes at Crease. A prediction plane is fitted

import cricpy.analytics as ca
#ca.battingPerf3d("aplayer001.csv","A Player001")
#ca.battingPerf3d("aplayer002.csv","A Player002")
#ca.battingPerf3d("aplayer003.csv","A Player003")
#ca.battingPerf3d("aplayer004.csv","A Player004")

24. Predicting Runs given Balls Faced and Minutes at Crease

A multi-variate regression plane is fitted between Runs and Balls faced +Minutes at crease.

import cricpy.analytics as ca
import numpy as np
import pandas as pd
BF = np.linspace( 10, 400,15)
Mins = np.linspace( 30,600,15)
newDF= pd.DataFrame({'BF':BF,'Mins':Mins})
#aplayer = ca.batsmanRunsPredict("aplayer.csv",newDF,"A Player")
#print(aplayer)

The fitted model is then used to predict the runs that the batsmen will score for a given Balls faced and Minutes at crease.

25 Analysis of Top 3 wicket takers

Take any number of bowlers from either Test, ODI or T20

  1. Bowler1
  2. Bowler2
  3. Bowler3 …

26. Get the bowler’s data (Test)

This plot below computes the percentage frequency of number of wickets taken for e.g 1 wicket x%, 2 wickets y% etc and plots them as a continuous line

import cricpy.analytics as ca
#abowler1 =ca.getPlayerData(profileNo1,dir=".",file="abowler1.csv",type="bowling",homeOrAway=[1,2], result=[1,2,4])
#abowler2 =ca.getPlayerData(profileNo2,dir=".",file="abowler2.csv",type="bowling",homeOrAway=[1,2], result=[1,2,4])
#abowler3 =ca.getPlayerData(profile3,dir=".",file="abowler3.csv",type="bowling",homeOrAway=[1,2], result=[1,2,4])

26b For ODI bowlers

import cricpy.analytics as ca
#abowler1 =ca.getPlayerDataOD(profileNo1,dir=".",file="abowler1.csv",type="bowling")
#abowler2 =ca.getPlayerDataOD(profileNo2,dir=".",file="abowler2.csv",type="bowling")
#abowler3 =ca.getPlayerDataOD(profile3,dir=".",file="abowler3.csv",type="bowling")

26c For T20 bowlers

import cricpy.analytics as ca
#abowler1 =ca.getPlayerDataTT(profileNo1,dir=".",file="abowler1.csv",type="bowling")
#abowler2 =ca.getPlayerDataTT(profileNo2,dir=".",file="abowler2.csv",type="bowling")
#abowler3 =ca.getPlayerDataTT(profile3,dir=".",file="abowler3.csv",type="bowling")

27. Wicket Frequency Plot

This plot below plots the frequency of wickets taken for each of the bowlers

import cricpy.analytics as ca
#ca.bowlerWktsFreqPercent("abowler1.csv","A Bowler1")
#ca.bowlerWktsFreqPercent("abowler2.csv","A Bowler2")
#ca.bowlerWktsFreqPercent("abowler3.csv","A Bowler3")

28. Wickets Runs plot

The plot below create a box plot showing the 1st and 3rd quartile of runs conceded versus the number of wickets taken

import cricpy.analytics as ca
#ca.bowlerWktsRunsPlot("abowler1.csv","A Bowler1")
#ca.bowlerWktsRunsPlot("abowler2.csv","A Bowler2")
#ca.bowlerWktsRunsPlot("abowler3.csv","A Bowler3")

29 Average wickets at different venues

The plot gives the average wickets taken bat different venues.

import cricpy.analytics as ca
#ca.bowlerAvgWktsGround("abowler1.csv","A Bowler1")
#ca.bowlerAvgWktsGround("abowler2.csv","A Bowler2")
#ca.bowlerAvgWktsGround("abowler3.csv","A Bowler3")

30 Average wickets against different opposition

The plot gives the average wickets taken against different countries.

import cricpy.analytics as ca
#ca.bowlerAvgWktsOpposition("abowler1.csv","A Bowler1")
#ca.bowlerAvgWktsOpposition("abowler2.csv","A Bowler2")
#ca.bowlerAvgWktsOpposition("abowler3.csv","A Bowler3")

31 Wickets taken moving average

import cricpy.analytics as ca
#ca.bowlerMovingAverage("abowler1.csv","A Bowler1")
#ca.bowlerMovingAverage("abowler2.csv","A Bowler2")
#ca.bowlerMovingAverage("abowler3.csv","A Bowler3")

32 Cumulative average wickets taken

The plots below give the cumulative average wickets taken by the bowlers.

import cricpy.analytics as ca
#ca.bowlerCumulativeAvgWickets("abowler1.csv","A Bowler1")
#ca.bowlerCumulativeAvgWickets("abowler2.csv","A Bowler2")
#ca.bowlerCumulativeAvgWickets("abowler3.csv","A Bowler3")

33 Cumulative average economy rate

The plots below give the cumulative average economy rate of the bowlers.

import cricpy.analytics as ca
#ca.bowlerCumulativeAvgEconRate("abowler1.csv","A Bowler1")
#ca.bowlerCumulativeAvgEconRate("abowler2.csv","A Bowler2")
#ca.bowlerCumulativeAvgEconRate("abowler3.csv","A Bowler3")

34 Future Wickets forecast

import cricpy.analytics as ca
#ca.bowlerPerfForecast("abowler1.csv","A bowler1")

35 Get player data special

import cricpy.analytics as ca
#abowler1sp =ca.getPlayerDataSp(profile1,tdir=".",tfile="abowler1sp.csv",ttype="bowling")
#abowler2sp =ca.getPlayerDataSp(profile2,tdir=".",tfile="abowler2sp.csv",ttype="bowling")
#abowler3sp =ca.getPlayerDataSp(profile3,tdir=".",tfile="abowler3sp.csv",ttype="bowling")

36 Contribution to matches won and lost

Note:This can be done only for Test cricketers

import cricpy.analytics as ca
#ca.bowlerContributionWonLost("abowler1sp.csv","A Bowler1")
#ca.bowlerContributionWonLost("abowler2sp.csv","A Bowler2")
#ca.bowlerContributionWonLost("abowler3sp.csv","A Bowler3")

37 Performance home and overseas

Note:This can be done only for Test cricketers

import cricpy.analytics as ca
#ca.bowlerPerfHomeAway("abowler1sp.csv","A Bowler1")
#ca.bowlerPerfHomeAway("abowler2sp.csv","A Bowler2")
#ca.bowlerPerfHomeAway("abowler3sp.csv","A Bowler3")

38 Relative cumulative average economy rate of bowlers

import cricpy.analytics as ca
frames = ["abowler1.csv","abowler2.csv","abowler3.csv"]
names = ["A Bowler1","A Bowler2","A Bowler3"]
#ca.relativeBowlerCumulativeAvgEconRate(frames,names)

39 Relative Economy Rate against wickets taken

import cricpy.analytics as ca
frames = ["abowler1.csv","abowler2.csv","abowler3.csv"]
names = ["A Bowler1","A Bowler2","A Bowler3"]
#ca.relativeBowlingER(frames,names)

40 Relative cumulative average wickets of bowlers in career

import cricpy.analytics as ca
frames = ["abowler1.csv","abowler2.csv","abowler3.csv"]
names = ["A Bowler1","A Bowler2","A Bowler3"]
#ca.relativeBowlerCumulativeAvgWickets(frames,names)

Clone/download this cricpy template for your own analysis of players. This can be done using RStudio or IPython notebooks from Github at cricpy-template

Important note: Do check out my other posts using cricpy at cricpy-posts

Key Findings

Analysis of Top 4 batsman

Analysis of Top 3 bowlers

You may also like
1. My book ‘Deep Learning from first principles:Second Edition’ now on Amazon
2. Presentation on ‘Evolution to LTE’
3. Stacks of protocol stacks – A primer
4. Taking baby steps in Lisp
5. Introducing cricket package yorkr: Part 1- Beaten by sheer pace!

To see all posts click Index of posts

Cricpy takes guard for the Twenty20s

There are two ways to write error-free programs; only the third one works.”” Alan J. Perlis

Programming today is a race between software engineers striving to build bigger and better idiot-proof programs, and the universe trying to produce bigger and better idiots. So far, the universe is winning. ” Rick Cook

My software never has bugs. It just develops random features.” Anon

If you make an ass out of yourself, there will always be someone to ride you.” Bruce Lee

Introduction

This is the 3rd and final post on cricpy, and is a continuation to my 2 earlier posts

1. Introducing cricpy:A python package to analyze performances of cricketers
2.Cricpy takes a swing at the ODIs

Cricpy, is the python avatar of my R package ‘cricketr’. To know more about my R package cricketr see Re-introducing cricketr! : An R package to analyze performances of cricketers

With this post  cricpy, like cricketr, now becomes omnipotent, and is now capable of handling Test, ODI and T20 matches.

Cricpy uses the statistics info available in ESPN Cricinfo Statsguru.

You should be able to install the package using pip install cricpy and use the many functions available in the package. Please mindful of the ESPN Cricinfo Terms of Use

This post is also hosted on Rpubs at Cricpy takes guard for the Twenty 20s. You can also download the pdf version of this post at cricpy-TT.pdf

You can fork/clone the package at Github cricpy

Note: If you would like to do a similar analysis for a different set of batsman and bowlers, you can clone/download my skeleton cricpy-template from Github (which is the R Markdown file I have used for the analysis below). You will only need to make appropriate changes for the players you are interested in. The functions can be executed in RStudio or in a IPython notebook.

If you are passionate about cricket, and love analyzing cricket performances, then check out my racy book on cricket ‘Cricket analytics with cricketr and cricpy – Analytics harmony with R & Python’! This book discusses and shows how to use my R package ‘cricketr’ and my Python package ‘cricpy’ to analyze batsmen and bowlers in all formats of the game (Test, ODI and T20). The paperback is available on Amazon at $21.99 and  the kindle version at $9.99/Rs 449/-. A must read for any cricket lover! Check it out!!

Untitled

The cricpy package

The data for a particular player in Twenty20s can be obtained with the getPlayerDataTT() function. To do this you will need to go to T20 Batting and T20 Bowling and click the player you are interested in This will bring up a page which have the profile number for the player e.g. for Virat Kohli this would be http://www.espncricinfo.com/india/content/player/253802.html. Hence,this can be used to get the data for Virat Kohlias shown below

The cricpy package is a clone of my R package cricketr. The signature of all the python functions are identical with that of its clone ‘cricketr’, with only the necessary variations between Python and R. It may be useful to look at my post R vs Python: Different similarities and similar differences. In fact if you are familar with one of the languages you can look up the package in the other and you will notice the parallel constructs.

You can fork/clone the package at Github cricpy

Note: The charts are self-explanatory and I have not added much of my own interpretation to it. Do look at the plots closely and check out the performances for yourself.

1 Importing cricpy – Python

# Install the package
# Do a pip install cricpy
# Import cricpy
import cricpy.analytics as ca 

2. Invoking functions with Python package cricpy

import cricpy.analytics as ca 
ca.batsman4s("./kohli.csv","Virat Kohli")

3. Getting help from cricpy – Python

import cricpy.analytics as ca 
help(ca.getPlayerDataTT)
## Help on function getPlayerDataTT in module cricpy.analytics:
## 
## getPlayerDataTT(profile, opposition='', host='', dir='./data', file='player001.csv', type='batting', homeOrAway=[1, 2, 3], result=[1, 2, 3, 5], create=True)
##     Get the Twenty20 International player data from ESPN Cricinfo based on specific inputs and store in a file in a given directory~
##     
##     Description
##     
##     Get the Twenty20 player data given the profile of the batsman/bowler. The allowed inputs are home,away, neutralboth and won,lost,tied or no result of matches. The data is stored in a <player>.csv file in a directory specified. This function also returns a data frame of the player
##     
##     Usage
##     
##     getPlayerDataTT(profile, opposition="",host="",dir = "./data", file = "player001.csv", 
##     type = "batting", homeOrAway = c(1, 2, 3), result = c(1, 2, 3,5))
##     Arguments
##     
##     profile     
##     This is the profile number of the player to get data. This can be obtained from http://www.espncricinfo.com/ci/content/player/index.html. Type the name of the player and click search. This will display the details of the player. Make a note of the profile ID. For e.g For Virat Kohli this turns out to be 253802 http://www.espncricinfo.com/india/content/player/35263.html. Hence the profile for Sehwag is 35263
##     opposition  
##     The numerical value of the opposition country e.g.Australia,India, England etc. The values are Afghanistan:40,Australia:2,Bangladesh:25,England:1,Hong Kong:19,India:6,Ireland:29, New Zealand:5,Pakistan:7,Scotland:30,South Africa:3,Sri Lanka:8,United Arab Emirates:27, West Indies:4, Zimbabwe:9; Note: If no value is entered for opposition then all teams are considered
##     host        
##     The numerical value of the host country e.g.Australia,India, England etc. The values are Australia:2,Bangladesh:25,England:1,India:6,New Zealand:5, South Africa:3,Sri Lanka:8,United States of America:11,West Indies:4, Zimbabwe:9 Note: If no value is entered for host then all host countries are considered
##     dir 
##     Name of the directory to store the player data into. If not specified the data is stored in a default directory "./data". Default="./data"
##     file        
##     Name of the file to store the data into for e.g. kohli.csv. This can be used for subsequent functions. Default="player001.csv"
##     type        
##     type of data required. This can be "batting" or "bowling"
##     homeOrAway  
##     This is vector with either or all 1,2, 3. 1 is for home 2 is for away, 3 is for neutral venue
##     result      
##     This is a vector that can take values 1,2,3,5. 1 - won match 2- lost match 3-tied 5- no result
##     Details
##     
##     More details can be found in my short video tutorial in Youtube https://www.youtube.com/watch?v=q9uMPFVsXsI
##     
##     Value
##     
##     Returns the player's dataframe
##     
##     Note
##     
##     Maintainer: Tinniam V Ganesh <tvganesh.85@gmail.com>
##     
##     Author(s)
##     
##     Tinniam V Ganesh
##     
##     References
##     
##     http://www.espncricinfo.com/ci/content/stats/index.html
##     https://gigadom.wordpress.com/
##     
##     See Also
##     
##     bowlerWktRateTT getPlayerData
##     
##     Examples
##     
##     ## Not run: 
##     # Only away. Get data only for won and lost innings
##     kohli =getPlayerDataTT(253802,dir="../cricketr/data", file="kohli1.csv",
##     type="batting")
##     
##     # Get bowling data and store in file for future
##     ashwin = getPlayerDataTT(26421,dir="../cricketr/data",file="ashwin1.csv",
##     type="bowling")
##     
##     kohli =getPlayerDataTT(253802,opposition = 2,host=2,dir="../cricketr/data", 
##     file="kohli1.csv",type="batting")

The details below will introduce the different functions that are available in cricpy.

4. Get the Twenty20 player data for a player using the function getPlayerDataOD()

Important Note This needs to be done only once for a player. This function stores the player’s data in the specified CSV file (for e.g. kohli.csv as above) which can then be reused for all other functions). Once we have the data for the players many analyses can be done. This post will use the stored CSV file obtained with a prior getPlayerDataTT for all subsequent analyses

import cricpy.analytics as ca
#kohli=ca.getPlayerDataTT(253802,dir=".",file="kohli.csv",type="batting")
#guptill=ca.getPlayerDataTT(226492,dir=".",file="guptill.csv",type="batting")
#shahzad=ca.getPlayerDataTT(419873,dir=".",file="shahzad.csv",type="batting")
#mccullum=ca.getPlayerDataTT(37737,dir=".",file="mccullum.csv",type="batting")

Included below are some of the functions that can be used for ODI batsmen and bowlers. For this I have chosen, Virat Kohli, ‘the run machine’ who is on-track for breaking many of the Test, ODI and Twenty20 records

5 Virat Kohli’s performance – Basic Analyses

The 3 plots below provide the following for Virat Kohli in T20s

  1. Frequency percentage of runs in each run range over the whole career
  2. Mean Strike Rate for runs scored in the given range
  3. A histogram of runs frequency percentages in runs ranges
import cricpy.analytics as ca
import matplotlib.pyplot as plt
ca.batsmanRunsFreqPerf("./kohli.csv","Virat Kohli")

ca.batsmanMeanStrikeRate("./kohli.csv","Virat Kohli")

ca.batsmanRunsRanges("./kohli.csv","Virat Kohli")

6. More analyses

import cricpy.analytics as ca
ca.batsman4s("./kohli.csv","Virat Kohli")

ca.batsman6s("./kohli.csv","Virat Kohli")

ca.batsmanDismissals("./kohli.csv","Virat Kohli")

ca.batsmanScoringRateODTT("./kohli.csv","Virat Kohli")

7. 3D scatter plot and prediction plane

The plots below show the 3D scatter plot of Kohli’s Runs versus Balls Faced and Minutes at crease. A linear regression plane is then fitted between Runs and Balls Faced + Minutes at crease

import cricpy.analytics as ca
ca.battingPerf3d("./kohli.csv","Virat Kohli")

8. Average runs at different venues

The plot below gives the average runs scored by Kohli at different grounds. The plot also the number of innings at each ground as a label at x-axis.

import cricpy.analytics as ca
ca.batsmanAvgRunsGround("./kohli.csv","Virat Kohli")

9. Average runs against different opposing teams

This plot computes the average runs scored by Kohli against different countries.

import cricpy.analytics as ca
ca.batsmanAvgRunsOpposition("./kohli.csv","Virat Kohli")

10 . Highest Runs Likelihood

The plot below shows the Runs Likelihood for a batsman. For this the performance of Kohli is plotted as a 3D scatter plot with Runs versus Balls Faced + Minutes at crease. K-Means. The centroids of 3 clusters are computed and plotted. In this plot Kohli’s highest tendencies are computed and plotted using K-Means

import cricpy.analytics as ca
ca.batsmanRunsLikelihood("./kohli.csv","Virat Kohli")

11. A look at the Top 4 batsman – Kohli,  Guptill, Shahzad and McCullum

The following batsmen have been very prolific in Twenty20 cricket and will be used for the analyses

  1. Virat Kohli: Runs – 2167, Average:49.25 ,Strike rate-136.11
  2. MJ Guptill : Runs -2271, Average:34.4 ,Strike rate-132.88
  3. Mohammed Shahzad :Runs – 1936, Average:31.22 ,Strike rate-134.81
  4. BB McCullum : Runs – 2140, Average:35.66 ,Strike rate-136.21

The following plots take a closer at their performances. The box plots show the median the 1st and 3rd quartile of the runs

12. Box Histogram Plot

This plot shows a combined boxplot of the Runs ranges and a histogram of the Runs Frequency

import cricpy.analytics as ca
ca.batsmanPerfBoxHist("./kohli.csv","Virat Kohli")

ca.batsmanPerfBoxHist("./guptill.csv","M J Guptill")

ca.batsmanPerfBoxHist("./shahzad.csv","M Shahzad")

ca.batsmanPerfBoxHist("./mccullum.csv","BB McCullum")

13 Moving Average of runs in career

Take a look at the Moving Average across the career of the Top 4 Twenty20 batsmen.

import cricpy.analytics as ca
ca.batsmanMovingAverage("./kohli.csv","Virat Kohli")

ca.batsmanMovingAverage("./guptill.csv","M J Guptill")
#ca.batsmanMovingAverage("./shahzad.csv","M Shahzad") # Gives error. Check!

ca.batsmanMovingAverage("./mccullum.csv","BB McCullum")

14 Cumulative Average runs of batsman in career

This function provides the cumulative average runs of the batsman over the career.Kohli’s average tops around 45 runs around 43 innings, though there is a dip downwards

import cricpy.analytics as ca
ca.batsmanCumulativeAverageRuns("./kohli.csv","Virat Kohli")

ca.batsmanCumulativeAverageRuns("./guptill.csv","M J Guptill")

ca.batsmanCumulativeAverageRuns("./shahzad.csv","M Shahzad")

ca.batsmanCumulativeAverageRuns("./mccullum.csv","BB McCullum")

15 Cumulative Average strike rate of batsman in career

Kohli, Guptill and McCullum average a strike rate of 125+

import cricpy.analytics as ca
ca.batsmanCumulativeStrikeRate("./kohli.csv","Virat Kohli")

ca.batsmanCumulativeStrikeRate("./guptill.csv","M J Guptill")

ca.batsmanCumulativeStrikeRate("./shahzad.csv","M Shahzad")

ca.batsmanCumulativeStrikeRate("./mccullum.csv","BB McCullum")

16 Relative Batsman Cumulative Average Runs

The plot below compares the Relative cumulative average runs of the batsman. Kohli is way above all the other 3 batsmen. Behind Kohli is McCullum and then Guptill

import cricpy.analytics as ca
frames = ["./kohli.csv","./guptill.csv","./shahzad.csv","./mccullum.csv"]
names = ["Kohli","Guptill","Shahzad","McCullumn"]
ca.relativeBatsmanCumulativeAvgRuns(frames,names)

17. Relative Batsman Strike Rate

The plot below gives the relative Runs Frequency Percetages for each 10 run bucket. The plot below show that Kohli tops the overall strike rate followed by McCullum and then Guptill

import cricpy.analytics as ca
frames = ["./kohli.csv","./guptill.csv","./shahzad.csv","./mccullum.csv"]
names = ["Kohli","Guptill","Shahzad","McCullum"]
ca.relativeBatsmanCumulativeStrikeRate(frames,names)

18. 3D plot of Runs vs Balls Faced and Minutes at Crease

The plot is a scatter plot of Runs vs Balls faced and Minutes at Crease. A 3D prediction plane is fitted

import cricpy.analytics as ca
ca.battingPerf3d("./kohli.csv","Virat Kohli")

ca.battingPerf3d("./guptill.csv","M J Guptill")

ca.battingPerf3d("./shahzad.csv","M Shahzad")

ca.battingPerf3d("./mccullum.csv","BB McCullum")

19. 3D plot of Runs vs Balls Faced and Minutes at Crease

Guptill and McCullum have a large percentage of sixes in comparison to the 4s. Kohli has a relative lower number of 6s

import cricpy.analytics as ca
frames = ["./kohli.csv","./guptill.csv","./shahzad.csv","./mccullum.csv"]
names = ["Kohli","Guptill","Shahzad","McCullum"]
ca.batsman4s6s(frames,names)

20. Predicting Runs given Balls Faced and Minutes at Crease

A multi-variate regression plane is fitted between Runs and Balls faced +Minutes at crease.

import cricpy.analytics as ca
import numpy as np
import pandas as pd
BF = np.linspace( 10, 400,15)
Mins = np.linspace( 30,600,15)
newDF= pd.DataFrame({'BF':BF,'Mins':Mins})
kohli= ca.batsmanRunsPredict("./kohli.csv",newDF,"Kohli")
print(kohli)
##             BF        Mins        Runs
## 0    10.000000   30.000000   14.753153
## 1    37.857143   70.714286   55.963333
## 2    65.714286  111.428571   97.173513
## 3    93.571429  152.142857  138.383693
## 4   121.428571  192.857143  179.593873
## 5   149.285714  233.571429  220.804053
## 6   177.142857  274.285714  262.014233
## 7   205.000000  315.000000  303.224414
## 8   232.857143  355.714286  344.434594
## 9   260.714286  396.428571  385.644774
## 10  288.571429  437.142857  426.854954
## 11  316.428571  477.857143  468.065134
## 12  344.285714  518.571429  509.275314
## 13  372.142857  559.285714  550.485494
## 14  400.000000  600.000000  591.695674

21 Analysis of Top Bowlers

The following 4 bowlers have had an excellent career and will be used for the analysis

  1. Shakib Hasan:Wickets: 80, Average = 21.07, Economy Rate – 6.74
  2. Mohammed Nabi : Wickets: 67, Average = 24.25, Economy Rate – 7.13
  3. Rashid Khan: Wickets: 64, Average = 12.40, Economy Rate – 6.01
  4. Imran Tahir : Wickets:62, Average – 14.95, Economy Rate – 6.77

22. Get the bowler’s data

This plot below computes the percentage frequency of number of wickets taken for e.g 1 wicket x%, 2 wickets y% etc and plots them as a continuous line

import cricpy.analytics as ca
#shakib=ca.getPlayerDataTT(56143,dir=".",file="shakib.csv",type="bowling")
#nabi=ca.getPlayerDataOD(25913,dir=".",file="nabi.csv",type="bowling")
#rashid=ca.getPlayerDataOD(793463,dir=".",file="rashid.csv",type="bowling")
#tahir=ca.getPlayerDataOD(40618,dir=".",file="tahir.csv",type="bowling")

23. Wicket Frequency Plot

This plot below plots the frequency of wickets taken for each of the bowlers

import cricpy.analytics as ca
ca.bowlerWktsFreqPercent("./shakib.csv","Shakib Al Hasan")

ca.bowlerWktsFreqPercent("./nabi.csv","Mohammad Nabi")

ca.bowlerWktsFreqPercent("./rashid.csv","Rashid Khan")

ca.bowlerWktsFreqPercent("./tahir.csv","Imran Tahir")

24. Wickets Runs plot

The plot below create a box plot showing the 1st and 3rd quartile of runs conceded versus the number of wickets taken.

import cricpy.analytics as ca
ca.bowlerWktsRunsPlot("./shakib.csv","Shakib Al Hasan")

ca.bowlerWktsRunsPlot("./nabi.csv","Mohammad Nabi")

ca.bowlerWktsRunsPlot("./rashid.csv","Rashid Khan")

ca.bowlerWktsRunsPlot("./tahir.csv","Imran Tahir")

25 Average wickets at different venues

The plot gives the average wickets taken by Muralitharan at different venues.

import cricpy.analytics as ca
ca.bowlerAvgWktsGround("./shakib.csv","Shakib Al Hasan")

ca.bowlerAvgWktsGround("./nabi.csv","Mohammad Nabi")

ca.bowlerAvgWktsGround("./rashid.csv","Rashid Khan")

ca.bowlerAvgWktsGround("./tahir.csv","Imran Tahir")

26 Average wickets against different opposition

The plot gives the average wickets taken by Muralitharan against different countries. The x-axis also includes the number of innings against each team

import cricpy.analytics as ca
ca.bowlerAvgWktsOpposition("./shakib.csv","Shakib Al Hasan")

ca.bowlerAvgWktsOpposition("./nabi.csv","Mohammad Nabi")

ca.bowlerAvgWktsOpposition("./rashid.csv","Rashid Khan")

ca.bowlerAvgWktsOpposition("./tahir.csv","Imran Tahir")

27 Wickets taken moving average

From the plot below it can be see

import cricpy.analytics as ca
ca.bowlerMovingAverage("./shakib.csv","Shakib Al Hasan")

ca.bowlerMovingAverage("./nabi.csv","Mohammad Nabi")

ca.bowlerMovingAverage("./rashid.csv","Rashid Khan")

ca.bowlerMovingAverage("./tahir.csv","Imran Tahir")

28 Cumulative average wickets taken

The plots below give the cumulative average wickets taken by the bowlers. Rashid Khan has been the most effective with almost 2.28 wickets per match

import cricpy.analytics as ca
ca.bowlerCumulativeAvgWickets("./shakib.csv","Shakib Al Hasan")

ca.bowlerCumulativeAvgWickets("./nabi.csv","Mohammad Nabi")

ca.bowlerCumulativeAvgWickets("./rashid.csv","Rashid Khan")

ca.bowlerCumulativeAvgWickets("./tahir.csv","Imran Tahir")

29 Cumulative average economy rate

The plots below give the cumulative average economy rate of the bowlers. Rashid Khan has the nest economy rate followed by Mohammed Nabi

import cricpy.analytics as ca
ca.bowlerCumulativeAvgEconRate("./shakib.csv","Shakib Al Hasan")

ca.bowlerCumulativeAvgEconRate("./nabi.csv","Mohammad Nabi")

ca.bowlerCumulativeAvgEconRate("./rashid.csv","Rashid Khan")

ca.bowlerCumulativeAvgEconRate("./tahir.csv","Imran Tahir")

30 Relative cumulative average economy rate of bowlers

The Relative cumulative economy rate is given below. It can be seen that Rashid Khan has the best economy rate followed by Mohammed Nabi and then Imran Tahir

import cricpy.analytics as ca
frames = ["./shakib.csv","./nabi.csv","./rashid.csv","tahir.csv"]
names = ["Shakib Al Hasan","Mohammad Nabi","Rashid Khan", "Imran Tahir"]
ca.relativeBowlerCumulativeAvgEconRate(frames,names)

31 Relative Economy Rate against wickets taken

Rashid Khan has the best figures for wickets between 2-3.5 wickets. Mohammed Nabi pips Rashid Khan when takes a haul of 4 wickets.

import cricpy.analytics as ca
frames = ["./shakib.csv","./nabi.csv","./rashid.csv","tahir.csv"]
names = ["Shakib Al Hasan","Mohammad Nabi","Rashid Khan", "Imran Tahir"]
ca.relativeBowlingER(frames,names)

32 Relative cumulative average wickets of bowlers in career

Rashid has the best performance with cumulative average wickets. He is followed by Imran Tahir in the wicket haul, followed by Shakib Al Hasan

import cricpy.analytics as ca
frames = ["./shakib.csv","./nabi.csv","./rashid.csv","tahir.csv"]
names = ["Shakib Al Hasan","Mohammad Nabi","Rashid Khan", "Imran Tahir"]
ca.relativeBowlerCumulativeAvgWickets(frames,names)

33. Key Findings

The plots above capture some of the capabilities and features of my cricpy package. Feel free to install the package and try it out. Please do keep in mind ESPN Cricinfo’s Terms of Use.

Here are the main findings from the analysis above

Analysis of Top 4 batsman

The analysis of the Top 4 test batsman Kohli, Guptill, Shahzad and McCullum
1.Kohli has the best overall cumulative average runs and towers over everybody else
2. Kohli, Guptill and McCullum has a very good strike rate of around 125+
3. Guptill and McCullum have a larger percentage of sixes as compared to Kohli
4. Rashid Khan has the best cumulative average wickets, followed by Imran Tahir and then Shakib Al Hasan
5. Rashid Khan is the most economical bowler, followed by Mohammed Nabi

You can fork/clone the package at Github cricpy

Conclusion

Cricpy now has almost all the functions and functionalities of my R package cricketr. There are still a few more features that need to be added to cricpy. I intend to do this as and when I find time.

Go ahead, take cricpy for a spin! Hope you enjoy the ride!

Watch this space!!!

Important note: Do check out my other posts using cricpy at cricpy-posts

You may also like
1. A method for optimal bandwidth usage by auctioning available bandwidth using the OpenFlow protocol
2. Introducing QCSimulator: A 5-qubit quantum computing simulator in R
3. Dabbling with Wiener filter using OpenCV
4. Deep Learning from first principles in Python, R and Octave – Part 5
5. Latency, throughput implications for the Cloud
6. Bend it like Bluemix, MongoDB using Auto-scale – Part 1!
7. Sea shells on the seashore
8. Practical Machine Learning with R and Python – Part 4

To see all posts click Index of Posts