Then, Now(IPL 2022), Beyond : Insights from GooglyPlusPlus

IPL 2022 has just concluded and yet again, it is has thrown a lot of promising and potential youngsters in its wake, while established players have fallen! With IPL 2022, we realise that “Sceptre and Crown must tumble down” and that ‘the glories‘ of form and class like everything else are “shadows not substantial things” (Death the Leveller by James Shirley).

So King Kohli had to kneel, and hitman’ himself got hit. Rishabh Pant, Jadeja also had a poor season. On the contrary there were several youngsters who shone like Abhishek Sharma, Tilak Verma, Umran Malik or a Mohsin Khan

This post is about my potential T20 Indian players for the World Cup 2022 and beyond.

The post below includes my own analysis and thoughts. Feel free to try out my Shiny app GooglyPlusPlus and draw your own conclusions.

You can also view the analyais as a youtube video at Insights from GooglyPlusPlus

How often we hear that data by itself is useless, unless we can draw insights from it? This is a prevailing theme in the corporate world and everybody uses all sorts of tools to analyse and subsequently draw insights. Data analysis can be done in many ways as data can be sliced, diced, chopped in a zillion ways. There are many facets and perspectives to analysing data. Creating insights is easy, but arriving at actionable insights is anything but. So, the problem of selecting the best 11 is difficult as there are so many ways to look at the analysis. My Shiny app GooglyPlusPlus based on my R package yorkr can analyse data in several ways namely

  1. Batsman analysis
  2. Bowler analysis
  3. Match analysis
  4. Team vs team analysis
  5. Team vs all teams analysis
  6. Batsman vs bowler and vice versa
  7. Analysis of in 3,4,5 in power play, middle and death overs

GooglyPlusPlus uses my R package yorkr which has ~ 160 functions some which have several options. So, we can say roughly there are ~500 different ways that analysis can be done or in other words we can gather almost roughly 500+ different insights, not to mention that there are so many combinations of head-on matches and one-vs-all matches.

So generating insights or different ways of analysis data alone is not enough. The question is whether we can get a consolidated view from the different insights. In this post, I try to identify the best contenders for the Indian T20 team. This is far more difficult than it looks. Do you select players on past historical performance or do you choose from the newer crop of players, who have excelled in the recent IPL season. I think this boils down the typical situation in any domain. In engineering, we have tradeoffs – processing power vs memory tradeoff, throughput vs latency tradeoff or in the financial domain it is cost vs benefit or risk vs reward tradeoff. For team selection, the quandary is, whether to choose seasoned players with good historical performance but a poor performances in recent times or go with youngsters who have played with great courage and flair in this latest episode of IPL 2022. Hence there is a tradeoff between reliable but below average performance or risky but superlative performances of new players.

For this I base my potential list from

  • Then (past history of batsmen & bowlers) – I have chosen the performance of batsmen and bowlers in the last 3 years. With we can arrive at those who have had reasonably reliable performance for the last 3 years
  • Now (IPL 2022) – Performance in the current season IPL 2022

A. Then (Jan 2020 – May 2022) – Batsmen analysis

In this section I analyse the performances of batsmen and bowlers from Jan 2022 – May 2022. This is done based on ranking, and plots of Runs vs Strike Rate in Power Play, Middle and Death overs

Also I analyse bowlers based on the overall rank from Jan 2022- May 2022. Further more analysis is done on Wickets vs Economy Rate overall and in Power Play, Middle and Death overs

a. Ranks of batsmen (Runs over Strike Rate) : Jan 2020 – May 2022

The top batsmen consistency wise

[KL Rahul, Shikhar Dhawan, Ruturaj Gaikwad, Ishan Kishan, Shubman Gill, Suryakumar Yadav, Sanju Samson, Mayank Agarwal, Prithvi Shaw, Devdutt Padikkal, Nitish Rana, Virat Kohli, Shreyas Iyer, Ambati Rayadu, Rahul Tripathi, Rishabh Pant, Rohit Sharma, Hardik Pandya]

b. Ranks of batsmen (Strike Rate over Runs) : Jan 2020 – May 2022

The most consistent players from the Strike Rate perspective are

The batsmen with best Strike Rate in the last 3 years are

[Dinesh Karthik, Prithvi Shaw, Hardik Pandya, Rishabh Pant, Sanju Samson, Rahul Tripathi, Suryakumar Yadav, Nitish Rana, Mayank Agarwal, Krunal Pandya, MS Dhoni, Shikhar Dhawan, Ishan Kishan, KL Rahul]

c.Best Batsmen Runs vs SR : Jan 2020 – May 2022

The best batsmen should have a reasonable combination of Runs and SR. The best batsmen are

[KL Rahul, Shikhar Dhawan, Ruturaj Gaikwad, Ishan Kishan, Shubman Gill , Sanju Samson, Suryakumar Yadav, Shubman Gill, Mayank Agarwal, Prithvi Shaw, Nitish Rana, Hardik Pandya, Rishabh Pant, Rahul Tripathi,

d. Best batsmen Runs vs SR in Powerplay: Jan 2020 – May 2022

The best players in Power play

The best players in Power play in the last 3 years are

[KL Rahul, Prithvi Shaw, Rohit Sharma, Devdutt Padikkal, Mayank Agarwal, Virat Kohli, Ishan Kishan, Yashashvi Jaiswal, Wriddhiman Saha, Rahul Tripathi, Sanju Samson, Robin Uthappa, Venkatesh Iyer, Nitish Rana,Suryakumar Yadav, Abhishek Sharma Shreyas Iyer ]

e. Best batsmen Runs vs SR in Middleovers: Jan 2020 – May 2022

The most consistent players in the last 3 years in the middle overs are

[KL Rahul, Sanju Samson, Shikhar Dhawan, Rishabh Pant, Nitish Rana, Shreyas Iyer, Shubman Gill, Ishan Kishan, Devdutt Padikkal, Rahul Tripathi, Ruturaj Gaikwad, Shivam Dube, Hardik Pandya]

f. Best batsmen Runs vs SR in Death overs: Jan 2020 – May 2022

The best batsmen in death overs are

[Dinesh Karthik, Ravindra Jadeja, Hardik Pandya, Rahul Tewatia, MS Dhoni, KL Rahul, Rishabh Pant, Suryakumar Yadav, Ambati Rayadu, Virat Kohli, Nitish Rana, Shikhar Dhawan, Ruturaj Gaikwad, Ishan Kishan]

B) Now (IPL 2022) – Batsmen analysis

IPL 2022 just finished and clearly brings out the batsmen who are in great nick. It is always going to be a judgment call of whether to go for ‘old reliable’ or ‘new and awesome’.

a. Ranks of batsmen (Runs over Strike Rate) : IPL 2022

The best batsmen this season in Runs over Strike rate are

The best batsmen are

[KL Rahul, Shikhar Dhawan, Hardik Pandya, Deepak Hooda, Shubman Gill, Rahul Tripathi, Abhishek Sharma, Ishan Kishan, Wriddhiman Saha, Shreyas Iyer, Tilak Verma, Ruturaj Gaikwad, Sanju Samson, Shivam Dube]

b. Ranks of batsmen (Strike Rate over Runs) : IPL 2022

The batsmen with the best strike rate are

[Dinesh Karthik, Rishabh Pant, Rahul Tewathia, Rahul Tripathi, Sanju Samson, R Ashwin, Deepak Hooda, MS Dhoni, Nitish Rana, Riyan Parag, Shreya Iyer]

c.Best Batsmen Runs vs SR :IPL 2022

From an overall performance the following batsmen shone this season

[KL Rahul, Shikhar Dhawan, Shubman Gill, Hardik Pandya, Abhishel Sharma, Deepak Hooda, Rahul Tripathi, Tilak Verma, Shreya Iyer, Nitish Rana, Sanju Samson, Rishabh Pant]

d. Best batsmen Runs vs SR in Powerplay: IPL 2022

Top batsmen in Power play in IPL 2022

[Abhishek Sharma, Shikhar Dhawan, Rohit Sharma, Ishan Kishan, Shubman Gill, Prithvi Shaw, Wriddhiman Saha, Ishan Kishan, KL Rahul, Ruturaj Gaikwad, Virat Kohli, Yashasvi Jaiswal, Mayank Agarwal, Robin Uthappa, Sanju Samson, Nitish Rana]

e. Best batsmen Runs vs SR in Middleovers: IPL 2022

Best batsmen in middle overs in IPL 2022

[Deepak Hooda, Hardik Pandya, Tilak Verma, KL Rahul, Sanju Samson, Rishabh Pant, Shubman Gill, Ambati Rayudu, Suryaprakash Yadav, Shikhar Dhawan, Ruturaj Gaikwad]

f. Best batsmen Runs vs SR in Death overs: IPL 2022

Top batsmen in death overs in IPL 2022

[Dinesh Karthik, Rahul Tewatia, MS Dhoni, KL Rahul, Azar Patel, Washington Sundar, R Ashwin, Hardik Pandya, Ayush Badoni, Shivam Dube, Suryakumar Yadav, Ravindra Jadeja, Sanju Samson]

Overall Batting Performance in season

Kohli peaked in 2016 and from then on it has been a downward slide (see below)

Taking a look at Kohli’s moving average it is clear that he is past his prime and it will take a herculean effort to regain his lost glory

Similarly, Rohit Sharma’s moving average is constantly around ~30 as seen below

The cumulative average of Rohit Sharma is shown below

Comparing KL Rahul, Shikhar Dhawan, Rohit Sharma and V Kohli we see that KL Rahul and Shikhar Dhawan have had a much superior performance in the last 2-3 years. Rohit has averaged about ~25 runs every season.

Comparing the 4 wicket-keeper batsmen Sanju Samson, Rishabh Pant, Ishan Kishan and Dinesh Karthik from 2016

i) Runs over Strike Rate

We see that Pant peaked in 2018 but has not performed as well since. In the last 2 years Sanju Samson and Ishan Kishan have done well

ii) Strike Rate over Runs

For the last couple of seasons Rishabh Pant and Dinesh Kartik top the strike rate over the other 2

Similar analysis can be done other combinations of batsmen

Choosing the best batsmen from the above, my top 5 batsmen would be

  1. KL Rahul
  2. Shikhar Dhawan
  3. Prithvi Shaw, Ruturaj Gaikwad, Ishan Kishan
  4. Sanju Samson, Shreyas Iyer, Shubman Gill, Shivam Dube,
  5. Abhishek Sharma, Tilak Verma, Rahul Tripathi, Suryakumar Yadav, Deepak Hooda
  6. Rishabh Pant, Dinesh Karthik

Personally, I feel Ishan Kishan and Shreyas Iyer are a little tardy while playing express speeds, as compared to Sanju Samson or Rishabh Pant.

If you notice, I have not included both Virat Kohli or Rohit Sharma who have been below par for some time

C. Then (Jan 2020 – May 2022) – Bowler analysis

This section I analyse the performances of bowlers from Jan 2022 – May 2022. This is done based on ranking, and plots of Wickets vs Economy Rate in Power Play, Middle and Death overs

a. Ranks of bowlers (Wickets over Economy Rate) : Jan 2020 – May 2022

The most consistent bowlers Wickets over Economy Rate for the last 3 years are

[YS Chahal, Jasprit Bumrah, Mohammed Dhami, Harshal Patel, Shardul Thakur, Arshdeep Singh, Rahul Chahar, Varun Chakravarthy, Ravi Bishnoi, Prasidh Krishna, R Ashwon, Axar Patel, Mohammed Siraj, Ravindra Jadeja, Krunal Pandya, Rahul Tewatia]

b. Ranks of bowlers (Economy Rate over Wickets) : Jan 2020 – May 2022

The most economical bowlers since 2020 are

[Axar Patel, Krunal Pandya, Jasprit Bumrah, CV Varun, R Ashwin, Ravi Bishnoi, Rahul Chahar, YS Chahal, Ravindra Jadeja, Harshal Patel, Mohammed Shami, Mohammed Siraj, Rahul Tewatia, Arshdeep Singh, Prasidh Krishna, Shardul Thakur]

c.Best Bowlers Wickets vs ER : Jan 2020 – May 2022

The best bowlers Wickets vs ER will be in the bottom right quadrant. The most consistent and reliable bowlers are

[YS Chahal, Jasprit Bumrah, Mohammed Shami, Harshal Patel, CV Arun, Ravi Bishnoi, Rahul Chahar, R Ashwin, Axar Patel]

d. Best bowlers Wickets vs ER in Powerplay: Jan 2020 – May 2022

The best bowlers in Powerplay are

[Mohammed Shami, Deepak Chahar, Mohammed Siraj, Arshdeep Singh, Jasprit Bumrah, Avesh Khan, Mukesh Choudhary, Shardul Thakur, T Natarajan, Bhuvaneshwar Kumar, WashingtonSundar, Shivam Mavi]

e. Best bowlers Wickets vs ER in Middle overs : Jan 2020 – May 2022

The most reliable performers in middle overs from 2020-2022 are

[YS Chahal, Rahul Chahr, Ravi Bishnoi, Harshal Patel, Axar Patel, Jasprit Bumrah, Umran Malik, R Ashwin, Avesh Khan, Shardul Thakur, Kuldeep Yadav]

f. Best bowlers Wickets vs ER in Death overs : Jan 2020 – May 2022

The most reliable bowlers are

[Harshal Patel, Mohammed Shami, Jasprit Bumrah, Arshdeep Singh, T Natarajan, Avesh Khan, Shardul Thakur, Bhuvaneshwar Kumar, Shivam Mavi, YS Chahal, Prasidh Krishna, Mohammed Siraj, Chetan Sakariya]

B) Now (IPL 2022) – Bowler analysis

a. Ranks of bowlers (Wickets over Economy Rate) : IPL 2022

The best bowlers in IPL 2022 when considering Wickets over Economy Rate

[YS Chahal, Umran Malik, Prasidh Krishna, Mohammed Shami, Kuldeep Yadav, Harshal Patel, T Natarajan, Avesh Khan, Shardul Thakur, Mukesh Choudhary, Jasprit Bumrah, Ravi Bishnoi]

a. Ranks of bowlers (Economy Rate over Wickets) : IPL 2022

The most economical bowlers in IPL 2022 are

[Axar Patel, Jasprit Bumrah, Krunal Pandya, Umesh Yadav, Bhuvaneshwar Kumar, Rahul Chahr, Harshal Patel, Arshdeep Singh, R Ashwion, Umran Malik, Kuldeep Yadav, YS Chahal, Mohammed Shami, Avesh Khan, Prasidh Krishna]

c.Best Bowlers Wickets vs ER : IPL 2022

The overall best bowlers in IPL 2022 are

[YS Chahal, Umran Malik, Harshal Patel, Prasidh Krishna, Mohammed Shami, Kuldeep Yadav, Avesh Khan, Jasprit Bumrah, Umesh Yadav, Bhuvaneshwar Kumar, Arshdeep Singh, R Ashwin, Rahul Chahar, Krunal Pandya]

d. Best bowlers Wickets vs ER in Powerplay: IPL 2022

The best bowlers in IPL 2022 in Power play are

[Mukesh Choudhary, Mohammed Shami, Prasidh Krishna, Umesh Yadav, Avesh Khan, Mohsin Khan, T Natarajan, Jasprit Bumrah, Yash Dayal, Mohammed Siraj]

d. Best bowlers Wickets vs ER in Middle overs: IPL 2022

The best bowlers in IPL 2022 during middle overs

The best bowlers are

[YS Chahal, Umran Malik, Kuldeep Yadav, Harshal Patel, Ravi Bishnoi, R Ashwin]

e. Best bowlers Wickets vs ER in Death overs: IPL 2022

The best bowlers in death overs in IPL 2022 are

[T Natarajan, Harshal Patel, Bhuvaneshwar Kumar, Mohammed Shami, Jasprit Bumrah, Shardul Thakur, YS Chahal, Prasidh Krishna, Avesh Khan, Mohsin Khan, Yash Dayal, Umran Malik, Arshdeep Singh]

Typically in a team we would need a combination of 4 bowlers (2 fast & 2 spinner or 3 fast and 1 spinner) with an additional player who is all rounder.

For 4 bowlers we could have

  1. JJ Bumrah
  2. Mohammed Shami, Umran Malik, Bhuvaneshwar Kumar, Umesh Yadav
  3. Arshdeep Singh, Avesh Khan, Mohsin Khan, Harshal Patel
  4. YS Chahal, Ravi Bishnoi, Rahul Chahar, Axar Patel
  5. Ravindra Jadeja, Hardik Pandya, Rahul Tewathia, R Ashwin

i) Performance comparison (Wickets over Economy Rate)

Bumrah had the best season in 2020. He has been doing quite well and has been among the wickets

ii) Performance comparison (Economy Rate over Wickets)

Bumrah has the best Economy Rate

We can do a wicket prediction of bowlers. So for example for Bumrah it is

iii) Performance evaluation (Wickets over Economy Rate)

Harshal Patel followed by Avesh Khan had a good season last year, but Umran Malik pipped them this year (see below)

iv) Performance analysis of spinners

a. Wickets over Economy Rate: 2022

Chahal has the best season followed by Bishnoi and Chahar this season

b) Economy Rate over WIckets

Axar Patel has the best economy rate followed by Rahul Chahar

Conclusion

The above post identified the best candidates for the Indian team in the future and beyond. In my T20 list, I have neither included Virat Kohli or Rohit Sharma. The data in T20 clearly indicates that they have had their days. There is a lot more talent around. The tradeoff is a little risk for a greater potential performance. My list would be

  1. KL Rahul
  2. Shikhar Dhawan
  3. Ruturaj Gaikwad, Prithvi Shaw, Rahul Tripathi
  4. Suryakumar Yadav, Shreyas Iyer, Abhishek Sharma, Deepak Hooda
  5. Sanju Samson (Wicket keeper/captain)/ Rishabh Pant/Dinesh Karthik
  6. Hardik Pandya, Ravindra Jadeja, Rahul Tewathia
  7. Jasprit Bumrah
  8. Mohammed Shami, Bhuvaneshwar Kumar, Umran Malik
  9. Arshdeep Singh, Avesh Khan, Harshal Patel
  10. YS Chahal
  11. Axar Patel, Ravi Bishnoi, Rahul Chahar

You may agree/ disagree with my list. Feel free to do your analysis with GooglyPlusPlus and come to your own conclusions

This analysis is also available on youtube Insights from GooglyPlusPlus

You may also like

  1. Deep Learning from first principles in Python, R and Octave – Part 1
  2. Player Performance Estimation using AI Collaborative Filtering
  3. The mechanics of Convolutional Neural Networks in Tensorflow and Keras
  4. TWS-4: Gossip protocol: Epidemics and rumors to the rescue
  5. Big Data-4: Webserver log analysis with RDDs, Pyspark, SparkR and SparklyR
  6. Programming languages in layman’s language
  7. Practical Machine Learning with R and Python – Part 4
  8. Pitching yorkpy…swinging away from the leg stump to IPL – Part 3
  9. Revisiting World Bank data analysis with WDI and gVisMotionChart
  10. Natural language processing: What would Shakespeare say?

To see all posts click Index of posts


Analyzing player performance with animated charts!

Analytics is by definition, the science (& art) of identifying, discovering and interpreting patterns in data. There are different ways of capturing these patterns through charts (bar, pie, cumulative data, moving average etc.). One such way is the motion or animated chart which captures the changes in data across different time periods. This was made famous by Hans Rosling in his Gapminder charts.

In this post, I use animated charts, based on gganimate(), to display the rise and fall of batsmen and bowlers in IPL and Intl. T20 (men). I only did this for these 2 formats as they have sufficient data over at least 10+ years.

To construct these animated charts, I use a ‘sliding window’ of 3 years, so that we get a clearer view of batsman and bowler consistency. The animated charts show the performance of players for this moving window for e.g. Jan 2008- Dec 2010, Jan 2009-Dec 2011, Jan 2010- Dec 2012 and so on till Jan 2019- Dec 2021. This is done for both batting( total runs) and bowling (total wickets). If you would like to analyse the performance of particular batsmen, bowler during specific periods or for a team vs another team or in the overall T20 format, check out my post GooglyPlusPlus2021: Towards more picturesque analytics!

You clone/fork the code from Github here animation.

Note: This code is based on a snippet from this blog How to create animations in R with gganimate by Ander Fernandez Jauregui

Included below are the animated charts.

Important note: The year which is displayed on the side actually represents the last 3 years, for e.g. 2015 (2013, 2014, 2015) or 2019 (2017, 2018, 2019)

  1. IPL Batting performance

We can see that Kohli stays in the top 3 from 2015-2019

2. IPL Bowling performance

Malinga ruled from 2010- 2015. Bumrah is in top 3 from 2019-2021

3. IPL Batting in Power play

Adam Gilchrist, Tendulkar, Warner, KL Rahul, Shikhar Dhawan have a stay at the top

4. IPL Batting in Middle overs

Rohit Sharma, Kohli, Pant have their stay at the top

5. IPL Batting Death overs

MS Dhoni is lord and master of the death overs in IPL for a rolling period of 10 years from 2011-2020. No wonder, he is the best finisher of T20 cricket

6. IPL Bowling Power Play

Bhuvanesh Kumar is in top 3 from 2014-2018 and then Deepak Chahar

7. IPL Bowling Middle overs

Toppers Harbhajan Singh, YS Chahal, Rashid Khan

8. IPL Bowling Death overs

SL Malinga, B. Kumar, JJ Bumrah and Rabada top the list across the years

9. T20 (men) Batting performance

Kohli, Babar Azam, P R Stirling are best performers

10. T20 (men) bowling performance

Saaed Ajmal tops from 2010-2014 and Rashid Khan 2018-2020

11. T20 (men) batting Power play

Shahzad, D Warner, Rohit Sharma, PR Stirling best performers

12. T20 (men) batting middle overs

Babar Azam is the best middle overs player from 2018-2021

13. T20(men) batting death overs

MS Dhoni, Shoaib Malik, V Kohli, David Miller are the best death over players

14. T20 (men) bowling Power play

Mohammad Nabi, Mujeeb ur Rahman, TG Southee are the best bowlers in power play

15. T20 (men) bowling middle overs

Imran Tahir from 2015-2017, Shadab Khan from 2018-2020, T Shamsi in 2021 top the tables

16. T20 (men) bowling death overs

Saaed Ajmal, A J Tye, Bumrah, Haris Rauf occupy the top slot in different periods

Also see

  1. Experiments with deblurring using OpenCV
  2. Using Reinforcement Learning to solve Gridworld
  3. Deep Learning from first principles in Python, R and Octave – Part 8
  4. Big Data-4: Webserver log analysis with RDDs, Pyspark, SparkR and SparklyR
  5. The Anomaly
  6. Practical Machine Learning with R and Python – Part 3
  7. Using Linear Programming (LP) for optimizing bowling change or batting lineup in T20 cricket
  8. Introducing cricpy:A python package to analyze performances of cricketers

To see all posts click Index of posts

GooglyPlusPlus2021: Towards more picturesque analytics!

Analytics for e.g. sports analytics, business analytics or analytics in e-commerce or in other domain has 2 main requirements namely a) What kind of analytics (set of parameters,function) will squeeze out the most intelligence from the data b) How to represent the analytics so that an expert can garner maximum insight?

While it may appear that the former is more important, the latter is also equally, if not, more vital to the problem. Indeed, a picture is worth a thousand words, and often times is more insightful than a large table of numbers. However, in the case of sports analytics, for e.g. in cricket a batting or bowling scorecard captures more information and can never be represented in chart.

So, my Shiny app GooglyPlusPlus includes both charts and tables for different aspects of the analysis. In this post, a newer type of chart, popular among senior management experts, namely the 4 quadrant graph is introduced, which helps in categorising batsmen and bowlers into 4 categories as shown below

a) Batting Performances – Top right quadrant (High runs, High Strike rate)

b) Bowling Performances – Bottom right quadrant( High wickets, Low Economy Rate)

I have added the following 32 functions in this latest version of GooglyPlusPlus

A. Match Tab

All the functions below are at match level

  1. Team Runs vs SR Plot
  2. Team Wickets vs ER Plot
  3. Team Runs vs SR Power play plot
  4. Team Runs vs SR Middle overs plot
  5. Team Runs vs SR Death overs plot
  6. Team Wickets vs ER Power Play
  7. Team Wickets vs ER Middle overs
  8. Team Wickets vs ER Death overs

B. Head-to-head Tab

The below functions are based on all matches between 2 teams’

  1. Team Runs vs SR Plot all Matches
  2. Team Wickets vs ER Plot all Matches
  3. Team Runs vs SR Power play plot all Matches
  4. Team Runs vs SR Middle overs plot all Matches
  5. Team Runs vs SR Death overs plot all Matches
  6. Team Wickets vs ER Power Play plot all Matches
  7. Team Wickets vs ER Middle overs plot all Matches
  8. Team Wickets vs ER Death overs plot all Matches

C. Team Performance tab

The below functions are based on a team’s performance against all other teams

  1. Team Runs vs SR Plot overall
  2. Team Wickets vs ER Plot overall
  3. Team Runs vs SR Power play plot overall
  4. Team Runs vs SR Middle overs plot overall
  5. Team Runs vs SR Death overs plot overall
  6. Team Wickets vs ER Power Play overall
  7. Team Wickets vs ER Middle overs overall
  8. Team Wickets vs ER Death overs overall

D. T20 format Batting Analysis

This analysis is at T20 format level (IPL, Intl. T20(men), Intl. T20 (women), PSL, CPL etc.)

  1. Overall Runs vs SR plot
  2. Overall Runs vs SR Power play plot
  3. Overall Runs vs SR Middle overs plot
  4. Overall Runs vs SR Death overs plot

E. T20 Bowling Analysis

This analysis is at T20 format level (IPL, Intl. T20(men), Intl. T20 (women), PSL, CPL etc.)

  1. Overall Wickets vs ER plot
  2. Team Wickets vs ER Power Play
  3. Team Wickets vs ER Middle overs
  4. Team Wickets vs ER Death overs

These 32 functions have been added to my yorkr package and so all these functions become plug-n-play in my Shiny app GooglyPlusPlus2021 which means that the 32 functions apply across all the nine T20 formats that the app supports i.e. IPL, Intl. T20 (men), Intl. T20 (women), BBL, NTB, PSL, CPL, SSM, WBB.

Hence the multiplicative factor of the new addition is 32 x 9 = 288 additional ways of exploring match, team and player data

The data for GooglyPlusPlus is taken from Cricsheet. My shiny app GooglyPlusPlus2021 is based on my R package yorkr.

You can clone/fork GooglyPlusPlus from Github at gpp2021-10

Check out my app GooglyPlusPlus2021 and analyze batsmen, bowlers, teams, overall performance. The data for all the nine T20 formats have been updated to include the latest data.

Hence, the app is just in time for the IPL mega auction. You should be able to analyse players in IPL, Intl. T20 or in any of the other formats from where they could be drawn and check out their relative standings

I am including some random plots to demonstrate the newly minted functions

Note 1: All plots are interactive. The controls are on the top right. You can hover over data, zoom-in, zoom-out, compare data etc by choosing the appropriate control. To know more about how to use the interactive charts see GooglyPlusPlus2021 is now fully interactive!!!

You can also check my short video on how to navigate interactive charts

Note 2: To know about Powerplay, Middle overs and Death over analysis see my post GooglyPlusPlus2021 now with power play, middle and death over analysis

Note 3: All tabs(except Match tab) now include Date range pickers to focus on the period of interest. See my post GooglyPlusPlus2021 enhanced with drill-down batsman, bowler analytics

I) Match tab

New Zealand vs Australia (2021-11-14)

New Zealand batting, except K Williamson, the rest did not fire as much

For Australia, Warner, Maxwell and Marsh played good knocks to wrest control

II) Head-to-head

a) Wickets vs ER during Power play of Mumbai Indians in all matches against Chennai Super Kings (IPL)

b) Karachi Kings Runs vs SR during middle overs against Multan Sultans (PSL)

c) Wickets vs ER during death overs of Barbados Tridents in all matches against Jamaica Tallawahs (CPL)

III) Teams overall batting performance

India’s best T20 performers in Power play since 2018 (Intl. T20)

e) Australia’s best performers in Death overs since Mar 2017 (Intl. T20)

f) India’s Intl. T20 (women) best Runs vs SR since 2018

g) England’s Intl. T20 (women) best bowlers in Death overs

IV) Overall Batting Performance across T20

This tab gives the batsmen’s rank and overall batting performance across the T20 format.

a) Why was Hardik Pandya chosen, and why this was in error?

Of course, it provides an insight into why Hardik Pandya was chosen in India’s World cup team despite poor performances recently. Here are the best Intl. T20 death over batsmen

Of course, we can zoom in to get a better look

This is further substantiated when we performances in IPL

However, if you move the needle forward a year at a time, you see Hardik Pandya’s performance drops significantly

and further down

Rather, Dinesh Karthik, Sanju Samson or Ruturaj Gaikwad would have been better options

b) Best batsmen Intl. T20 (women) in Power play since 2018

V) Overall bowling performance

This tab gives the bowler’s rank and overall bowling performance in Power play, middle and death overs across all T20 formats

a) Intl. T20 (men) best bowlers in Power Play from 2019 (zoomed in)

b) Intl. T20(men) best bowlers in Death overs since 2019

c) Was B. Kumar a good choice for India team in World cup?

Bhuvi was one of India’s best bowler in Power play only if we go back to the beginning of time

i) From 2008

But if we move forward to 2020 onwards we see Arshdeep Singh or D Chahar would have been a better choice

ii) From 2020 onwards

iii) 2021 onwards

Hence D Chahar & Arshdeep Singh are the natural choice moving forwards for India

iv) T20 Best batsman

If we look at Intl. T20 performances since 2017, Babar Azam leads the pack, however his Strike rate needs to move up.

v) T20 best bowlers

As mentioned above go ahead and give GooglyPlusPlus2021 a spin!!!

You can download/fork the code for the Shiny app from Github at gpp2021-10

Also see

  1. Introducing QCSimulator: A 5-qubit quantum computing simulator in R
  2. Deep Learning from first principles in Python, R and Octave – Part 6
  3. Deconstructing Convolutional Neural Networks with Tensorflow and Keras
  4. Big Data 6: The T20 Dance of Apache NiFi and yorkpy
  5. What’s up Watson? Using IBM Watson’s QAAPI with Bluemix, NodeExpress – Part 1
  6. Sea shells on the seashore
  7. Practical Machine Learning with R and Python – Part 4
  8. Benford’s law meets IPL, Intl. T20 and ODI cricket
  9. Video presentation on Machine Learning, Data Science, NLP and Big Data – Part 1
  10. How to program – Some essential tips

To see all posts click Index of posts

GooglyPlusPlus2021 enhanced with drill-down batsman, bowler analytics

This latest update to GooglyPlusPlus2021 includes the following changes

a) All the functions in the ‘Batsman’ and ‘Bowler ‘tabs now include a date range, which allows you specify a period of interest.

b) The ‘Rank Batsman’ and ‘Rank Bowler’ tabs also include a date range selector, against the earlier version which had a ‘Since year’ slider see GooglyPlusPlus2021 bubbles up top T20 players in all formats!. The earlier ‘Since year’ slider option could only rank for the latest year or for all years up to the current year. Now with the new ‘date range’ picker we can check the batsman and bowler ranks in any IPL season or (any T20 format) or for a range of years.

c) Note: The Head-to-head and Overall performance tabs already include a date range selector.

There are 10 batsman functions and 9 bowler function that have changed for the following T20 and ODI formats and Rank batsman and bowler includes the ‘date range’ and has changed for all T20 formats.

GooglyPlusPlus2021 supports all the following T20 formats

i) IPL ii) Intl T20(men) iii) Intl T20(women) iv) BBL v) NTB vi) PSL vii) WBB viii) CPL ix) SSM T20 formats – ( 9 T20 panels)

i) ODI (men) ii) ODI (women) – 2 ODI panels

i.e. the changes impact (10 + 9) x 11 + (1 + 1 ) x 9 = 227 tabs which have been changed

The addition of date range enables a fine-grained analysis of players as the players progress through the years.

Note: All charts are interactive. To see how to use interactive charts of GooglyPlusPlus2021 see

GooglyPlusPlus2021 is now fully interactive!!!

GooglyPlusPlus2021 is based on my R package yorkr. The data is take from Cricsheet

You can clone/fork this latest version of GooglyPlusPlus2021 from Github at gpp2021-7

Check out the Shiny app here GooglyPlusPlus2021!!!

I have included some random screen shots of some of using these tabs and options in GooglyPlusPlus2021.

A) KL Rahul’s Cumulative average in IPL 2021 vs IPL 2020

a) KL Rahul in IPL 2021

b) KL Rahul in IPL 2020

B) Performance of Babar Azam in Intl. T20 (men)

a) Babar Azam’s cumulative average from 2019

b) Babar Azam’s Runs against opposition since 2019

Note: Intl. T20 (women) data available upto Mar 2020 from Cricsheet

a) A J Healy performance between 2010 – 2015

b) A J Healy performance between 2015 – 2020

D) M S Dhoni’s performance with the bat pre-2020 and post 2020

There has been a significant decline in Dhoni’s performance in the last couple of years

I) Dhoni’s performance from Jan 2010 to Dec 2019

a) Moving average at 25+ (Dhoni before)

The moving average actually moves up…

b) Cumulative average at 25+ (Dhoni before)

c) Cumulative Strike rate 140+ (Dhoni before)

d) Dhoni’s moving average is ~10-12 (post 2020)

e) Dhoni’s cumulative average (post 2020)

f) Dhoni’s strike rate ~80 (post 2020)

E) Bumrah’s performance in IPL

a) Bumrah’s performance in IPL 2020

b) Bumrah’s performance in IPL 2021

F) Moving average wickets for A. Shrubsole in ODI (women)

G) Chris Jordan’s cumulative economy rate

We can see that Jordan has become more expensive over the years

G) Ranking players

In this latest version the ‘Since year slider’ has been replaced with a Date Range selector. With this we can identify the player ranks in any IPL, CPL, PSL or BBL season. We can also check the performance over the last couple of years. Note: The matches played and Runs over Strike rate or Strike rate over runs can be computed. Similarly for bowlers we have Wickets over Economy rate and Economy rate over wickets options.

a) Ranking IPL batsman in IPL season 2020

b) Ranking Intl. T20 (batsmen) from Jan 2019 to Jul 2021

c) Ranking Intl. T20 bowlers (women) from Jan 2019 – Jul 2021

d) Best IPL bowlers over the last 3 seasons (Wickets over Economy rate)

e) Best IPL bowlers over the last 3 seasons (Economy rate over wickets)

You can clone/download this latest version of GooglyPlusPlus2021 from Github at gpp2021-7

Take GooglyPlusPlus2021 for a spin!!

Hope you have fun checking out the different tabs with the different options!!

Also see

  1. Deconstructing Convolutional Neural Networks with Tensorflow and Keras
  2. Using Reinforcement Learning to solve Gridworld
  3. Introducing QCSimulator: A 5-qubit quantum computing simulator in R
  4. De-blurring revisited with Wiener filter using OpenCV
  5. Deep Learning from first principles in Python, R and Octave – Part 5
  6. Big Data-4: Webserver log analysis with RDDs, Pyspark, SparkR and SparklyR
  7. Practical Machine Learning with R and Python – Part 4
  8. Pitching yorkpy…on the middle and outside off-stump to IPL – Part 2
  9. What would Shakespeare say?
  10. Bull in a china shop – Behind the scenes in android

To see more posts click Index of posts

GooglyPlusPlus2021 interactively ranks T20 batsmen and bowlers!!!

Every time I think that I have my R packages or Shiny apps all wrapped up, I find another idea trots up and knocks at my door. Since I intend to keep GooglyPlusPlus current with the latest data, I decided to include the ranking functions in my Shiny app GooglyPlusPlus.

Fortunately, since GooglyPlusPlus is based on my R package ‘yorkr‘ (see Introducing cricket package yorkr: Beaten by sheer pace!), I could make the necessary changes to the ranking functions in the package, so that it could be incorporated into my latest Shiny app GooglyPlusPlus2021!! To know how to use GooglyPlusPlus see my post Introducing GooglyPlusPlus

Note: GooglyPlusPlus can analyze batsmen, bowlers, matches and teams.

Take GooglyPlusPlus2021 for a test drive!!!

You can clone/fork GooglyPlusPlus2021 from Github

Here are a few scenarios from GooglyPlusPlus2021

A) Ranking batsmen

Ranking IPL batsmen (minMatches = 80) – The following table shows the ranking of IPL players who have played 80 matches or more

B) Identifying batsmen of potential and promise

Ranking IPL batsmen (minMatches =70) –  If we reduce the minimum number of matches played to 70, then we see it pushes up KL Rahul above Kohli.

Ranking IPL batsmen (minMatches =60) – When the slider is moved to 60, we see that Rishabh Pant has a better mean average and mean strike rate and is also ranked above Kohli. We can identify promising players this way. However, it is also likely that some players may be just a bright flash in the pan

C) Ranking T20 bowlers (men)

D) Ranking NTB Batsmen

GooglyPlusPlus2021 can rank all T20 formats (IPL, BBL, Intl. T20 (men), Intl. T20 (women), NTB, PSL and WBB. Do give it a try!

Also remember that GooglyPlusPlus2021 includes close to 100+ functions which enable it to perform analysis of batsmen, bowlers, T20 matches, head-to-head confrontation of T20 teams and overall performance of T20 teams . To know more about GooglyPlusPlus2021 see Introducing GooglyPlusPlus

You can download the code for this app from Github at GooglyPlusPlus2021

Do give GooglyPlusPlus2021 a spin!!

I do have some other ideas also which I will be incorporating  into GooglyPlusPlus2021.

Watch this space!!

Also see
1. Deep Learning from first principles in Python, R and Octave – Part 7
2. A method to crowd source pothole marking on (Indian) roads
3. Big Data 7: yorkr waltzes with Apache NiFi
4. Understanding Neural Style Transfer with Tensorflow and Keras
5. Revisiting World Bank data analysis with WDI and gVisMotionChart
6. Natural language processing: What would Shakespeare say?
7. Introducing QCSimulator: A 5-qubit quantum computing simulator in R
8. Introducing cricpy:A python package to analyze performances of cricketers
9. Simulating an Edge Shape in Android

To see all posts click Index of posts

GooglyPlusPlus 2020!!

I have updated my GooglyPlusPlus Shiny app with data from latest IPL 2020. GooglyPlusPlus  2020 is also based on my R package yorkr.  To know more about yorkr (see Revitalizing R package yorkr.) Now you should be able to analyze IPL matches, teams, players upto IPL 2020. Note: My latest GooglyPlusPlus 2020 can analyze all formats of T20 matches. yorkr uses data from Cricsheet

There are 5 tabs in each of the T20 formats

i) Analyze T20 batsmen ii) Analyze T20 bowlers. iii) Analyze T20 match iv) Analyze T20 team

vs another T20 team v) Analyze overall performance of T20 against all other teams

I plan to update GooglyPlusPlus  at least twice a year  to keep it abreast of all the latest data of all T20 formats

In GooglyPlusPlus 2020 you can check out IPL data upto 2020, besides other T20 formats like BBL, PSL, NTB, WBBL, Intl. T20 etc.

Try out GooglyPlusPlus 2020 Shiny app!!

You can clone/fork the code from Github GooglyPlusPlus2020

Important note: My earlier app GooglyPlusPlus handled all T20 formats including ODI (men and women). Due to an issue with Shiny, I could not include ODI matches in GooglyPlusPlus 2020

Here are some snapshots from GooglyPlusPlus 2020

A. Batting – Runs vs Deliveries (Shreyas Iyer)

 

 

B. Batting – Cumulative Batting Average (Shubman Gill)

 

C. Bowling – Mean Economy Rate (T. Natarajan)

 

D. Bowling -Bowler’s wickets against opposition (N A Saini)

E. Match scorecard – CSK vs DC 2020-10-17

The scorecards batting and bowling are computed on the fly for all T20 matches

 

F. Match – Batsmen vs Bowlers (DD vs KKR 2015-04-20)

 

G. Head-to-head: MI vs  KXIP all matches – Batting scorecard

H. Overall team performance- Team Bowler Wicket kind: Rajasthan Royals

Clone/fork the code from Github GooglyPlusPlus2020

Do take GooglyPlusPlus 2020 for a drive! While I have highlighted only IPL T20, because I have updated with the latest data, GooglyPlusPlus 2020 can also handle other T20 formats like BBL, Natwest, PSL, Intl. T20 (men &women) and WBB

 

Hope you have fun!

Also see

1.Big Data 7: yorkr waltzes with Apache NiFi

2. Deep Learning from first principles in Python, R and Octave – Part 6

3. Deconstructing Convolutional Neural Networks with Tensorflow and Keras

4. Sea shells on the seashore

5. Practical Machine Learning with R and Python – Part 3

6. Benford’s law meets IPL, Intl. T20 and ODI cricket

To see all posts click Index of posts

Introducing GooglyPlusPlus!!!

“We can lift ourselves out of ignorance, we can find ourselves as creatures of excellence and intelligence and skill.”
“Heaven is not a place, and it is not a time. Heaven is being perfect.”
“Your whole body, from wingtip to wingtip, is nothing more than your thought itself, in a form you can see. Break the chains of your thought, and you break the chains of your body, too.”

From Jonathan Livingstone Seagull, by Richard Bach

Introduction

The metamorphosis is complete, from eggs to the butterfly! My R package yorkr, went on to become Googly,  and then to GooglyPlus and  now finally GooglyPlusPlus. My latest R Shiny app now provides interactive visualisation of almost all data in Cricsheet. GooglyPlusPlus visualizes the following matches

1. ODI (men)
2. ODI (women)
3. Intl. T20 (men)
4. Intl T20 (women)
5. IPL (Indian Premier League)
6. BBL (Big Bash League)
7. NTB (Natwest T20)
8. PSL (Pakistan Super League)
9. WBBL – Women’s BBL

GooglyPlusPlus is entirely based on my R package yorkr. To know more about yorkr see ‘Revitalizing R package yorkr‘ and the roughly 25+ posts on yorkr in Index of posts

This Shiny app was quite involved, and it took a lot of work to keep things organised and separate for the different forms of cricket. Anyway it is done and I am happy with the outcome.

Before you use the app, I would suggest that you take a look at the video “How to use GooglyPlusPlus?“. In this video, I show the different features of GooglyPlusPlus and how to navigate through them.

Check out GooglyPlusPlus Shiny at GooglyPlusPlus

You can clone/fork and play around with the code of GooglyPlusPlus here at Github

A. Highlights of GooglyPlusPlus.

The R Shiny app GooglyPlusPlus has the following main pages for the 9 different cricket formats. See below

 

Important note: Below I will be including some random output from the GooglyPlusPlus app for different match formats, however there is a lot more features in GooglyPlusPlus

1.  Indian Premier League (IPL)

a. IPL batsman – Batsman Runs vs Deliveries

 

b. IPL Match – Match  batting scorecard

 

c. Head-to-head between 2 IPL Teams – Team Batsmen Batting Partnership All Matches

 

 

 

d. Overall Performance – Team Bowling Scorecard Overall

 

 

 

2. International T20 Men

a. Batsman Function- Runs vs Strike rate

 

 

 

b. Bowler Function – Mean Economy Rate

 

 

3. International T20 (Women)

a.Batsman Functions – Batsman Cumulative Average Runs

 

 

b. Intl T20 Women’s match – Match worm Graph

 

 

 

 

 

4. Big Bash League (BBL)

a.Head-to-Head: Team batsmen batting partnerships

 

b.  Overall Performance – Team batsmen vs bowlers

 

 

5. Natwest T20 (NTB)

a. Head-to-head : Team bowlers vs batsmen

 

 

 

b. Batsman Runs vs Deliveries

 

 

6. Pakistan Super League (PSL)

a. Overall Performance – Batsmen Partnership

 

b. Bowling Scorecard

 

7. Women’s Big Bash League (WBBL)

a. Bowler wicket against opposition

 

 

8. One Day International (ODI) Men

a. Batsman Runs Against Opposition

 

b. Team Batsmen against bowlers

 

 

9. One Day International (ODI) women)

a. Match Batting Scorecard

b. Batsman Cumulative Strike Rate

 

 

 

Conclusion

There you have it. I have randomly shown  2 functions for each cricket format. There are many functions in each tab for the for the different match formats – namely IPL, BBL, Intl T20 (men,women), PSL etc.  Go ahead and give GooglyPlusPlus a spin!

To try out GooglyPlusPlus click GooglyPlusPlus. Don’t forget to check out the video How to use GooglyPlusPlus?

You can clone/fork the code from Github at GooglyPlusPlus

Hope you have fun with GooglyPlusPlus!!

You may also like

1. Big Data 6: The T20 Dance of Apache NiFi and yorkpy
2. Deep Learning from first principles in Python, R and Octave – Part 7
3. De-blurring revisited with Wiener filter using OpenCV
4. Exploring Quantum Gate operations with QCSimulator
5. Latency, throughput implications for the Cloud
6. Programming Zen and now – Some essential tips-2
7. The Anomaly
8. Practical Machine Learning with R and Python – Part 3
9. Introducing cricpy:A python package to analyze performances of cricketers
10. The making of Total Control Android game

To see all posts click Index of posts

Big Data 7: yorkr waltzes with Apache NiFi

In this post, I construct an end-to-end Apache NiFi pipeline with my R package yorkr. This post is a mirror of my earlier post Big Data-5: kNiFing through cricket data with yorkpy based on my Python package yorkpy. The  Apache NiFi Data Pipeilne  flows all the way from the source, where the data is obtained, all the way  to target analytics output. Apache NiFi was created to automate the flow of data between systems.  NiFi dataflows enable the automated and managed flow of information between systems. This post automates the flow of data from Cricsheet, from where the zip file it is downloaded, unpacked, processed, transformed and finally T20 players are ranked.

This post uses the functions of my R package yorkr to rank IPL players. This is a example flow, of a typical Big Data pipeline where the data is ingested from many diverse source systems, transformed and then finally insights are generated. While I execute this NiFi example with my R package yorkr, in a typical Big Data pipeline where the data is huge, of the order of 100s of GB, we would be using the Hadoop ecosystem with Hive, HDFS Spark and so on. Since the data is taken from Cricsheet, which are few Megabytes, this approach would suffice. However if we hypothetically assume that there are several batches of cricket data that are being uploaded to the source, of different cricket matches happening all over the world, and the historical data exceeds several GBs, then we could use a similar Apache NiFi pattern to process the data and generate insights. If the data is was large and distributed across the Hadoop cluster , then we would need to use SparkR or SparklyR to process the data.

This is shown below pictorially

While this post displays the ranks of IPL batsmen, it is possible to create a cool dashboard using UI/UX technologies like AngularJS/ReactJS.  Take a look at my post Big Data 6: The T20 Dance of Apache NiFi and yorkpy where I create a simple dashboard of multiple analytics

My R package yorkr can handle both men’s and women’s ODI, and all formats of T20 in Cricsheet namely Intl. T20 (men’s, women’s), IPL, BBL, Natwest T20, PSL, Women’s BBL etc. To know more details about yorkr see Revitalizing R package yorkr

The code can be forked from Github at yorkrWithApacheNiFi

You can take a look at the live demo of the NiFi pipeline at yorkr waltzes with Apache NiFi

 

Basic Flow

1. Overall flow

The overall NiFi flow contains 2 Process Groups a) DownloadAnd Unpack. b) Convert and Rank IPL batsmen. While it appears that the Process Groups are disconnected, they are not. The first process group downloads the T20 zip file, unpacks the. zip file and saves the YAML files in a specific folder. The second process group monitors this folder and starts processing as soon the YAML files are available. It processes the YAML converting it into dataframes before storing it as CSV file. The next  processor then does the actual ranking of the batsmen before writing the output into IPLrank.txt

1.1 DownloadAndUnpack Process Group

This process group is shown below

 

1.1.1 GetT20Data

The GetT20Data Processor downloads the zip file given the URL

The ${T20data} variable points to the specific T20 format that needs to be downloaded. I have set this to https://cricsheet.org/downloads/ipl.zip. This could be set any other data set. In fact we could have parallel data flows for different T20/ Sports data sets and generate

1.1.2 SaveUnpackedData

This processor stores the YAML files in a predetermined folder, so that the data can be picked up  by the 2nd Process Group for processing

 

1.2 ProcessAndRankT20Players Process Group

This is the second process group which converts the YAML files to pandas dataframes before storing them as. CSV files. The RankIPLPlayers will then read all the CSV files, stack them and then proceed to rank the IPL players. The Process Group is shown below

 

1.2.1 ListFile and FetchFile Processors

The left 2 Processors ListFile and FetchFile get all the YAML files from the folder and pass it to the next processor

1.2.2 convertYaml2DataFrame Processor

The convertYaml2DataFrame Processor uses the ExecuteStreamCommand which call Rscript. The Rscript invoked the yorkr function convertYaml2DataframeT20() as shown below

 

I also use a 16 concurrent tasks to convert 16 different flowfiles at once

 

library(yorkr)
args<-commandArgs(TRUE)
convertYaml2RDataframeT20(args[1], args[2], args[3])

1.2.3 MergeContent Processor

This processor’s only job is to trigger the rankIPLPlayers when all the FlowFiles have merged into 1 file.

1.2.4 RankT20Players

This processor is an ExecuteStreamCommand Processor that executes a Rscript which invokes a yorrkr function rankIPLT20Batsmen()

library(yorkr)
args<-commandArgs(TRUE)

rankIPLBatsmen(args[1],args[2],args[3])

1.2.5 OutputRankofT20Player Processor

This processor writes the generated rank to an output file.

 

1.3 Final Ranking of IPL T20 players

The Nodejs based web server picks up this file and displays on the web page the final ranks (the code is based on a good youtube for reading from file)

[1] "Chennai Super Kings"
[1] "Deccan Chargers"
[1] "Delhi Daredevils"
[1] "Kings XI Punjab"
[1] "Kochi Tuskers Kerala"
[1] "Kolkata Knight Riders"
[1] "Mumbai Indians"
[1] "Pune Warriors"
[1] "Rajasthan Royals"
[1] "Royal Challengers Bangalore"
[1] "Sunrisers Hyderabad"
[1] "Gujarat Lions"
[1] "Rising Pune Supergiants"
[1] "Chennai Super Kings-BattingDetails.RData"
[1] "Deccan Chargers-BattingDetails.RData"
[1] "Delhi Daredevils-BattingDetails.RData"
[1] "Kings XI Punjab-BattingDetails.RData"
[1] "Kochi Tuskers Kerala-BattingDetails.RData"
[1] "Kolkata Knight Riders-BattingDetails.RData"
[1] "Mumbai Indians-BattingDetails.RData"
[1] "Pune Warriors-BattingDetails.RData"
[1] "Rajasthan Royals-BattingDetails.RData"
[1] "Royal Challengers Bangalore-BattingDetails.RData"
[1] "Sunrisers Hyderabad-BattingDetails.RData"
[1] "Gujarat Lions-BattingDetails.RData"
[1] "Rising Pune Supergiants-BattingDetails.RData"
# A tibble: 429 x 4
   batsman     matches meanRuns meanSR
   <chr>         <int>    <dbl>  <dbl>
 1 DA Warner       130     37.9   128.
 2 LMP Simmons      29     37.2   106.
 3 CH Gayle        125     36.2   134.
 4 HM Amla          16     36.1   108.
 5 ML Hayden        30     35.9   129.
 6 SE Marsh         67     35.9   120.
 7 RR Pant          39     35.3   135.
 8 MEK Hussey       59     33.8   105.
 9 KL Rahul         59     33.5   128.
10 MN van Wyk        5     33.4   112.
# … with 419 more rows

 

Conclusion

This post demonstrated an end-to-end pipeline with Apache NiFi and R package yorkr. You can this pipeline and generated different analytics using the various functions of yorkr and display them on a dashboard.

Hope you enjoyed with post!

 

See also
1. The mechanics of Convolutional Neural Networks in Tensorflow and Keras
2. Deep Learning from first principles in Python, R and Octave – Part 7
3. Fun simulation of a Chain in Android
4. Natural language processing: What would Shakespeare say?
5. TWS-4: Gossip protocol: Epidemics and rumors to the rescue
6. Cricketr learns new tricks : Performs fine-grained analysis of players
7. Introducing QCSimulator: A 5-qubit quantum computing simulator in R
8. Practical Machine Learning with R and Python – Part 5
9. Cricpy adds team analytics to its arsenal!!

To see posts click Index of posts

It’s a wrap! yorkr wraps up BBL, NTB, PSL and WBB!!!

“Do not take life too seriously. You will never get out of it alive.” – Elbert Hubbard

“How many people here have telekenetic powers? Raise my hand.” – Emo Philips

Have you ever noticed that anybody driving slower than you is an idiot, and anyone going faster than you is a maniac?” – George Carlin

 

It’s a wrap!!! In my previous posts,Revitalizing yorkr, I showed how you can use yorkr functions for Intl. ODI, Intl. T20 and IPL. My next post yorkr rocks women’s ODI and women’s Intl T20 yorkr handled women’s ODI and Intl. T20. In this post, yorkr wraps the remaining T20 formats namely

  1. Big Bash League (BBL)
  2. Natwest Super T20 (NTB)
  3. Pakistan Super League (PSL)
  4. Women’s Big Bash League (WBB)

The data for all the above T20 formats are taken from Cricsheet.

-All the data has been converted and is available in Github at yorkrData2020 organized as below. You can use any of the 90+ yorkr functions on the converted data.

Screenshot 2020-05-16 at 12.32.07 PM

-This post has been published at RPubs at yorkrWrapUpT20formats

-You can download a PDF version of this file at yorkrWrapsUpT20Formats

  • For ODI Matches men’s and women’ use
  1. ODI-Part1, 2. ODI-Part2,3. ODI-Part3, 4.ODI-Part 4
  • For any of the T20s formats you can use the following posts
  1. T20-Part1, 2. T20-Part2, 3. T20-Part3, 4. T20-Part4

or you can use these templates Intl. T20, or similar to IPL T20

I am going to randomly pick 2 yorkr functions for each of the T20 formats BBL, NTB, PSL and WBB to demonstrate yorkr below, however you can use any of the 90+ yorkr functions

install.packages("../../../yorkrgit/yorkr_0.0.9.tar.gz",repos = NULL, type="source")
library(yorkr)
library(dplyr)

Note: In the following T20 formats I have randomly picked 2 of the 90+ yorkr functions

A. Big Bash League (BBL)

A1.Batting Scorecard

load("../../../yorkrData2020/bbl/bblMatches/Adelaide Strikers-Brisbane Heat-2017-12-31.RData")
as_bh <- overs
teamBattingScorecardMatch(as_bh,'Adelaide Strikers')
## Total= 139
## # A tibble: 9 x 5
##   batsman      ballsPlayed fours sixes  runs
##   <chr>              <int> <dbl> <dbl> <dbl>
## 1 AT Carey               6     0     0     2
## 2 CA Ingram             21     2     0    23
## 3 J Weatherald          14     2     1    20
## 4 JS Lehmann            17     3     0    22
## 5 JW Wells              13     1     0    12
## 6 MG Neser              25     3     2    40
## 7 PM Siddle              1     0     0     1
## 8 Rashid Khan            2     0     1     6
## 9 TM Head               17     0     0    13

A2.Batting Partnership

load("../../../yorkrData2020/bbl/bblMatches2Teams/Melbourne Renegades-Sydney Sixers-allMatches.RData")
mr_ss_matches <- matches
m <-teamBatsmenPartnershiOppnAllMatches(mr_ss_matches,'Sydney Sixers',report="summary")
m
## # A tibble: 28 x 2
##    batsman      totalRuns
##    <chr>            <dbl>
##  1 MC Henriques       277
##  2 JR Philippe        186
##  3 NJ Maddinson       183
##  4 MJ Lumb            165
##  5 DP Hughes          158
##  6 JC Silk            141
##  7 SPD Smith          116
##  8 JM Vince            97
##  9 TK Curran           68
## 10 J Botha             33
## # … with 18 more rows

B. Natwest Super League

B1.Team Match Partnership

load("../../../yorkrData2020/ntb/ntbMatches/Derbyshire-Nottinghamshire-2019-07-26.RData")
db_nt <-overs
teamBatsmenPartnershipMatch(db_nt,"Derbyshire","Nottinghamshire")

B2.Batsmen vs Bowlers

load("../../../yorkrData2020/ntb/ntbMatches2Teams/Birmingham Bears-Leicestershire-allMatches.RData")
bb_le_matches <- matches
teamBatsmenVsBowlersOppnAllMatches(bb_le_matches,"Birmingham Bears","Leicestershire",top=3)

C. Pakistan Super League (PSL)

C1.Individual performance of Babar Azam

library(grid)
library(gridExtra)

babar <- getBatsmanDetails(team="Karachi Kings",name="Babar Azam",dir="../../../yorkrData2020/psl/pslBattingBowlingDetails/")
## [1] "../../../yorkrData2020/psl/pslBattingBowlingDetails//Karachi Kings-BattingDetails.RData"
print(dim(babar))
## [1] 40 15
p1 <-batsmanRunsVsStrikeRate(babar,"Babar Azam")
p2 <-batsmanMovingAverage(babar,"Babar Azam")
p3 <- batsmanCumulativeAverageRuns(babar,"Babar Azam")
grid.arrange(p1,p2,p3, ncol=2)

C2.Bowling performance against all oppositions

load("../../../yorkrData2020/psl/pslMatches2Teams/Lahore Qalandars-Multan Sultans-allMatches.RData")
lq_ms_matches <- matches
teamBowlingPerfOppnAllMatches(lq_ms_matches,"Lahore Qalanders","Multan Sultans")
## # A tibble: 40 x 5
##    bowler              overs maidens  runs wickets
##    <chr>               <int>   <int> <dbl>   <dbl>
##  1 Shaheen Shah Afridi    11       1   134      11
##  2 Junaid Khan             5       0   154       8
##  3 Imran Tahir             5       0    74       6
##  4 Mohammad Ilyas          5       0    93       4
##  5 Haris Rauf              7       0   154       3
##  6 D Wiese                 7       0    92       3
##  7 Mohammad Irfan          5       0    91       3
##  8 S Lamichhane            5       0    74       3
##  9 SP Narine               8       0    48       3
## 10 MM Ali                  3       0    30       3
## # … with 30 more rows

D. Women Big Bash League

D1.Bowling scorecard

load("../../../yorkrData2020/wbb/wbbMatches/Hobart Hurricanes-Brisbane Heat-2018-12-30.RData")
hh_bh_match <- overs
teamBowlingScorecardMatch(hh_bh_match,'Brisbane Heat')
## # A tibble: 6 x 5
##   bowler      overs maidens  runs wickets
##   <chr>       <int>   <int> <dbl>   <dbl>
## 1 DM Kimmince     3       0    31       2
## 2 GM Harris       4       0    23       3
## 3 H Birkett       1       0     7       0
## 4 JL Barsby       3       0    21       0
## 5 JL Jonassen     4       0    33       0
## 6 SJ Johnson      4       0    17       0

D2.Team batsmen partnerships

load("../../../yorkrData2020/wbb/wbbAllMatchesAllTeams/allMatchesAllOpposition-Perth Scorchers.RData")
ps_matches <- matches
teamBatsmenPartnershipAllOppnAllMatchesPlot(ps_matches,"Perth Scorchers",main="Perth Scorchers")

As mentioned above, I have randomly picked 2 yorkr functions for each of the T20 formats. You can use any of the 90+ functions for analysis of matches, teams, batsmen and bowlers.

1a. Ranking Big Bash League (BBL) batsman

dir="/Users/tvganesh/backup/software/cricket-package/yorkr-cricsheet/yorkrData2020/bbl/bblMatches"
odir="/Users/tvganesh/backup/software/cricket-package/yorkr-cricsheet/yorkrData2020/bbl/bblBattingBowlingDetails"
rankBBLBatsmen(dir=dir,odir=odir,minMatches=30)
## # A tibble: 62 x 4
##    batsman      matches meanRuns meanSR
##    <chr>          <int>    <dbl>  <dbl>
##  1 DJM Short         44     41.6   126.
##  2 SE Marsh          48     39.1   120.
##  3 AJ Finch          60     36.0   130.
##  4 AT Carey          36     35.9   129.
##  5 KP Pietersen      31     33.5   118.
##  6 UT Khawaja        40     31.5   112.
##  7 BJ Hodge          38     31.5   127.
##  8 CA Lynn           72     31.3   128.
##  9 MP Stoinis        53     30.7   112.
## 10 TM Head           45     30     131.
## # … with 52 more rows

1b. Ranking Big Bash League (BBL) bowlers

dir="/Users/tvganesh/backup/software/cricket-package/yorkr-cricsheet/yorkrData2020/bbl/bblMatches"
odir="/Users/tvganesh/backup/software/cricket-package/yorkr-cricsheet/yorkrData2020/bbl/bblBattingBowlingDetails"
rankBBLBowlers(dir=dir,odir=odir,minMatches=25)
## # A tibble: 53 x 4
##    bowler         matches totalWickets meanER
##    <chr>            <int>        <dbl>  <dbl>
##  1 SA Abbott           60           90   8.42
##  2 AJ Tye              45           69   7.32
##  3 B Laughlin          48           66   7.96
##  4 BCJ Cutting         71           63   8.87
##  5 BJ Dwarshuis        54           62   7.87
##  6 MG Neser            54           57   8.36
##  7 Rashid Khan         40           55   6.32
##  8 JP Behrendorff      41           53   6.55
##  9 SNJ O'Keefe         53           52   6.76
## 10 A Zampa             42           51   7.34
## # … with 43 more rows

2a. Ranking Natwest T20 League (NTB) batsman

dir="/Users/tvganesh/backup/software/cricket-package/yorkr-cricsheet/yorkrData2020/ntb/ntbMatches"
odir="/Users/tvganesh/backup/software/cricket-package/yorkr-cricsheet/yorkrData2020/ntb/ntbBattingBowlingDetails"

rankNTBBatsmen(dir=dir,odir=odir,minMatches=20)
## # A tibble: 42 x 4
##    batsman          matches meanRuns meanSR
##    <chr>              <int>    <dbl>  <dbl>
##  1 SR Hain               24     34.6   107.
##  2 M Klinger             26     34.1   118.
##  3 MH Wessels            26     33.9   122.
##  4 DJ Bell-Drummond      21     33.1   112.
##  5 DJ Malan              26     33     129.
##  6 T Kohler-Cadmore      23     33.0   118.
##  7 A Lyth                22     31.4   150.
##  8 JJ Cobb               26     30.7   110.
##  9 CA Ingram             25     30.5   153.
## 10 IA Cockbain           26     29.8   121.
## # … with 32 more rows

2b. Ranking Natwest T20 League (NTB) bowlers

dir="/Users/tvganesh/backup/software/cricket-package/yorkr-cricsheet/yorkrData2020/ntb/ntbMatches"
odir="/Users/tvganesh/backup/software/cricket-package/yorkr-cricsheet/yorkrData2020/ntb/ntbBattingBowlingDetails"

rankNTBBowlers(dir=dir,odir=odir,minMatches=20)
## # A tibble: 23 x 4
##    bowler          matches totalWickets meanER
##    <chr>             <int>        <dbl>  <dbl>
##  1 HF Gurney            23           45   8.63
##  2 AJ Tye               26           40   7.81
##  3 TS Roland-Jones      26           37   8.10
##  4 BAC Howell           20           35   6.89
##  5 TT Bresnan           21           31   8.82
##  6 MJJ Critchley        25           31   7.33
##  7 LA Dawson            24           30   6.80
##  8 TK Curran            23           28   8.19
##  9 NA Sowter            25           28   8.09
## 10 MTC Waller           25           27   7.59
## # … with 13 more rows

3a. Ranking Pakistan Super League (PSL) batsman

dir="/Users/tvganesh/backup/software/cricket-package/yorkr-cricsheet/yorkrData2020/psl/pslMatches"
odir="/Users/tvganesh/backup/software/cricket-package/yorkr-cricsheet/yorkrData2020/psl/pslBattingBowlingDetails"

rankPSLBatsmen(dir=dir,odir=odir,minMatches=15)
## # A tibble: 47 x 4
##    batsman      matches meanRuns meanSR
##    <chr>          <int>    <dbl>  <dbl>
##  1 Babar Azam        40     33.7   102.
##  2 L Ronchi          31     32.9   143.
##  3 DR Smith          24     30.8   111.
##  4 JJ Roy            15     30.6   123.
##  5 Kamran Akmal      46     30.1   112.
##  6 SR Watson         40     29.2   126.
##  7 Shoaib Malik      35     28.1   113.
##  8 Fakhar Zaman      38     27.6   119.
##  9 Imam-ul-Haq       15     27.4   115.
## 10 RR Rossouw        36     27.0   130.
## # … with 37 more rows

3b. Ranking Pakistan Super League (PSL) bowlers

dir="/Users/tvganesh/backup/software/cricket-package/yorkr-cricsheet/yorkrData2020/psl/pslMatches"
odir="/Users/tvganesh/backup/software/cricket-package/yorkr-cricsheet/yorkrData2020/psl/pslBattingBowlingDetails"

rankPSLBowlers(dir=dir,odir=odir,minMatches=15)
## # A tibble: 25 x 4
##    bowler              matches totalWickets meanER
##    <chr>                 <int>        <dbl>  <dbl>
##  1 Wahab Riaz               44           70   6.94
##  2 Hasan Ali                41           61   7.43
##  3 Faheem Ashraf            30           50   7.84
##  4 Mohammad Amir            38           48   7.16
##  5 Usman Shinwari           26           43   8.64
##  6 Mohammad Sami            29           40   7.60
##  7 Shadab Khan              40           38   7.57
##  8 Shaheen Shah Afridi      24           34   7.88
##  9 Rumman Raees             24           33   7.77
## 10 Mohammad Hasnain         16           28   8.65
## # … with 15 more rows

4a. Ranking Women’s Big Bash League (WBB) batsman

dir="/Users/tvganesh/backup/software/cricket-package/yorkr-cricsheet/yorkrData2020/wbb/wbbMatches"
odir="/Users/tvganesh/backup/software/cricket-package/yorkr-cricsheet/yorkrData2020/wbb/wbbBattingBowlingDetails"
rankWBBBatsmen(dir=dir,odir=odir,minMatches=15)
## # A tibble: 36 x 4
##    batsman    matches meanRuns meanSR
##    <chr>        <int>    <dbl>  <dbl>
##  1 BL Mooney       27     46.7  129. 
##  2 SFM Devine      22     43.5  111. 
##  3 EA Perry        16     41.1   97.1
##  4 MM Lanning      19     38     98.2
##  5 JE Cameron      22     32.9  127. 
##  6 DN Wyatt        24     32    112. 
##  7 AE Jones        17     28.9  107. 
##  8 AJ Healy        19     28.4  122. 
##  9 M du Preez      19     27    101. 
## 10 L Lee           18     26.9   98.9
## # … with 26 more rows

4b. Ranking Women’s Big Bash League (WBB) bowlers

dir="/Users/tvganesh/backup/software/cricket-package/yorkr-cricsheet/yorkrData2020/wbb/wbbMatches"
odir="/Users/tvganesh/backup/software/cricket-package/yorkr-cricsheet/yorkrData2020/wbb/wbbBattingBowlingDetails"
rankWBBBowlers(dir=dir,odir=odir,minMatches=15)
## # A tibble: 31 x 4
##    bowler      matches totalWickets meanER
##    <chr>         <int>        <dbl>  <dbl>
##  1 M Strano         23           37   7.25
##  2 DM Kimmince      24           36   7.46
##  3 SJ Coyte         22           29   7.59
##  4 JL Jonassen      24           28   6.81
##  5 SJ Johnson       24           27   6.61
##  6 ML Schutt        22           26   6.03
##  7 SFM Devine       22           24   7.58
##  8 M Brown          23           23   7.33
##  9 M Kapp           19           23   5.05
## 10 H Graham         19           22   7.68
## # … with 21 more rows

Conclusion

yorkr can handle ODI and T20 matches in the format as represented in Cricsheet. In my posts, I have shown how yorkr can be used for Intl. ODI and Intl. T20 for both men and women. yorkr can also handle all T20 formats like IPL T20, BBL, Natwest T20, PSL and women’s BBL. Go ahead take yorkr for a ride and check out your favorite teams and players.

Hope you have fun!!!

You may also like

  1. Getting started with Tensorflow, Keras in Python and R
  2. Computer Vision: Ramblings on derivatives, histograms and contours
  3. Cricpy adds team analytics to its arsenal!!
  4. Sixer – R package cricketr’s new Shiny avatar
  5. Big Data-2: Move into the big league:Graduate from R to SparkR
  6. Practical Machine Learning with R and Python – Part 5
  7. Deep Learning from first principles in Python, R and Octave – Part 7
  8. Exploring Quantum Gate operations with QCSimulator
  9. GooglyPlus: yorkr analyzes IPL players, teams, matches with plots and tables

To see all posts click Index of Posts

Cricketr adds team analytics to its repertoire!!!

And she’s got brains enough for two, which is the exact quantity the girl who marries you will need.

“I’m not absolutely certain of the facts, but I rather fancy it’s Shakespeare who says that it’s always just when a fellow is feeling particularly braced with things in general that Fate sneaks up behind him with the bit of lead piping.”

“A melancholy-looking man, he had the appearance of one who has searched for the leak in life’s gas-pipe with a lighted candle.”

“It isn’t often that Aunt Dahlia lets her angry passions rise, but when she does, strong men climb trees and pull them up after them.”

“Some minds are like soup in a poor restaurant – better left unstirred.”

                                      P.G. Wodehouse

Introduction

My R package cricketr had its genesis about 4 years ago, sometime around June 2015. There were some minor updates afterwards and the package performed analytics on cricketers (Test, ODI and T20) based on data from ESPN Cricinfo see Re-introducing cricketr! : An R package to analyze performances of cricketers. Now, in the latest release of cricketr, I have included 8 functions which can perform Team analytics. Team analysis can be done for Test, ODI and T20 teams.

This package uses the statistics info available in ESPN Cricinfo Statsguru. The current version of this package can handle all formats of the game including Test, ODI and Twenty20 cricket for players (batsmen & bowlers) and also teams (Test, ODI and T20)

You should be able to install the package directly from CRAN. Please be mindful of ESPN Cricinfo Terms of Use

A total of 8 new functions which deal with team analytics has been included in the latest release.

There are 5 functions which are used internally 1) getTeamData b) getTeamNumber c) getMatchType d) getTeamDataHomeAway e) cleanTeamData

and the external functions which are
a) teamWinLossStatusVsOpposition
b) teamWinLossStatusAtGrounds
c) plotTimelineofWinsLosses

All the above functions are common to Test, ODI and T20 teams

The data for a particular Team can be obtained with the getTeamDataHomeAway() function from the package. This will return a dataframe of the team’s win/loss status at home and away venues over a period of time. This can be saved as a CSV file. Once this is done, you can use this CSV file for all subsequent analysis

As before you can get the help for any of the cricketr functions as below

#help(teamWinLossStatusVsOpposition)
Compute the wins/losses/draw/tied etc for a Team in Test, ODI or T20 against opposition
Description
This function computes the won,lost,draw,tied or no result for a team against other teams in home/away or neutral venues and either returns a dataframe or plots it against opposition
Usage
teamWinLossStatusVsOpposition(file,teamName,opposition=c("all"),homeOrAway=c("all"),
      matchType="Test",plot=FALSE)
Arguments
file	
The CSV file for which the plot is required
teamName	
The name of the team for which plot is required
opposition	
Opposition is a vector namely c("all") or c("Australia", "India", "England")
homeOrAway	
This parameter is a vector which is either c("all") or a vector of venues c("home","away","neutral")
matchType	
Match type - Test, ODI or T20
plot	
If plot=FALSE then a data frame is returned, If plot=TRUE then a plot is generated
Value
None
Note
Maintainer: Tinniam V Ganesh tvganesh.85@gmail.com
Author(s)
Tinniam V Ganesh
References

http://www.espncricinfo.com/ci/content/stats/index.html
https://gigadom.in/
See Also
teamWinLossStatusVsOpposition teamWinLossStatusAtGrounds plotTimelineofWinsLosses
Examples
## Not run: 
#Get the team data for India for Tests
df <- getTeamDataHomeAway(teamName="India",file="indiaOD.csv",matchType="ODI")
teamWinLossStatusAtGrounds("india.csv",teamName="India",opposition=c("Australia","England","India"),
                          homeOrAway=c("home","away"),plot=TRUE)
## End(Not run)

This post has been published at RPubs and is available at TeamAnalyticsWithCricketr

You can download PDF version of this post at TeamAnalyticsWithCricketr

1. Get team data

1a. Test

The teams in Test cricket are included below

  1. Afghanistan 2.Bangladesh 3. England 4. World 5. India 6. Ireland 7. New Zealand 8. Pakistan 9. South Africa 10.Sri Lanka 11. West Indies 12.Zimbabwe

You can use this for the teamName paramater. This will return a dataframe and also save the file as a CSV , if save=TRUE

Note: – Since I have already got the data as CSV files I am not executing the lines below

# Get the data for the teams. Save as CSV
#indiaTest <-getTeamDataHomeAway(dir=".",teamView="bat",matchType="Test",file="indiaTest.csv",save=TRUE,teamName="India")
#australiaTest <- getTeamDataHomeAway(matchType="Test",file="australiaTest.csv",save=TRUE,teamName="Australia")
#pakistanTest <- getTeamDataHomeAway(matchType="Test",file="pakistanTest.csv",save=TRUE,teamName="Pakistan")
#newzealandTest <- getTeamDataHomeAway(matchType="Test",file="newzealandTest.csv",save=TRUE,teamName="New Zealand")

1b. ODI

The ODI teams in the world are below. The data for these teams can be got by names as shown below

  1. Afghanistan 2. Africa XI 3. Asia XI 4.Australia 5.Bangladesh
  2. Bermuda 7. England 8. ICC World X1 9. India 11.Ireland 12. New Zealand
  3. Pakistan 14. South Africa 15. Sri Lanka 17. West Indies 18. Zimbabwe
  4. Canada 21. East Africa 22. Hong Kong 23.Ireland 24. Kenya 25. Namibia
  5. Nepal 27.Netherlands 28. Oman 29.Papua New Guinea 30. Scotland
  6. United Arab Emirates 32. United States of America
#indiaODI <- getTeamDataHomeAway(matchType="ODI",file="indiaODI.csv",save=TRUE,teamName="India")
#englandODI <- getTeamDataHomeAway(matchType="ODI",file="englandODI.csv",save=TRUE,teamName="England")
#westindiesODI <- getTeamDataHomeAway(matchType="ODI",file="westindiesODI.csv",save=TRUE,teamName="West Indies")
#irelandODI <- getTeamDataHomeAway(matchType="ODI",file="irelandODI.csv",save=TRUE,teamName="Ireland")

1c T20

The T20 teams in the world are
1.Afghanistan 2. Australia 3. Bahrain 4. Bangladesh 5. Belgium 6. Belize
2.Bermuda 8.Botswana 9. Canada 11. Costa Rica 12. Germany 13. Ghana
14.Guernsey 15. Hong Kong 16. ICC World X1 17.India 18. Ireland 19.Italy
20.Jersey 21. Kenya 22.Kuwait 23.Maldives 24.Malta 25.Mexico 26.Namibia
27.Nepal 28.Netherlands 29. New Zealand 30.Nigeria 31.Oman 32. Pakistan
33.Panama 34.Papua New Guinea 35. Philippines 36.Qatar 37.Saudi Arabia
38.Scotland 39.South Africa 40.Spain 41.Sri Lanka 42.Uganda
43.United Arab Emirates United States of America 44.Vanuatu 45.West Indies

#southafricaT20 <- getTeamDataHomeAway(matchType="T20",file="southafricaT20.csv",save=TRUE,teamName="South Africa")
#srilankaT20 <- getTeamDataHomeAway(matchType="T20",file="srilankaT20.csv",save=TRUE,teamName="Sri Lanka")
#canadaT20 <- getTeamDataHomeAway(matchType="T20",file="canadaT20.csv",save=TRUE,teamName="Canada")
#afghanistanT20 <- getTeamDataHomeAway(matchType="T20",file="afghanistanT20.csv",save=TRUE,teamName="Afghanistan")

2 Analysis of Test matches

The functions below perform analysis of Test teams

2a. Wins vs Loss against opposition

This function performs analysis of Test teams against other teams at home/away or neutral venue. Note:- The opposition can be a vector of opposition teams. Similarly homeOrAway can also be a vector of home/away/neutral venues.

# Get the performance of Indian test team against all teams at all venues as a dataframe
df <- teamWinLossStatusVsOpposition("india.csv",teamName="India",opposition=c("all"),homeOrAway=c("all"),matchType="Test",plot=FALSE)
head(df)
## # A tibble: 6 x 4
## # Groups:   Opposition, Result [4]
##   Opposition  Result ha    count
##   <chr>       <chr>  <chr> <int>
## 1 Afghanistan won    home      1
## 2 Australia   draw   away     20
## 3 Australia   draw   home     23
## 4 Australia   lost   away     58
## 5 Australia   lost   home     26
## 6 Australia   tied   home      2
# Plot the performance of Indian Test team  against all teams at all venues
teamWinLossStatusVsOpposition("indiaTest.csv",teamName="India",opposition=c("all"),homeOrAway=c("all"),matchType="Test",plot=TRUE)

# Get the performance of Australia against India, England and New Zealand at all venues in Tests
df <-teamWinLossStatusVsOpposition("australiaTest.csv",teamName="Australia",opposition=c("India","England","New Zealand"),homeOrAway=c("all"),matchType="Test",plot=FALSE)

#Plot the performance of Australia against England, India and New Zealand only at home (Australia) 
teamWinLossStatusVsOpposition("australiaTest.csv",teamName="Australia",opposition=c("India","England","New Zealand"),homeOrAway=c("home"),matchType="Test",plot=TRUE)

If you are passionate about cricket, and love analyzing cricket performances, then check out my racy book on cricket ‘Cricket analytics with cricketr and cricpy – Analytics harmony with R & Python’! This book discusses and shows how to use my R package ‘cricketr’ and my Python package ‘cricpy’ to analyze batsmen and bowlers in all formats of the game (Test, ODI and T20). The paperback is available on Amazon at $21.99 and  the kindle version at $9.99/Rs 449/-. A must read for any cricket lover! Check it out!!

Untitled

 

2b Wins vs losses of Test teams against opposition at different venues

# Get the  performance of Pakistan against India, West Indies, South Africa at all venues in Tests and show performances at the venues
df <- teamWinLossStatusAtGrounds("pakistanTest.csv",teamName="Pakistan",opposition=c("India","West Indies","South Africa"),homeOrAway=c("all"),matchType="Test",plot=FALSE)
head(df)
## # A tibble: 6 x 4
## # Groups:   Ground, Result [6]
##   Ground     Result ha      count
##   <chr>      <chr>  <chr>   <int>
## 1 Abu Dhabi  draw   neutral     2
## 2 Abu Dhabi  won    neutral     4
## 3 Ahmedabad  draw   away        2
## 4 Bahawalpur draw   home        1
## 5 Basseterre won    away        2
## 6 Bengaluru  draw   away        5
# Plot the performance of New Zealand Test team against England, Sri Lanka and Bangladesh at all grounds playes 
teamWinLossStatusAtGrounds("newzealandTest.csv",teamName="New Zealand",opposition=c("England","Sri Lanka","Bangladesh"),homeOrAway=c("all"),matchType="Test",plot=TRUE)

2c. Plot the time line of wins vs losses of Test teams against opposition at different venues during an interval

# Plot the time line of wins/losses of India against Australia, West Indies, South Africa in away/neutral venues
#from 2000-01-01 to 2017-01-01
plotTimelineofWinsLosses("indiaTest.csv",team="India",opposition=c("Australia","West Indies","South Africa"),
                         homeOrAway=c("away","neutral"), startDate="2000-01-01",endDate="2017-01-01")

#Plot the time line of wins/losses of Indian Test team from 1970 onwards
plotTimelineofWinsLosses("indiaTest.csv",team="India",startDate="1970-01-01",endDate="2017-01-01")

3 ODI

The functions below perform analysis of ODI teams listed above

3a. Wins vs Loss against opposition ODI teams

This function performs analysis of ODI teams against other teams at home/away or neutral venue. Note:- The opposition can be a vector of opposition teams. Similarly homeOrAway can also be a vector of home/away/neutral venues.

# Get the performance of West Indies in ODIs against all other ODI teams at all venues and retirn as a dataframe
df <- teamWinLossStatusVsOpposition("westindiesODI.csv",teamName="West Indies",opposition=c("all"),homeOrAway=c("all"),matchType="ODI",plot=FALSE)
head(df)
## # A tibble: 6 x 4
## # Groups:   Opposition, Result [3]
##   Opposition  Result ha      count
##   <chr>       <chr>  <chr>   <int>
## 1 Afghanistan lost   home        1
## 2 Afghanistan lost   neutral     2
## 3 Afghanistan won    home        1
## 4 Australia   lost   away       41
## 5 Australia   lost   home       25
## 6 Australia   lost   neutral     8
# Plot the performance of West Indies in ODIs against Sri Lanka, India at all venues
teamWinLossStatusVsOpposition("westindiesODI.csv",teamName="West Indies",opposition=c("Sri Lanka", "India"),homeOrAway=c("all"),matchType="ODI",plot=TRUE)

 

#Plot the performance of Ireland in ODIs against Zimbabwe, Kenya, bermuda, UAE, Oman and Scotland at all venues
teamWinLossStatusVsOpposition("irelandODI.csv",teamName="Ireland",opposition=c("Zimbabwe","Kenya","Bermuda","U.A.E.","Oman","Scotland"),homeOrAway=c("all"),matchType="ODI",plot=TRUE)

3b Wins vs losses of ODI teams against opposition at different venues

# Plot the performance of England ODI team against Bangladesh, West Indies and Australia at all venues
teamWinLossStatusAtGrounds("englandODI.csv",teamName="England",opposition=c("Bangladesh","West Indies","Australia"),homeOrAway=c("all"),matchType="ODI",plot=TRUE)

#Plot the performance of India against South Africa, West Indies and Australia at 'home' venues
teamWinLossStatusAtGrounds("indiaODI.csv",teamName="India",opposition=c("South Africa","West Indies","Australia"),homeOrAway=c("home"),matchType="ODI",plot=TRUE)

3c. Plot the time line of wins vs losses of ODI teams against opposition at different venues during an interval

#Plot the time line of wins/losses of Bangladesh ODI team between 2015 and 2019 against all other teams and at
# all venues
plotTimelineofWinsLosses("bangladeshOD.csv",team="Bangladesh",startDate="2015-01-01",endDate="2019-01-01",matchType="ODI")

#Plot the time line of wins/losses of India ODI against Sri Lanka, Bangladesh from 2016 to 2019
plotTimelineofWinsLosses("indiaODI.csv",team="India",opposition=c("Sri Lanka","Bangladesh"),startDate="2016-01-01",endDate="2019-01-01",matchType="ODI")

4 Twenty 20

The functions below perform analysis of Twenty 20 teams listed above

4a. Wins vs Loss against opposition ODI teams

This function performs analysis of T20 teams against other T20 teams at home/away or neutral venue. Note:- The opposition can be a vector of opposition teams. Similarly homeOrAway can also be a vector of home/away/neutral venues.

# Get the performance of South Africa T20 team against England, India and Sri Lanka at home grounds at England
df <- teamWinLossStatusVsOpposition("southafricaT20.csv",teamName="South Africa",opposition=c("England","India","Sri Lanka"),homeOrAway=c("home"),matchType="T20",plot=FALSE)

#Plot the performance of South Africa T20 against England, India and Sri Lanka at all venues
teamWinLossStatusVsOpposition("southafricaT20.csv",teamName="South Africa",opposition=c("England","India","Sri Lanka"),homeOrAway=c("all"),matchType="T20",plot=TRUE)

#Plot the performance of Afghanistan T20 teams against all oppositions
teamWinLossStatusVsOpposition("afghanistanT20.csv",teamName="Afghanistan",opposition=c("all"),homeOrAway=c("all"),matchType="T20",plot=TRUE)

 

 

4b Wins vs losses of T20 teams against opposition at different venues

# Compute the performance of Canada against all opposition at all venues and show by grounds. Return as dataframe
df <-teamWinLossStatusAtGrounds("canadaT20.csv",teamName="Canada",opposition=c("all"),homeOrAway=c("all"),matchType="T20",plot=FALSE)
head(df)
## # A tibble: 6 x 4
## # Groups:   Ground, Result [6]
##   Ground        Result ha      count
##   <chr>         <chr>  <chr>   <int>
## 1 Abu Dhabi     lost   neutral     1
## 2 Belfast       lost   neutral     1
## 3 Belfast       won    neutral     2
## 4 Colombo (SSC) lost   neutral     1
## 5 Colombo (SSC) won    neutral     1
## 6 Dubai (DSC)   lost   neutral     5
# Plot the performance of Sri Lanka T20 team against India and Bangladesh in different venues at home/away and neutral
teamWinLossStatusAtGrounds("srilankaT20.csv",teamName="Sri Lanka",opposition=c("India", "Bangladesh"), homeOrAway=c("all"), matchType="T20", plot=TRUE)

4c. Plot the time line of wins vs losses of T20 teams against opposition at different venues during an interval

#Plot the time line of Sri Lanka T20 team agaibst all opposition
plotTimelineofWinsLosses("srilankaT20.csv",team="Sri Lanka",opposition=c("Australia", "Pakistan"), startDate="2013-01-01", endDate="2019-01-01",  matchType="T20")

# Plot the time line of South Africa T20 between 2010 and 2015 against West Indies and Pakistan
plotTimelineofWinsLosses("southafricaT20.csv",team="South Africa",opposition=c("West Indies", "Pakistan"), startDate="2010-01-01", endDate="2015-01-01",  matchType="T20")