Deep Learning from first principles in Python, R and Octave – Part 7

Artificial Intelligence is the new electricity. – Prof Andrew Ng

Most of human and animal learning is unsupervised learning. If intelligence was a cake, unsupervised learning would be the cake, supervised learning would be the icing on the cake, and reinforcement learning would be the cherry on the cake. We know how to make the icing and the cherry, but we don’t know how to make the cake. We need to solve the unsupervised learning problem before we can even think of getting to true AI.  – Yann LeCun, March 14, 2016 (Facebook)

Introduction

In this post ‘Deep Learning from first principles with Python, R and Octave-Part 7’, I implement optimization methods used in Stochastic Gradient Descent (SGD) to speed up the convergence. Specifically I discuss and implement the following gradient descent optimization techniques

a.Vanilla Stochastic Gradient Descent
b.Learning rate decay
c. Momentum method
d. RMSProp
e. Adaptive Moment Estimation (Adam)

This post, further enhances my generic  L-Layer Deep Learning Network implementations in  vectorized Python, R and Octave to also include the Stochastic Gradient Descent optimization techniques. You can clone/download the code from Github at DeepLearning-Part7

You can view my video  presentation on Gradient Descent Optimization in Neural Networks 7

Incidentally, a good discussion of the various optimizations methods used in Stochastic Gradient Optimization techniques can be seen at Sebastian Ruder’s blog

Note: In the vectorized Python, R and Octave implementations below only a  1024 random training samples were used. This was to reduce the computation time. You are free to use the entire data set (60000 training data) for the computation.

This post is largely based of on Prof Andrew Ng’s Deep Learning Specialization.  All the above optimization techniques for Stochastic Gradient Descent are based on the technique of exponentially weighted average method. So for example if we had some time series data \theta_{1},\theta_{2},\theta_{3}... \theta_{t} then we we can represent the exponentially average value at time ‘t’ as a sequence of the the previous value v_{t-1} and \theta_{t} as shown below
v_{t} = \beta v_{t-1} + (1-\beta)\theta_{t}

Here v_{t} represent the average of the data set over \frac {1}{1-\beta}  By choosing different values of \beta, we can average over a larger or smaller number of the data points.
We can write the equations as follows
v_{t} = \beta v_{t-1} + (1-\beta)\theta_{t}
v_{t-1} = \beta v_{t-2} + (1-\beta)\theta_{t-1}
v_{t-2} = \beta v_{t-3} + (1-\beta)\theta_{t-2}
and
v_{t-k} = \beta v_{t-(k+1))} + (1-\beta)\theta_{t-k}
By substitution we have
v_{t} = (1-\beta)\theta_{t} + \beta v_{t-1}
v_{t} = (1-\beta)\theta_{t} + \beta ((1-\beta)\theta_{t-1}) + \beta v_{t-2}
v_{t} = (1-\beta)\theta_{t} + \beta ((1-\beta)\theta_{t-1}) + \beta ((1-\beta)\theta_{t-2}+ \beta v_{t-3} )

Hence it can be seen that the v_{t} is the weighted sum over the previous values \theta_{k}, which is an exponentially decaying function.

Checkout my book ‘Deep Learning from first principles: Second Edition – In vectorized Python, R and Octave’. My book starts with the implementation of a simple 2-layer Neural Network and works its way to a generic L-Layer Deep Learning Network, with all the bells and whistles. The derivations have been discussed in detail. The code has been extensively commented and included in its entirety in the Appendix sections. My book is available on Amazon as paperback ($18.99) and in kindle version($9.99/Rs449).

You may also like my companion book “Practical Machine Learning with R and Python- Machine Learning in stereo” available in Amazon in paperback($9.99) and Kindle($6.99) versions. This book is ideal for a quick reference of the various ML functions and associated measurements in both R and Python which are essential to delve deep into Deep Learning.

1.1a. Stochastic Gradient Descent (Vanilla) – Python

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import sklearn.linear_model
import pandas as pd
import sklearn
import sklearn.datasets
exec(open("DLfunctions7.py").read())
exec(open("load_mnist.py").read())

# Read the training data
training=list(read(dataset='training',path=".\\mnist"))
test=list(read(dataset='testing',path=".\\mnist"))
lbls=[]
pxls=[]
for i in range(60000):
       l,p=training[i]
       lbls.append(l)
       pxls.append(p)
labels= np.array(lbls)
pixels=np.array(pxls)       
y=labels.reshape(-1,1)
X=pixels.reshape(pixels.shape[0],-1)
X1=X.T
Y1=y.T

# Create  a list of 1024 random numbers.
permutation = list(np.random.permutation(2**10))
# Subset 16384 from the data
X2 = X1[:, permutation]
Y2 = Y1[:, permutation].reshape((1,2**10))
# Set the layer dimensions  
layersDimensions=[784, 15,9,10] 
# Perform SGD with regular gradient descent
parameters = L_Layer_DeepModel_SGD(X2, Y2, layersDimensions, hiddenActivationFunc='relu', 
                                   outputActivationFunc="softmax",learningRate = 0.01 ,
                                   optimizer="gd",
                                   mini_batch_size =512, num_epochs = 1000, print_cost = True,figure="fig1.png")

1.1b. Stochastic Gradient Descent (Vanilla) – R

source("mnist.R")
source("DLfunctions7.R")
#Load and read MNIST data
load_mnist() 
x <- t(train$x)
X <- x[,1:60000]
y <-train$y
y1 <- y[1:60000]
y2 <- as.matrix(y1)
Y=t(y2)

# Subset 1024 random samples from MNIST 
permutation = c(sample(2^10))
# Randomly shuffle the training data
X1 = X[, permutation]
y1 = Y[1, permutation]
y2 <- as.matrix(y1)
Y1=t(y2)
# Set layer dimensions
layersDimensions=c(784, 15,9, 10) 
# Perform SGD with regular gradient descent
retvalsSGD= L_Layer_DeepModel_SGD(X1, Y1, layersDimensions,
                            hiddenActivationFunc='tanh',
                            outputActivationFunc="softmax",
                            learningRate = 0.05,
                            optimizer="gd",
                            mini_batch_size = 512, 
                            num_epochs = 5000, 
                            print_cost = True)
#Plot the cost vs iterations
iterations <- seq(0,5000,1000)
costs=retvalsSGD$costs
df=data.frame(iterations,costs)
ggplot(df,aes(x=iterations,y=costs)) + geom_point() + geom_line(color="blue") +
 ggtitle("Costs vs no of epochs") + xlab("No of epochss") + ylab("Cost")

1.1c. Stochastic Gradient Descent (Vanilla) – Octave

source("DL7functions.m")
#Load and read MNIST
load('./mnist/mnist.txt.gz'); 
#Create a random permutatation from 1024
permutation = randperm(1024);
disp(length(permutation));

# Use this 1024 as the batch
X=trainX(permutation,:);
Y=trainY(permutation,:);

# Set layer dimensions
layersDimensions=[784, 15, 9, 10];
# Perform SGD with regular gradient descent
[weights biases costs]=L_Layer_DeepModel_SGD(X', Y', layersDimensions,
 hiddenActivationFunc='relu', 
 outputActivationFunc="softmax",
 learningRate = 0.005,
 lrDecay=true, 
 decayRate=1,
 lambd=0,
 keep_prob=1,
 optimizer="gd",
 beta=0.9,
 beta1=0.9,
 beta2=0.999,
 epsilon=10^-8,
 mini_batch_size = 512, 
 num_epochs = 5000);

plotCostVsEpochs(5000,costs);

2.1. Stochastic Gradient Descent with Learning rate decay

Since in Stochastic Gradient Descent,with  each epoch, we use slight different samples, the gradient descent algorithm, oscillates across the ravines and wanders around the minima, when a fixed learning rate is used. In this technique of ‘learning rate decay’ the learning rate is slowly decreased with the number of epochs and becomes smaller and smaller, so that gradient descent can take smaller steps towards the minima.

There are several techniques employed in learning rate decay

a) Exponential decay: \alpha = decayRate^{epochNum} *\alpha_{0}
b) 1/t decay : \alpha = \frac{\alpha_{0}}{1 + decayRate*epochNum}
c) \alpha = \frac {decayRate}{\sqrt(epochNum)}*\alpha_{0}

In my implementation I have used the ‘exponential decay’. The code snippet for Python is shown below

if lrDecay == True:
   learningRate = np.power(decayRate,(num_epochs/1000)) * learningRate

2.1a. Stochastic Gradient Descent with Learning rate decay – Python

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import sklearn.linear_model
import pandas as pd
import sklearn
import sklearn.datasets
exec(open("DLfunctions7.py").read())
exec(open("load_mnist.py").read())

# Read the MNIST data
training=list(read(dataset='training',path=".\\mnist"))
test=list(read(dataset='testing',path=".\\mnist"))
lbls=[]
pxls=[]
for i in range(60000):
       l,p=training[i]
       lbls.append(l)
       pxls.append(p)
labels= np.array(lbls)
pixels=np.array(pxls)       
y=labels.reshape(-1,1)
X=pixels.reshape(pixels.shape[0],-1)
X1=X.T
Y1=y.T

# Create  a list of random numbers of 1024
permutation = list(np.random.permutation(2**10))
# Subset 16384 from the data
X2 = X1[:, permutation]
Y2 = Y1[:, permutation].reshape((1,2**10))
# Set layer dimensions
layersDimensions=[784, 15,9,10] 
# Perform SGD with learning rate decay
parameters = L_Layer_DeepModel_SGD(X2, Y2, layersDimensions, hiddenActivationFunc='relu', 
                                   outputActivationFunc="softmax",
                                   learningRate = 0.01 , lrDecay=True, decayRate=0.9999,
                                   optimizer="gd",
                                   mini_batch_size =512, num_epochs = 1000, print_cost = True,figure="fig2.png")

2.1b. Stochastic Gradient Descent with Learning rate decay – R

source("mnist.R")
source("DLfunctions7.R")
# Read and load MNIST
load_mnist()
x <- t(train$x)
X <- x[,1:60000]
y <-train$y
y1 <- y[1:60000]
y2 <- as.matrix(y1)
Y=t(y2)

# Subset 1024 random samples from MNIST 
permutation = c(sample(2^10))
# Randomly shuffle the training data
X1 = X[, permutation]
y1 = Y[1, permutation]
y2 <- as.matrix(y1)
Y1=t(y2)
# Set layer dimensions
layersDimensions=c(784, 15,9, 10) 
# Perform SGD with Learning rate decay
retvalsSGD= L_Layer_DeepModel_SGD(X1, Y1, layersDimensions,
                                  hiddenActivationFunc='tanh',
                                  outputActivationFunc="softmax",
                                  learningRate = 0.05,
                                  lrDecay=TRUE,
                                  decayRate=0.9999,
                                  optimizer="gd",
                                  mini_batch_size = 512, 
                                  num_epochs = 5000, 
                                  print_cost = True)
#Plot the cost vs iterations
iterations <- seq(0,5000,1000)
costs=retvalsSGD$costs
df=data.frame(iterations,costs)
ggplot(df,aes(x=iterations,y=costs)) + geom_point() + geom_line(color="blue") +
 ggtitle("Costs vs number of epochs") + xlab("No of epochs") + ylab("Cost")

2.1c. Stochastic Gradient Descent with Learning rate decay – Octave

source("DL7functions.m")
#Load and read MNIST
load('./mnist/mnist.txt.gz'); 
#Create a random permutatation from 1024
permutation = randperm(1024);
disp(length(permutation));

# Use this 1024 as the batch
X=trainX(permutation,:);
Y=trainY(permutation,:);

# Set layer dimensions
layersDimensions=[784, 15, 9, 10];
# Perform SGD with regular Learning rate decay
[weights biases costs]=L_Layer_DeepModel_SGD(X', Y', layersDimensions,
 hiddenActivationFunc='relu', 
 outputActivationFunc="softmax",
 learningRate = 0.01,
 lrDecay=true, 
 decayRate=0.999,
 lambd=0,
 keep_prob=1,
 optimizer="gd",
 beta=0.9,
 beta1=0.9,
 beta2=0.999,
 epsilon=10^-8,
 mini_batch_size = 512, 
 num_epochs = 5000);
plotCostVsEpochs(5000,costs)

3.1. Stochastic Gradient Descent with Momentum

Stochastic Gradient Descent with Momentum uses the exponentially weighted average method discusses above and more generally moves faster into the ravine than across it. The equations are
v_{dW}^l = \beta v_{dW}^l + (1-\beta)dW^{l}
v_{db}^l = \beta v_{db}^l + (1-\beta)db^{l}
W^{l} = W^{l} - \alpha v_{dW}^l
b^{l} = b^{l} - \alpha v_{db}^l where
v_{dW} and v_{db} are the momentum terms which are exponentially weighted with the corresponding gradients ‘dW’ and ‘db’ at the corresponding layer ‘l’ The code snippet for Stochastic Gradient Descent with momentum in R is shown below

# Perform Gradient Descent with momentum
# Input : Weights and biases
#       : beta
#       : gradients
#       : learning rate
#       : outputActivationFunc - Activation function at hidden layer sigmoid/softmax
#output : Updated weights after 1 iteration
gradientDescentWithMomentum  <- function(parameters, gradients,v, beta, learningRate,outputActivationFunc="sigmoid"){

    L = length(parameters)/2 # number of layers in the neural network    
    # Update rule for each parameter. Use a for loop.
    for(l in 1:(L-1)){
        # Compute velocities
        # v['dWk'] = beta *v['dWk'] + (1-beta)*dWk
        v[[paste("dW",l, sep="")]] = beta*v[[paste("dW",l, sep="")]] + 
                   (1-beta) * gradients[[paste('dW',l,sep="")]]
        v[[paste("db",l, sep="")]] = beta*v[[paste("db",l, sep="")]] + 
            (1-beta) * gradients[[paste('db',l,sep="")]]
        
        parameters[[paste("W",l,sep="")]] = parameters[[paste("W",l,sep="")]] -
            learningRate* v[[paste("dW",l, sep="")]] 
        parameters[[paste("b",l,sep="")]] = parameters[[paste("b",l,sep="")]] -
            learningRate* v[[paste("db",l, sep="")]] 
    }    
    # Compute for the Lth layer
    if(outputActivationFunc=="sigmoid"){
        v[[paste("dW",L, sep="")]] = beta*v[[paste("dW",L, sep="")]] + 
            (1-beta) * gradients[[paste('dW',L,sep="")]]
        v[[paste("db",L, sep="")]] = beta*v[[paste("db",L, sep="")]] + 
            (1-beta) * gradients[[paste('db',L,sep="")]]
        
        parameters[[paste("W",L,sep="")]] = parameters[[paste("W",L,sep="")]] -
            learningRate* v[[paste("dW",l, sep="")]]  
        parameters[[paste("b",L,sep="")]] = parameters[[paste("b",L,sep="")]] -
            learningRate* v[[paste("db",l, sep="")]]
        
    }else if (outputActivationFunc=="softmax"){
        v[[paste("dW",L, sep="")]] = beta*v[[paste("dW",L, sep="")]] + 
            (1-beta) * t(gradients[[paste('dW',L,sep="")]])
        v[[paste("db",L, sep="")]] = beta*v[[paste("db",L, sep="")]] + 
            (1-beta) * t(gradients[[paste('db',L,sep="")]])       
        parameters[[paste("W",L,sep="")]] = parameters[[paste("W",L,sep="")]] -
            learningRate* t(gradients[[paste("dW",L,sep="")]])
        parameters[[paste("b",L,sep="")]] = parameters[[paste("b",L,sep="")]] -
            learningRate* t(gradients[[paste("db",L,sep="")]])
    }
    return(parameters)
}

3.1a. Stochastic Gradient Descent with Momentum- Python

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import sklearn.linear_model
import pandas as pd
import sklearn
import sklearn.datasets
# Read and load data
exec(open("DLfunctions7.py").read())
exec(open("load_mnist.py").read())
training=list(read(dataset='training',path=".\\mnist"))
test=list(read(dataset='testing',path=".\\mnist"))
lbls=[]
pxls=[]
for i in range(60000):
       l,p=training[i]
       lbls.append(l)
       pxls.append(p)
labels= np.array(lbls)
pixels=np.array(pxls)       
y=labels.reshape(-1,1)
X=pixels.reshape(pixels.shape[0],-1)
X1=X.T
Y1=y.T

# Create  a list of random numbers of 1024
permutation = list(np.random.permutation(2**10))
# Subset 16384 from the data
X2 = X1[:, permutation]
Y2 = Y1[:, permutation].reshape((1,2**10))
layersDimensions=[784, 15,9,10] 
# Perform SGD with momentum
parameters = L_Layer_DeepModel_SGD(X2, Y2, layersDimensions, hiddenActivationFunc='relu', 
                                   outputActivationFunc="softmax",learningRate = 0.01 ,
                                   optimizer="momentum", beta=0.9,
                                   mini_batch_size =512, num_epochs = 1000, print_cost = True,figure="fig3.png")

3.1b. Stochastic Gradient Descent with Momentum- R

source("mnist.R")
source("DLfunctions7.R")
load_mnist()
x <- t(train$x)
X <- x[,1:60000]
y <-train$y
y1 <- y[1:60000]
y2 <- as.matrix(y1)
Y=t(y2)

# Subset 1024 random samples from MNIST 
permutation = c(sample(2^10))
# Randomly shuffle the training data
X1 = X[, permutation]
y1 = Y[1, permutation]
y2 <- as.matrix(y1)
Y1=t(y2)
layersDimensions=c(784, 15,9, 10) 
# Perform SGD with momentum
retvalsSGD= L_Layer_DeepModel_SGD(X1, Y1, layersDimensions,
                                  hiddenActivationFunc='tanh',
                                  outputActivationFunc="softmax",
                                  learningRate = 0.05,
                                  optimizer="momentum",
                                  beta=0.9,
                                  mini_batch_size = 512, 
                                  num_epochs = 5000, 
                                  print_cost = True)

#Plot the cost vs iterations
iterations <- seq(0,5000,1000)
costs=retvalsSGD$costs
df=data.frame(iterations,costs)
ggplot(df,aes(x=iterations,y=costs)) + geom_point() + geom_line(color="blue") +
 ggtitle("Costs vs number of epochs") + xlab("No of epochs") + ylab("Cost")

3.1c. Stochastic Gradient Descent with Momentum- Octave

source("DL7functions.m")
#Load and read MNIST
load('./mnist/mnist.txt.gz'); 
#Create a random permutatation from 60K
permutation = randperm(1024);
disp(length(permutation));

# Use this 1024 as the batch
X=trainX(permutation,:);
Y=trainY(permutation,:);

# Set layer dimensions
layersDimensions=[784, 15, 9, 10];
# Perform SGD with Momentum
[weights biases costs]=L_Layer_DeepModel_SGD(X', Y', layersDimensions,
 hiddenActivationFunc='relu', 
 outputActivationFunc="softmax",
 learningRate = 0.01,
 lrDecay=false, 
 decayRate=1,
 lambd=0,
 keep_prob=1,
 optimizer="momentum",
 beta=0.9,
 beta1=0.9,
 beta2=0.999,
 epsilon=10^-8,
 mini_batch_size = 512, 
 num_epochs = 5000);

plotCostVsEpochs(5000,costs)

4.1. Stochastic Gradient Descent with RMSProp

Stochastic Gradient Descent with RMSProp tries to move faster towards the minima while dampening the oscillations across the ravine.
The equations are

s_{dW}^l = \beta_{1} s_{dW}^l + (1-\beta_{1})(dW^{l})^{2}
s_{db}^l = \beta_{1} s_{db}^l + (1-\beta_{1})(db^{l})^2
W^{l} = W^{l} - \frac {\alpha s_{dW}^l}{\sqrt (s_{dW}^l + \epsilon) }
b^{l} = b^{l} - \frac {\alpha s_{db}^l}{\sqrt (s_{db}^l + \epsilon) }
where s_{dW} and s_{db} are the RMSProp terms which are exponentially weighted with the corresponding gradients ‘dW’ and ‘db’ at the corresponding layer ‘l’

The code snippet in Octave is shown below

# Update parameters with RMSProp
# Input : parameters
#       : gradients
#       : s
#       : beta
#       : learningRate
#       : 
#output : Updated parameters RMSProp
function [weights biases] = gradientDescentWithRMSProp(weights, biases,gradsDW,gradsDB, sdW, sdB, beta1, epsilon, learningRate,outputActivationFunc="sigmoid")
    L = size(weights)(2); # number of layers in the neural network
    # Update rule for each parameter. 
    for l=1:(L-1)
        sdW{l} =  beta1*sdW{l} + (1 -beta1) * gradsDW{l} .* gradsDW{l};
        sdB{l} =  beta1*sdB{l} + (1 -beta1) * gradsDB{l} .* gradsDB{l};
        weights{l} = weights{l} - learningRate* gradsDW{l} ./ sqrt(sdW{l} + epsilon); 
        biases{l} = biases{l} -  learningRate* gradsDB{l} ./ sqrt(sdB{l} + epsilon);
    endfor
  
    if (strcmp(outputActivationFunc,"sigmoid"))
        sdW{L} =  beta1*sdW{L} + (1 -beta1) * gradsDW{L} .* gradsDW{L};
        sdB{L} =  beta1*sdB{L} + (1 -beta1) * gradsDB{L} .* gradsDB{L};
        weights{L} = weights{L} -learningRate* gradsDW{L} ./ sqrt(sdW{L} +epsilon); 
        biases{L} = biases{L} -learningRate* gradsDB{L} ./ sqrt(sdB{L} + epsilon);
     elseif (strcmp(outputActivationFunc,"softmax"))
        sdW{L} =  beta1*sdW{L} + (1 -beta1) * gradsDW{L}' .* gradsDW{L}';
        sdB{L} =  beta1*sdB{L} + (1 -beta1) * gradsDB{L}' .* gradsDB{L}';
        weights{L} = weights{L} -learningRate* gradsDW{L}' ./ sqrt(sdW{L} +epsilon); 
        biases{L} = biases{L} -learningRate* gradsDB{L}' ./ sqrt(sdB{L} + epsilon);
     endif   
end

4.1a. Stochastic Gradient Descent with RMSProp – Python

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import sklearn.linear_model
import pandas as pd
import sklearn
import sklearn.datasets
exec(open("DLfunctions7.py").read())
exec(open("load_mnist.py").read())

# Read and load MNIST
training=list(read(dataset='training',path=".\\mnist"))
test=list(read(dataset='testing',path=".\\mnist"))
lbls=[]
pxls=[]
for i in range(60000):
       l,p=training[i]
       lbls.append(l)
       pxls.append(p)
labels= np.array(lbls)
pixels=np.array(pxls)       
y=labels.reshape(-1,1)
X=pixels.reshape(pixels.shape[0],-1)
X1=X.T
Y1=y.T

print("X1=",X1.shape)
print("y1=",Y1.shape)

# Create  a list of random numbers of 1024
permutation = list(np.random.permutation(2**10))
# Subset 16384 from the data
X2 = X1[:, permutation]
Y2 = Y1[:, permutation].reshape((1,2**10))
  
layersDimensions=[784, 15,9,10] 
# Use SGD with RMSProp
parameters = L_Layer_DeepModel_SGD(X2, Y2, layersDimensions, hiddenActivationFunc='relu', 
                                   outputActivationFunc="softmax",learningRate = 0.01 ,
                                   optimizer="rmsprop", beta1=0.7, epsilon=1e-8,
                                   mini_batch_size =512, num_epochs = 1000, print_cost = True,figure="fig4.png")

4.1b. Stochastic Gradient Descent with RMSProp – R

source("mnist.R")
source("DLfunctions7.R")
load_mnist()
x <- t(train$x)
X <- x[,1:60000]
y <-train$y
y1 <- y[1:60000]
y2 <- as.matrix(y1)
Y=t(y2)

# Subset 1024 random samples from MNIST 
permutation = c(sample(2^10))
# Randomly shuffle the training data
X1 = X[, permutation]
y1 = Y[1, permutation]
y2 <- as.matrix(y1)
Y1=t(y2)
layersDimensions=c(784, 15,9, 10) 
#Perform SGD with RMSProp
retvalsSGD= L_Layer_DeepModel_SGD(X1, Y1, layersDimensions,
                                  hiddenActivationFunc='tanh',
                                  outputActivationFunc="softmax",
                                  learningRate = 0.001,
                                  optimizer="rmsprop",
                                  beta1=0.9,
                                  epsilon=10^-8,
                                  mini_batch_size = 512, 
                                  num_epochs = 5000 , 
                                  print_cost = True)
#Plot the cost vs iterations
iterations <- seq(0,5000,1000)
costs=retvalsSGD$costs
df=data.frame(iterations,costs)
ggplot(df,aes(x=iterations,y=costs)) + geom_point() + geom_line(color="blue") +
 ggtitle("Costs vs number of epochs") + xlab("No of epochs") + ylab("Cost")

4.1c. Stochastic Gradient Descent with RMSProp – Octave

source("DL7functions.m")
load('./mnist/mnist.txt.gz'); 
#Create a random permutatation from 1024
permutation = randperm(1024);

# Use this 1024 as the batch
X=trainX(permutation,:);
Y=trainY(permutation,:);

# Set layer dimensions
layersDimensions=[784, 15, 9, 10];
#Perform SGD with RMSProp
[weights biases costs]=L_Layer_DeepModel_SGD(X', Y', layersDimensions,
 hiddenActivationFunc='relu', 
 outputActivationFunc="softmax",
 learningRate = 0.005,
 lrDecay=false, 
 decayRate=1,
 lambd=0,
 keep_prob=1,
 optimizer="rmsprop",
 beta=0.9,
 beta1=0.9,
 beta2=0.999,
 epsilon=1,
 mini_batch_size = 512, 
 num_epochs = 5000);
plotCostVsEpochs(5000,costs)

5.1. Stochastic Gradient Descent with Adam

Adaptive Moment Estimate is a combination of the momentum (1st moment) and RMSProp(2nd moment). The equations for Adam are below
v_{dW}^l = \beta_{1} v_{dW}^l + (1-\beta_{1})dW^{l}
v_{db}^l = \beta_{1} v_{db}^l + (1-\beta_{1})db^{l}
The bias corrections for the 1st moment
vCorrected_{dW}^l= \frac {v_{dW}^l}{1 - \beta_{1}^{t}}
vCorrected_{db}^l= \frac {v_{db}^l}{1 - \beta_{1}^{t}}

Similarly the moving average for the 2nd moment- RMSProp
s_{dW}^l = \beta_{2} s_{dW}^l + (1-\beta_{2})(dW^{l})^2
s_{db}^l = \beta_{2} s_{db}^l + (1-\beta_{2})(db^{l})^2
The bias corrections for the 2nd moment
sCorrected_{dW}^l= \frac {s_{dW}^l}{1 - \beta_{2}^{t}}
sCorrected_{db}^l= \frac {s_{db}^l}{1 - \beta_{2}^{t}}

The Adam Gradient Descent is given by
W^{l} = W^{l} - \frac {\alpha vCorrected_{dW}^l}{\sqrt (s_{dW}^l + \epsilon) }
b^{l} = b^{l} - \frac {\alpha vCorrected_{db}^l}{\sqrt (s_{db}^l + \epsilon) }
The code snippet of Adam in R is included below

# Perform Gradient Descent with Adam
# Input : Weights and biases
#       : beta1
#       : epsilon
#       : gradients
#       : learning rate
#       : outputActivationFunc - Activation function at hidden layer sigmoid/softmax
#output : Updated weights after 1 iteration
gradientDescentWithAdam  <- function(parameters, gradients,v, s, t, 
                        beta1=0.9, beta2=0.999, epsilon=10^-8, learningRate=0.1,outputActivationFunc="sigmoid"){
    
    L = length(parameters)/2 # number of layers in the neural network
    v_corrected <- list()
    s_corrected <- list()
    # Update rule for each parameter. Use a for loop.
    for(l in 1:(L-1)){
        # v['dWk'] = beta *v['dWk'] + (1-beta)*dWk
        v[[paste("dW",l, sep="")]] = beta1*v[[paste("dW",l, sep="")]] + 
            (1-beta1) * gradients[[paste('dW',l,sep="")]]
        v[[paste("db",l, sep="")]] = beta1*v[[paste("db",l, sep="")]] + 
            (1-beta1) * gradients[[paste('db',l,sep="")]]
        
        
        # Compute bias-corrected first moment estimate. 
        v_corrected[[paste("dW",l, sep="")]] = v[[paste("dW",l, sep="")]]/(1-beta1^t)
        v_corrected[[paste("db",l, sep="")]] = v[[paste("db",l, sep="")]]/(1-beta1^t)
               
        # Element wise multiply of gradients
        s[[paste("dW",l, sep="")]] = beta2*s[[paste("dW",l, sep="")]] + 
            (1-beta2) * gradients[[paste('dW',l,sep="")]] * gradients[[paste('dW',l,sep="")]]
        s[[paste("db",l, sep="")]] = beta2*s[[paste("db",l, sep="")]] + 
            (1-beta2) * gradients[[paste('db',l,sep="")]] * gradients[[paste('db',l,sep="")]]
        
        # Compute bias-corrected second moment estimate. 
        s_corrected[[paste("dW",l, sep="")]] = s[[paste("dW",l, sep="")]]/(1-beta2^t)
        s_corrected[[paste("db",l, sep="")]] = s[[paste("db",l, sep="")]]/(1-beta2^t)
        
        # Update parameters. 
        d1=sqrt(s_corrected[[paste("dW",l, sep="")]]+epsilon)
        d2=sqrt(s_corrected[[paste("db",l, sep="")]]+epsilon)        
                
        parameters[[paste("W",l,sep="")]] = parameters[[paste("W",l,sep="")]] -
            learningRate * v_corrected[[paste("dW",l, sep="")]]/d1
        parameters[[paste("b",l,sep="")]] = parameters[[paste("b",l,sep="")]] -
            learningRate*v_corrected[[paste("db",l, sep="")]]/d2
    }    
    # Compute for the Lth layer
    if(outputActivationFunc=="sigmoid"){
        v[[paste("dW",L, sep="")]] = beta1*v[[paste("dW",L, sep="")]] + 
            (1-beta1) * gradients[[paste('dW',L,sep="")]]
        v[[paste("db",L, sep="")]] = beta1*v[[paste("db",L, sep="")]] + 
            (1-beta1) * gradients[[paste('db',L,sep="")]]
                
        # Compute bias-corrected first moment estimate. 
        v_corrected[[paste("dW",L, sep="")]] = v[[paste("dW",L, sep="")]]/(1-beta1^t)
        v_corrected[[paste("db",L, sep="")]] = v[[paste("db",L, sep="")]]/(1-beta1^t)
                
        # Element wise multiply of gradients
        s[[paste("dW",L, sep="")]] = beta2*s[[paste("dW",L, sep="")]] + 
            (1-beta2) * gradients[[paste('dW',L,sep="")]] * gradients[[paste('dW',L,sep="")]]
        s[[paste("db",L, sep="")]] = beta2*s[[paste("db",L, sep="")]] + 
            (1-beta2) * gradients[[paste('db',L,sep="")]] * gradients[[paste('db',L,sep="")]]
        
        # Compute bias-corrected second moment estimate. 
        s_corrected[[paste("dW",L, sep="")]] = s[[paste("dW",L, sep="")]]/(1-beta2^t)
        s_corrected[[paste("db",L, sep="")]] = s[[paste("db",L, sep="")]]/(1-beta2^t)
        
        # Update parameters. 
        d1=sqrt(s_corrected[[paste("dW",L, sep="")]]+epsilon)
        d2=sqrt(s_corrected[[paste("db",L, sep="")]]+epsilon)  
        
        parameters[[paste("W",L,sep="")]] = parameters[[paste("W",L,sep="")]] -
            learningRate * v_corrected[[paste("dW",L, sep="")]]/d1
        parameters[[paste("b",L,sep="")]] = parameters[[paste("b",L,sep="")]] -
            learningRate*v_corrected[[paste("db",L, sep="")]]/d2
        
    }else if (outputActivationFunc=="softmax"){
        v[[paste("dW",L, sep="")]] = beta1*v[[paste("dW",L, sep="")]] + 
            (1-beta1) * t(gradients[[paste('dW',L,sep="")]])
        v[[paste("db",L, sep="")]] = beta1*v[[paste("db",L, sep="")]] + 
            (1-beta1) * t(gradients[[paste('db',L,sep="")]])
                
        # Compute bias-corrected first moment estimate. 
        v_corrected[[paste("dW",L, sep="")]] = v[[paste("dW",L, sep="")]]/(1-beta1^t)
        v_corrected[[paste("db",L, sep="")]] = v[[paste("db",L, sep="")]]/(1-beta1^t)        
        
        # Element wise multiply of gradients
        s[[paste("dW",L, sep="")]] = beta2*s[[paste("dW",L, sep="")]] + 
            (1-beta2) * t(gradients[[paste('dW',L,sep="")]]) * t(gradients[[paste('dW',L,sep="")]])
        s[[paste("db",L, sep="")]] = beta2*s[[paste("db",L, sep="")]] + 
            (1-beta2) * t(gradients[[paste('db',L,sep="")]]) * t(gradients[[paste('db',L,sep="")]])
        
        # Compute bias-corrected second moment estimate. 
        s_corrected[[paste("dW",L, sep="")]] = s[[paste("dW",L, sep="")]]/(1-beta2^t)
        s_corrected[[paste("db",L, sep="")]] = s[[paste("db",L, sep="")]]/(1-beta2^t)
        
        # Update parameters. 
        d1=sqrt(s_corrected[[paste("dW",L, sep="")]]+epsilon)
        d2=sqrt(s_corrected[[paste("db",L, sep="")]]+epsilon) 
        
        parameters[[paste("W",L,sep="")]] = parameters[[paste("W",L,sep="")]] -
            learningRate * v_corrected[[paste("dW",L, sep="")]]/d1
        parameters[[paste("b",L,sep="")]] = parameters[[paste("b",L,sep="")]] -
            learningRate*v_corrected[[paste("db",L, sep="")]]/d2
    }
    return(parameters)
}

5.1a. Stochastic Gradient Descent with Adam – Python

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import sklearn.linear_model
import pandas as pd
import sklearn
import sklearn.datasets
exec(open("DLfunctions7.py").read())
exec(open("load_mnist.py").read())
training=list(read(dataset='training',path=".\\mnist"))
test=list(read(dataset='testing',path=".\\mnist"))
lbls=[]
pxls=[]
print(len(training))
#for i in range(len(training)):
for i in range(60000):
       l,p=training[i]
       lbls.append(l)
       pxls.append(p)
labels= np.array(lbls)
pixels=np.array(pxls)       
y=labels.reshape(-1,1)
X=pixels.reshape(pixels.shape[0],-1)
X1=X.T
Y1=y.T


# Create  a list of random numbers of 1024
permutation = list(np.random.permutation(2**10))
# Subset 16384 from the data
X2 = X1[:, permutation]
Y2 = Y1[:, permutation].reshape((1,2**10))
layersDimensions=[784, 15,9,10] 
#Perform SGD with Adam optimization
parameters = L_Layer_DeepModel_SGD(X2, Y2, layersDimensions, hiddenActivationFunc='relu', 
                                   outputActivationFunc="softmax",learningRate = 0.01 ,
                                   optimizer="adam", beta1=0.9, beta2=0.9, epsilon = 1e-8,
                                   mini_batch_size =512, num_epochs = 1000, print_cost = True, figure="fig5.png")

5.1b. Stochastic Gradient Descent with Adam – R

source("mnist.R")
source("DLfunctions7.R")
load_mnist()
x <- t(train$x)
X <- x[,1:60000]
y <-train$y
y1 <- y[1:60000]
y2 <- as.matrix(y1)
Y=t(y2)

# Subset 1024 random samples from MNIST 
permutation = c(sample(2^10))
# Randomly shuffle the training data
X1 = X[, permutation]
y1 = Y[1, permutation]
y2 <- as.matrix(y1)
Y1=t(y2)
layersDimensions=c(784, 15,9, 10) 
#Perform SGD with Adam
retvalsSGD= L_Layer_DeepModel_SGD(X1, Y1, layersDimensions,
                                  hiddenActivationFunc='tanh',
                                  outputActivationFunc="softmax",
                                  learningRate = 0.005,
                                  optimizer="adam",
                                  beta1=0.7,
                                  beta2=0.9,
                                  epsilon=10^-8,
                                  mini_batch_size = 512, 
                                  num_epochs = 5000 , 
                                  print_cost = True)
#Plot the cost vs iterations
iterations <- seq(0,5000,1000)
costs=retvalsSGD$costs
df=data.frame(iterations,costs)
ggplot(df,aes(x=iterations,y=costs)) + geom_point() + geom_line(color="blue") +
 ggtitle("Costs vs number of epochs") + xlab("No of epochs") + ylab("Cost")

5.1c. Stochastic Gradient Descent with Adam – Octave

source("DL7functions.m")
load('./mnist/mnist.txt.gz'); 
#Create a random permutatation from 1024
permutation = randperm(1024);
disp(length(permutation));

# Use this 1024 as the batch
X=trainX(permutation,:);
Y=trainY(permutation,:);
# Set layer dimensions
layersDimensions=[784, 15, 9, 10];

# Note the high value for epsilon. 
#Otherwise GD with Adam does not seem to converge   
# Perform SGD with Adam         
[weights biases costs]=L_Layer_DeepModel_SGD(X', Y', layersDimensions,
                       hiddenActivationFunc='relu', 
                       outputActivationFunc="softmax",
                       learningRate = 0.1,
                       lrDecay=false, 
                       decayRate=1,
                       lambd=0,
                       keep_prob=1,
                       optimizer="adam",
                       beta=0.9,
                       beta1=0.9,
                       beta2=0.9,
                       epsilon=100,
                       mini_batch_size = 512, 
                       num_epochs = 5000);
plotCostVsEpochs(5000,costs)

Conclusion: In this post I discuss and implement several Stochastic Gradient Descent optimization methods. The implementation of these methods enhance my already existing generic L-Layer Deep Learning Network implementation in vectorized Python, R and Octave, which I had discussed in the previous post in this series on Deep Learning from first principles in Python, R and Octave. Check it out, if you haven’t already. As already mentioned the code for this post can be cloned/forked from Github at DeepLearning-Part7

Watch this space! I’ll be back!

Also see
1.My book ‘Practical Machine Learning with R and Python’ on Amazon
2. Deep Learning from first principles in Python, R and Octave – Part 3
3. Experiments with deblurring using OpenCV
3. Design Principles of Scalable, Distributed Systems
4. Natural language processing: What would Shakespeare say?
5. yorkr crashes the IPL party! – Part 3!
6. cricketr flexes new muscles: The final analysis

To see all post click Index of posts

Deep Learning from first principles in Python, R and Octave – Part 5

Introduction

a. A robot may not injure a human being or, through inaction, allow a human being to come to harm.
b. A robot must obey orders given it by human beings except where such orders would conflict with the First Law.
c. A robot must protect its own existence as long as such protection does not conflict with the First or Second Law.

      Isaac Asimov's Three Laws of Robotics 

Any sufficiently advanced technology is indistinguishable from magic.

      Arthur C Clarke.   

In this 5th part on Deep Learning from first Principles in Python, R and Octave, I solve the MNIST data set of handwritten digits (shown below), from the basics. To do this, I construct a L-Layer, vectorized Deep Learning implementation in Python, R and Octave from scratch and classify the  MNIST data set. The MNIST training data set  contains 60000 handwritten digits from 0-9, and a test set of 10000 digits. MNIST, is a popular dataset for running Deep Learning tests, and has been rightfully termed as the ‘drosophila’ of Deep Learning, by none other than the venerable Prof Geoffrey Hinton.

The ‘Deep Learning from first principles in Python, R and Octave’ series, so far included  Part 1 , where I had implemented logistic regression as a simple Neural Network. Part 2 implemented the most elementary neural network with 1 hidden layer, but  with any number of activation units in that layer, and a sigmoid activation at the output layer.

This post, ‘Deep Learning from first principles in Python, R and Octave – Part 5’ largely builds upon Part3. in which I implemented a multi-layer Deep Learning network, with an arbitrary number of hidden layers and activation units per hidden layer and with the output layer was based on the sigmoid unit, for binary classification. In Part 4, I derive the Jacobian of a Softmax, the Cross entropy loss and the gradient equations for a multi-class Softmax classifier. I also  implement a simple Neural Network using Softmax classifications in Python, R and Octave.

In this post I combine Part 3 and Part 4 to to build a L-layer Deep Learning network, with arbitrary number of hidden layers and hidden units, which can do both binary (sigmoid) and multi-class (softmax) classification.

Note: A detailed discussion of the derivation for multi-class clasification can be seen in my video presentation Neural Networks 5

The generic, vectorized L-Layer Deep Learning Network implementations in Python, R and Octave can be cloned/downloaded from GitHub at DeepLearning-Part5. This implementation allows for arbitrary number of hidden layers and hidden layer units. The activation function at the hidden layers can be one of sigmoid, relu and tanh (will be adding leaky relu soon). The output activation can be used for binary classification with the ‘sigmoid’, or multi-class classification with ‘softmax’. Feel free to download and play around with the code!

I thought the exercise of combining the two parts(Part 3, & Part 4)  would be a breeze. But it was anything but. Incorporating a Softmax classifier into the generic L-Layer Deep Learning model was a challenge. Moreover I found that I could not use the gradient descent on 60,000 training samples as my laptop ran out of memory. So I had to implement Stochastic Gradient Descent (SGD) for Python, R and Octave. In addition, I had to also implement the numerically stable version of Softmax, as the softmax and its derivative would result in NaNs.

Numerically stable Softmax

The Softmax function S_{j} =\frac{e^{Z_{j}}}{\sum_{i}^{k}e^{Z_{i}}} can be numerically unstable because of the division of large exponentials.  To handle this problem we have to implement stable Softmax function as below

S_{j} =\frac{e^{Z_{j}}}{\sum_{i}^{k}e^{Z_{i}}}
S_{j} =\frac{e^{Z_{j}}}{\sum_{i}^{k}e^{Z_{i}}} = \frac{Ce^{Z_{j}}}{C\sum_{i}^{k}e^{Z_{i}}} = \frac{e^{Z_{j}+log(C)}}{\sum_{i}^{k}e^{Z_{i}+log(C)}}
Therefore S_{j}  = \frac{e^{Z_{j}+ D}}{\sum_{i}^{k}e^{Z_{i}+ D}}
Here ‘D’ can be anything. A common choice is
D=-max(Z_{1},Z_{2},... Z_{k})

Here is the stable Softmax implementation in Python

# A numerically stable Softmax implementation
def stableSoftmax(Z):  
    #Compute the softmax of vector x in a numerically stable way.
    shiftZ = Z.T - np.max(Z.T,axis=1).reshape(-1,1)
    exp_scores = np.exp(shiftZ)
    # normalize them for each example
    A = exp_scores / np.sum(exp_scores, axis=1, keepdims=True) 
    cache=Z
    return A,cache

While trying to create a L-Layer generic Deep Learning network in the 3 languages, I found it useful to ensure that the model executed correctly on smaller datasets.  You can run into numerous problems while setting up the matrices, which becomes extremely difficult to debug. So in this post, I run the model on 2 smaller data for sets used in my earlier posts(Part 3 & Part4) , in each of the languages, before running the generic model on MNIST.

Here is a fair warning. if you think you can dive directly into Deep Learning, with just some basic knowledge of Machine Learning, you are bound to run into serious issues. Moreover, your knowledge will be incomplete. It is essential that you have a good grasp of Machine and Statistical Learning, the different algorithms, the measures and metrics for selecting the models etc.It would help to be conversant with all the ML models, ML concepts, validation techniques, classification measures  etc. Check out the internet/books for background.

Checkout my book ‘Deep Learning from first principles: Second Edition – In vectorized Python, R and Octave’. My book starts with the implementation of a simple 2-layer Neural Network and works its way to a generic L-Layer Deep Learning Network, with all the bells and whistles. The derivations have been discussed in detail. The code has been extensively commented and included in its entirety in the Appendix sections. My book is available on Amazon as paperback ($18.99) and in kindle version($9.99/Rs449).

You may also like my companion book “Practical Machine Learning with R and Python:Second Edition- Machine Learning in stereo” available in Amazon in paperback($10.99) and Kindle($7.99/Rs449) versions. This book is ideal for a quick reference of the various ML functions and associated measurements in both R and Python which are essential to delve deep into Deep Learning.

1. Random dataset with Sigmoid activation – Python

This random data with 9 clusters, was used in my post Deep Learning from first principles in Python, R and Octave – Part 3 , and was used to test the complete L-layer Deep Learning network with Sigmoid activation.

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.datasets import make_classification, make_blobs
exec(open("DLfunctions51.py").read()) # Cannot import in Rmd.
# Create a random data set with 9 centeres
X1, Y1 = make_blobs(n_samples = 400, n_features = 2, centers = 9,cluster_std = 1.3, random_state =4)
                       
#Create 2 classes
Y1=Y1.reshape(400,1)
Y1 = Y1 % 2
X2=X1.T
Y2=Y1.T
# Set the dimensions of L -layer DL network
layersDimensions = [2, 9, 9,1] #  4-layer model
# Execute DL network with hidden activation=relu and sigmoid output function
parameters = L_Layer_DeepModel(X2, Y2, layersDimensions, hiddenActivationFunc='relu', outputActivationFunc="sigmoid",learningRate = 0.3,num_iterations = 2500, print_cost = True)

2. Spiral dataset with Softmax activation – Python

The Spiral data was used in my post Deep Learning from first principles in Python, R and Octave – Part 4 and was used to test the complete L-layer Deep Learning network with multi-class Softmax activation at the output layer

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.datasets import make_classification, make_blobs
exec(open("DLfunctions51.py").read())

# Create an input data set - Taken from CS231n Convolutional Neural networks
# http://cs231n.github.io/neural-networks-case-study/
N = 100 # number of points per class
D = 2 # dimensionality
K = 3 # number of classes
X = np.zeros((N*K,D)) # data matrix (each row = single example)
y = np.zeros(N*K, dtype='uint8') # class labels
for j in range(K):
  ix = range(N*j,N*(j+1))
  r = np.linspace(0.0,1,N) # radius
  t = np.linspace(j*4,(j+1)*4,N) + np.random.randn(N)*0.2 # theta
  X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
  y[ix] = j

X1=X.T
Y1=y.reshape(-1,1).T
numHidden=100 # No of hidden units in hidden layer
numFeats= 2 # dimensionality
numOutput = 3 # number of classes
# Set the dimensions of the layers
layersDimensions=[numFeats,numHidden,numOutput]
parameters = L_Layer_DeepModel(X1, Y1, layersDimensions, hiddenActivationFunc='relu', outputActivationFunc="softmax",learningRate = 0.6,num_iterations = 9000, print_cost = True)
## Cost after iteration 0: 1.098759
## Cost after iteration 1000: 0.112666
## Cost after iteration 2000: 0.044351
## Cost after iteration 3000: 0.027491
## Cost after iteration 4000: 0.021898
## Cost after iteration 5000: 0.019181
## Cost after iteration 6000: 0.017832
## Cost after iteration 7000: 0.017452
## Cost after iteration 8000: 0.017161

3. MNIST dataset with Softmax activation – Python

In the code below, I execute Stochastic Gradient Descent on the MNIST training data of 60000. I used a mini-batch size of 1000. Python takes about 40 minutes to crunch the data. In addition I also compute the Confusion Matrix and other metrics like Accuracy, Precision and Recall for the MNIST data set. I get an accuracy of 0.93 on the MNIST test set. This accuracy can be improved by choosing more hidden layers or more hidden units and possibly also tweaking the learning rate and the number of epochs.

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import pandas as pd
import math
from sklearn.datasets import make_classification, make_blobs
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
exec(open("DLfunctions51.py").read())
exec(open("load_mnist.py").read())
# Read the MNIST training and test sets
training=list(read(dataset='training',path=".\\mnist"))
test=list(read(dataset='testing',path=".\\mnist"))
# Create labels and pixel arrays
lbls=[]
pxls=[]
print(len(training))
#for i in range(len(training)):
for i in range(60000):
       l,p=training[i]
       lbls.append(l)
       pxls.append(p)
labels= np.array(lbls)
pixels=np.array(pxls)       
y=labels.reshape(-1,1)
X=pixels.reshape(pixels.shape[0],-1)
X1=X.T
Y1=y.T
# Set the dimensions of the layers. The MNIST data is 28x28 pixels= 784
# Hence input layer is 784. For the 10 digits the Softmax classifier
# has to handle 10 outputs
layersDimensions=[784, 15,9,10] # Works very well,lr=0.01,mini_batch =1000, total=20000
np.random.seed(1)
costs = []  
# Run Stochastic Gradient Descent with Learning Rate=0.01, mini batch size=1000
# number of epochs=3000
parameters = L_Layer_DeepModel_SGD(X1, Y1, layersDimensions, hiddenActivationFunc='relu', outputActivationFunc="softmax",learningRate = 0.01 ,mini_batch_size =1000, num_epochs = 3000, print_cost = True)

# Compute the Confusion Matrix on Training set
# Compute the training accuracy, precision and recall
proba=predict_proba(parameters, X1,outputActivationFunc="softmax")
#A2, cache = forwardPropagationDeep(X1, parameters)
#proba=np.argmax(A2, axis=0).reshape(-1,1)
a=confusion_matrix(Y1.T,proba)
print(a)
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
print('Accuracy: {:.2f}'.format(accuracy_score(Y1.T, proba)))
print('Precision: {:.2f}'.format(precision_score(Y1.T, proba,average="micro")))
print('Recall: {:.2f}'.format(recall_score(Y1.T, proba,average="micro")))

# Read the test data
lbls=[]
pxls=[]
print(len(test))
for i in range(10000):
       l,p=test[i]
       lbls.append(l)
       pxls.append(p)
testLabels= np.array(lbls)
testPixels=np.array(pxls)       
ytest=testLabels.reshape(-1,1)
Xtest=testPixels.reshape(testPixels.shape[0],-1)
X1test=Xtest.T
Y1test=ytest.T

# Compute the Confusion Matrix on Test set
# Compute the test accuracy, precision and recall
probaTest=predict_proba(parameters, X1test,outputActivationFunc="softmax")
#A2, cache = forwardPropagationDeep(X1, parameters)
#proba=np.argmax(A2, axis=0).reshape(-1,1)
a=confusion_matrix(Y1test.T,probaTest)
print(a)
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
print('Accuracy: {:.2f}'.format(accuracy_score(Y1test.T, probaTest)))
print('Precision: {:.2f}'.format(precision_score(Y1test.T, probaTest,average="micro")))
print('Recall: {:.2f}'.format(recall_score(Y1test.T, probaTest,average="micro")))
##1.  Confusion Matrix of Training set
       0     1    2    3    4    5    6    7    8    9
## [[5854    0   19    2   10    7    0    1   24    6]
##  [   1 6659   30   10    5    3    0   14   20    0]
##  [  20   24 5805   18    6   11    2   32   37    3]
##  [   5    4  175 5783    1   27    1   58   60   17]
##  [   1   21    9    0 5780    0    5    2   12   12]
##  [  29    9   21  224    6 4824   18   17  245   28]
##  [   5    4   22    1   32   12 5799    0   43    0]
##  [   3   13  148  154   18    3    0 5883    4   39]
##  [  11   34   30   21   13   16    4    7 5703   12]
##  [  10    4    1   32  135   14    1   92  134 5526]]

##2. Accuracy, Precision, Recall of  Training set
## Accuracy: 0.96
## Precision: 0.96
## Recall: 0.96

##3. Confusion Matrix of Test set
       0     1    2    3    4    5    6    7    8    9
## [[ 954    1    8    0    3    3    2    4    4    1]
##  [   0 1107    6    5    0    0    1    2   14    0]
##  [  11    7  957   10    5    0    5   20   16    1]
##  [   2    3   37  925    3   13    0    8   18    1]
##  [   2    6    1    1  944    0    7    3    4   14]
##  [  12    5    4   45    2  740   24    8   42   10]
##  [   8    4    4    2   16    9  903    0   12    0]
##  [   4   10   27   18    5    1    0  940    1   22]
##  [  11   13    6   13    9   10    7    2  900    3]
##  [   8    5    1    7   50    7    0   20   29  882]]
##4. Accuracy, Precision, Recall of  Training set
## Accuracy: 0.93
## Precision: 0.93
## Recall: 0.93

4. Random dataset with Sigmoid activation – R code

This is the random data set used in the Python code above which was saved as a CSV. The code is used to test a L -Layer DL network with Sigmoid Activation in R.

source("DLfunctions5.R")
# Read the random data set
z <- as.matrix(read.csv("data.csv",header=FALSE)) 
x <- z[,1:2]
y <- z[,3]
X <- t(x)
Y <- t(y)
# Set the dimensions of the  layer
layersDimensions = c(2, 9, 9,1)

# Run Gradient Descent on the data set with relu hidden unit activation 
# sigmoid activation unit in the output layer
retvals = L_Layer_DeepModel(X, Y, layersDimensions,
                            hiddenActivationFunc='relu',
                            outputActivationFunc="sigmoid",
                            learningRate = 0.3,
                            numIterations = 5000, 
                            print_cost = True)
#Plot the cost vs iterations
iterations <- seq(0,5000,1000)
costs=retvals$costs
df=data.frame(iterations,costs)
ggplot(df,aes(x=iterations,y=costs)) + geom_point() + geom_line(color="blue") +
 ggtitle("Costs vs iterations") + xlab("Iterations") + ylab("Loss")

5. Spiral dataset with Softmax activation – R

The spiral data set used in the Python code above, is reused to test  multi-class classification with Softmax.

source("DLfunctions5.R")
Z <- as.matrix(read.csv("spiral.csv",header=FALSE)) 

# Setup the data
X <- Z[,1:2]
y <- Z[,3]
X <- t(X)
Y <- t(y)

# Initialize number of features, number of hidden units in hidden layer and
# number of classes
numFeats<-2 # No features
numHidden<-100 # No of hidden units
numOutput<-3 # No of classes

# Set the layer dimensions
layersDimensions = c(numFeats,numHidden,numOutput)

# Perform gradient descent with relu activation unit for hidden layer
# and softmax activation in the output
retvals = L_Layer_DeepModel(X, Y, layersDimensions,
                            hiddenActivationFunc='relu',
                            outputActivationFunc="softmax",
                            learningRate = 0.5,
                            numIterations = 9000, 
                            print_cost = True)
#Plot cost vs iterations
iterations <- seq(0,9000,1000)
costs=retvals$costs
df=data.frame(iterations,costs)
ggplot(df,aes(x=iterations,y=costs)) + geom_point() + geom_line(color="blue") +
 ggtitle("Costs vs iterations") + xlab("Iterations") + ylab("Costs")

6. MNIST dataset with Softmax activation – R

The code below executes a L – Layer Deep Learning network with Softmax output activation, to classify the 10 handwritten digits from MNIST with Stochastic Gradient Descent. The entire 60000 data set was used to train the data. R takes almost 8 hours to process this data set with a mini-batch size of 1000.  The use of ‘for’ loops is limited to iterating through epochs, mini batches and for creating the mini batches itself. All other code is vectorized. Yet, it seems to crawl. Most likely the use of ‘lists’ in R, to return multiple values is performance intensive. Some day, I will try to profile the code, and see where the issue is. However the code works!

Having said that, the Confusion Matrix in R dumps a lot of interesting statistics! There is a bunch of statistical measures for each class. For e.g. the Balanced Accuracy for the digits ‘6’ and ‘9’ is around 50%. Looks like, the classifier is confused by the fact that 6 is inverted 9 and vice-versa. The accuracy on the Test data set is just around 75%. I could have played around with the number of layers, number of hidden units, learning rates, epochs etc to get a much higher accuracy. But since each test took about 8+ hours, I may work on this, some other day!

source("DLfunctions5.R")
source("mnist.R")
#Load the mnist data
load_mnist()
show_digit(train$x[2,])
#Set the layer dimensions
layersDimensions=c(784, 15,9, 10) # Works at 1500
x <- t(train$x)
X <- x[,1:60000]
y <-train$y
y1 <- y[1:60000]
y2 <- as.matrix(y1)
Y=t(y2)

# Subset 32768 random samples from MNIST 
permutation = c(sample(2^15))
# Randomly shuffle the training data
X1 = X[, permutation]
y1 = Y[1, permutation]
y2 <- as.matrix(y1)
Y1=t(y2)

# Execute Stochastic Gradient Descent on the entire training set
# with Softmax activation
retvalsSGD= L_Layer_DeepModel_SGD(X1, Y1, layersDimensions,
                            hiddenActivationFunc='relu',
                            outputActivationFunc="softmax",
                            learningRate = 0.05,
                            mini_batch_size = 512, 
                            num_epochs = 1, 
                            print_cost = True)

# Compute the Confusion Matrix
library(caret)
library(e1071)
predictions=predictProba(retvalsSGD[['parameters']], X,hiddenActivationFunc='relu',
                   outputActivationFunc="softmax")
confusionMatrix(predictions,Y)
# Confusion Matrix on the Training set
> confusionMatrix(predictions,Y)
Confusion Matrix and Statistics

          Reference
Prediction    0    1    2    3    4    5    6    7    8    9
         0 5738    1   21    5   16   17    7   15    9   43
         1    5 6632   21   24   25    3    2   33   13  392
         2   12   32 5747  106   25   28    3   27   44 4779
         3    0   27   12 5715    1   21    1   20    1   13
         4   10    5   21   18 5677    9   17   30   15  166
         5  142   21   96  136   93 5306 5884   43   60  413
         6    0    0    0    0    0    0    0    0    0    0
         7    6    9   13   13    3    4    0 6085    0   55
         8    8   12    7   43    1   32    2    7 5703   69
         9    2    3   20   71    1    1    2    5    6   19

Overall Statistics
                                          
               Accuracy : 0.777           
                 95% CI : (0.7737, 0.7804)
    No Information Rate : 0.1124          
    P-Value [Acc > NIR] : < 2.2e-16       
                                          
                  Kappa : 0.7524          
 Mcnemar's Test P-Value : NA              

Statistics by Class:

                     Class: 0 Class: 1 Class: 2 Class: 3 Class: 4 Class: 5 Class: 6
Sensitivity           0.96877   0.9837  0.96459  0.93215  0.97176  0.97879  0.00000
Specificity           0.99752   0.9903  0.90644  0.99822  0.99463  0.87380  1.00000
Pos Pred Value        0.97718   0.9276  0.53198  0.98348  0.95124  0.43513      NaN
Neg Pred Value        0.99658   0.9979  0.99571  0.99232  0.99695  0.99759  0.90137
Prevalence            0.09872   0.1124  0.09930  0.10218  0.09737  0.09035  0.09863
Detection Rate        0.09563   0.1105  0.09578  0.09525  0.09462  0.08843  0.00000
Detection Prevalence  0.09787   0.1192  0.18005  0.09685  0.09947  0.20323  0.00000
Balanced Accuracy     0.98314   0.9870  0.93551  0.96518  0.98319  0.92629  0.50000
                     Class: 7 Class: 8  Class: 9
Sensitivity            0.9713  0.97471 0.0031938
Specificity            0.9981  0.99666 0.9979464
Pos Pred Value         0.9834  0.96924 0.1461538
Neg Pred Value         0.9967  0.99727 0.9009521
Prevalence             0.1044  0.09752 0.0991500
Detection Rate         0.1014  0.09505 0.0003167
Detection Prevalence   0.1031  0.09807 0.0021667
Balanced Accuracy      0.9847  0.98568 0.5005701
# Confusion Matrix on the Training set xtest <- t(test$x) Xtest <- xtest[,1:10000] ytest <-test$y ytest1 <- ytest[1:10000] ytest2 <- as.matrix(ytest1) Ytest=t(ytest2)

Confusion Matrix and Statistics

          Reference
Prediction    0    1    2    3    4    5    6    7    8    9
         0  950    2    2    3    0    6    9    4    7    6
         1    3 1110    4    2    9    0    3   12    5   74
         2    2    6  965   21    9   14    5   16   12  789
         3    1    2    9  908    2   16    0   21    2    6
         4    0    1    9    5  938    1    8    6    8   39
         5   19    5   25   35   20  835  929    8   54   67
         6    0    0    0    0    0    0    0    0    0    0
         7    4    4    7   10    2    4    0  952    5    6
         8    1    5    8   14    2   16    2    3  876   21
         9    0    0    3   12    0    0    2    6    5    1

Overall Statistics
                                          
               Accuracy : 0.7535          
                 95% CI : (0.7449, 0.7619)
    No Information Rate : 0.1135          
    P-Value [Acc > NIR] : < 2.2e-16       
                                          
                  Kappa : 0.7262          
 Mcnemar's Test P-Value : NA              

Statistics by Class:

                     Class: 0 Class: 1 Class: 2 Class: 3 Class: 4 Class: 5 Class: 6
Sensitivity            0.9694   0.9780   0.9351   0.8990   0.9552   0.9361   0.0000
Specificity            0.9957   0.9874   0.9025   0.9934   0.9915   0.8724   1.0000
Pos Pred Value         0.9606   0.9083   0.5247   0.9390   0.9241   0.4181      NaN
Neg Pred Value         0.9967   0.9972   0.9918   0.9887   0.9951   0.9929   0.9042
Prevalence             0.0980   0.1135   0.1032   0.1010   0.0982   0.0892   0.0958
Detection Rate         0.0950   0.1110   0.0965   0.0908   0.0938   0.0835   0.0000
Detection Prevalence   0.0989   0.1222   0.1839   0.0967   0.1015   0.1997   0.0000
Balanced Accuracy      0.9825   0.9827   0.9188   0.9462   0.9733   0.9043   0.5000
                     Class: 7 Class: 8  Class: 9
Sensitivity            0.9261   0.8994 0.0009911
Specificity            0.9953   0.9920 0.9968858
Pos Pred Value         0.9577   0.9241 0.0344828
Neg Pred Value         0.9916   0.9892 0.8989068
Prevalence             0.1028   0.0974 0.1009000
Detection Rate         0.0952   0.0876 0.0001000
Detection Prevalence   0.0994   0.0948 0.0029000
Balanced Accuracy      0.9607   0.9457 0.4989384

7. Random dataset with Sigmoid activation – Octave

The Octave code below uses the random data set used by Python. The code below implements a L-Layer Deep Learning with Sigmoid Activation.


source("DL5functions.m")
# Read the data
data=csvread("data.csv");

X=data(:,1:2);
Y=data(:,3);
#Set the layer dimensions
layersDimensions = [2 9 7  1]; #tanh=-0.5(ok), #relu=0.1 best!
# Perform gradient descent 
[weights biases costs]=L_Layer_DeepModel(X', Y', layersDimensions,
                               hiddenActivationFunc='relu', 
                               outputActivationFunc="sigmoid",
                               learningRate = 0.1,
                               numIterations = 10000);
# Plot cost vs iterations
plotCostVsIterations(10000,costs);       

8. Spiral dataset with Softmax activation – Octave

The  code below uses the spiral data set used by Python above. The code below implements a L-Layer Deep Learning with Softmax Activation.

# Read the data
data=csvread("spiral.csv");

# Setup the data
X=data(:,1:2);
Y=data(:,3);

# Set the number of features, number of hidden units in hidden layer and number of classess
numFeats=2; #No features
numHidden=100; # No of hidden units
numOutput=3; # No of  classes
# Set the layer dimensions
layersDimensions = [numFeats numHidden  numOutput];  
#Perform gradient descent with softmax activation unit
[weights biases costs]=L_Layer_DeepModel(X', Y', layersDimensions,
                               hiddenActivationFunc='relu', 
                               outputActivationFunc="softmax",
                               learningRate = 0.1,
                               numIterations = 10000); 

9. MNIST dataset with Softmax activation – Octave

The code below implements a L-Layer Deep Learning Network in Octave with Softmax output activation unit, for classifying the 10 handwritten digits in the MNIST dataset. Unfortunately, Octave can only index to around 10000 training at a time,  and I was getting an error ‘error: out of memory or dimension too large for Octave’s index type error: called from…’, when I tried to create a batch size of 20000.  So I had to come with a work around to create a batch size of 10000 (randomly) and then use a mini-batch of 1000 samples and execute Stochastic Gradient Descent. The performance was good. Octave takes about 15 minutes, on a batch size of 10000 and a mini batch of 1000.

I thought if the performance was not good, I could iterate through these random batches and refining the gradients as follows

# Pseudo code that could be used since Octave only allows 10K batches
# at a time
# Randomly create weights
[weights biases] = initialize_weights()
for i=1:k
    # Create a random permutation and create a random batch
    permutation = randperm(10000);
    X=trainX(permutation,:);
    Y=trainY(permutation,:);
    # Compute weights from SGD and update weights in the next batch update
    [weights biases costs]=L_Layer_DeepModel_SGD(X,Y,mini_bactch=1000,weights, biases,...);
    ...
endfor
# Load the MNIST data
load('./mnist/mnist.txt.gz'); 
#Create a random permutatation from 60K
permutation = randperm(10000);
disp(length(permutation));

# Use this 10K as the batch
X=trainX(permutation,:);
Y=trainY(permutation,:);

# Set layer dimensions
layersDimensions=[784, 15, 9, 10];

# Run Stochastic Gradient descent with batch size=10K and mini_batch_size=1000
[weights biases costs]=L_Layer_DeepModel_SGD(X', Y', layersDimensions,
                       hiddenActivationFunc='relu', 
                       outputActivationFunc="softmax",
                       learningRate = 0.01,
                       mini_batch_size = 2000, num_epochs = 5000);   

9. Final thoughts

Here are some of my final thoughts after working on Python, R and Octave in this series and in other projects
1. Python, with its highly optimized numpy library, is ideally suited for creating Deep Learning Models, which have a lot of matrix manipulations. Python is a real workhorse when it comes to Deep Learning computations.
2. R is somewhat clunky in comparison to its cousin Python in handling matrices or in returning multiple values. But R’s statistical libraries, dplyr, and ggplot are really superior to the Python peers. Also, I find R handles  dataframes,  much better than Python.
3. Octave is a no-nonsense,minimalist language which is very efficient in handling matrices. It is ideally suited for implementing Machine Learning and Deep Learning from scratch. But Octave has its problems and cannot handle large matrix sizes, and also lacks the statistical libaries of R and Python. They possibly exist in its sibling, Matlab

Feel free to clone/download the code from  GitHub at DeepLearning-Part5.

Conclusion

Building a Deep Learning Network from scratch is quite challenging, time-consuming but nevertheless an exciting task.  While the statements in the different languages for manipulating matrices, summing up columns, finding columns which have ones don’t take more than a single statement, extreme care has to be taken to ensure that the statements work well for any dimension.  The lessons learnt from creating L -Layer Deep Learning network  are many and well worth it. Give it a try!

Hasta la vista! I’ll be back, so stick around!
Watch this space!

References
1. Deep Learning Specialization
2. Neural Networks for Machine Learning
3. CS231 Convolutional Neural Networks for Visual Recognition
4. Eli Bendersky’s Website – The Softmax function and its derivative

Also see
1. My book ‘Practical Machine Learning with R and Python’ on Amazon
2. Presentation on Wireless Technologies – Part 1
3. Exploring Quantum Gate operations with QCSimulator
4. What’s up Watson? Using IBM Watson’s QAAPI with Bluemix, NodeExpress – Part 1
5. TWS-4: Gossip protocol: Epidemics and rumors to the rescue
6. cricketr plays the ODIs!
7. “Is it an animal? Is it an insect?” in Android
8. The 3rd paperback & kindle editions of my books on Cricket, now on Amazon
9. Deblurring with OpenCV: Weiner filter reloaded
10. GooglyPlus: yorkr analyzes IPL players, teams, matches with plots and tables

To see all posts click Index of Posts

 

Deep Learning from first principles in Python, R and Octave – Part 4

In this 4th post of my series on Deep Learning from first principles in Python, R and Octave – Part 4, I explore the details of creating a multi-class classifier using the Softmax activation unit in a neural network. The earlier posts in this series were

1. Deep Learning from first principles in Python, R and Octave – Part 1. In this post I implemented logistic regression as a simple Neural Network in vectorized Python, R and Octave
2. Deep Learning from first principles in Python, R and Octave – Part 2. This 2nd part implemented the most elementary neural network with 1 hidden layer and any number of activation units in the hidden layer with sigmoid activation at the output layer
3. Deep Learning from first principles in Python, R and Octave – Part 3. The 3rd implemented a multi-layer Deep Learning network with an arbitrary number if hidden layers and activation units per hidden layer. The output layer was for binary classification which was based on the sigmoid unit. This multi-layer deep network was implemented in vectorized Python, R and Octave.

Checkout my book ‘Deep Learning from first principles: Second Edition – In vectorized Python, R and Octave’. My book starts with the implementation of a simple 2-layer Neural Network and works its way to a generic L-Layer Deep Learning Network, with all the bells and whistles. The derivations have been discussed in detail. The code has been extensively commented and included in its entirety in the Appendix sections. My book is available on Amazon as paperback ($18.99) and in kindle version($9.99/Rs449).

This 4th part takes a swing at multi-class classification and uses the Softmax as the activation unit in the output layer. Inclusion of the Softmax activation unit in the activation layer requires us to compute the derivative of Softmax, or rather the “Jacobian” of the Softmax function, besides also computing the log loss for this Softmax activation during back propagation. Since the derivation of the Jacobian of a Softmax and the computation of the Cross Entropy/log loss is very involved, I have implemented a basic neural network with just 1 hidden layer with the Softmax activation at the output layer. I also perform multi-class classification based on the ‘spiral’ data set from CS231n Convolutional Neural Networks Stanford course, to test the performance and correctness of the implementations in Python, R and Octave. You can clone download the code for the Python, R and Octave implementations from Github at Deep Learning – Part 4

Note: A detailed discussion of the derivation below can also be seen in my video presentation Neural Networks 5

The Softmax function takes an N dimensional vector as input and generates a N dimensional vector as output.
The Softmax function is given by
S_{j}= \frac{e_{j}}{\sum_{i}^{N}e_{k}}
There is a probabilistic interpretation of the Softmax, since the sum of the Softmax values of a set of vectors will always add up to 1, given that each Softmax value is divided by the total of all values.

As mentioned earlier, the Softmax takes a vector input and returns a vector of outputs.  For e.g. the Softmax of a vector a=[1, 3, 6]  is another vector S=[0.0063,0.0471,0.9464]. Notice that vector output is proportional to the input vector.  Also, taking the derivative of a vector by another vector, is known as the Jacobian. By the way, The Matrix Calculus You Need For Deep Learning by Terence Parr and Jeremy Howard, is very good paper that distills all the main mathematical concepts for Deep Learning in one place.

Let us take a simple 2 layered neural network with just 2 activation units in the hidden layer is shown below

Z_{1}^{1} =W_{11}^{1}x_{1} + W_{21}^{1}x_{2} + b_{1}^{1}
Z_{2}^{1} =W_{12}^{1}x_{1} + W_{22}^{1}x_{2} + b_{2}^{1}
and
A_{1}^{1} = g'(Z_{1}^{1})
A_{2}^{1} = g'(Z_{2}^{1})
where g'() is the activation unit in the hidden layer which can be a relu, sigmoid or a
tanh function

Note: The superscript denotes the layer. The above denotes the equation for layer 1
of the neural network. For layer 2 with the Softmax activation, the equations are
Z_{1}^{2} =W_{11}^{2}x_{1} + W_{21}^{2}x_{2} + b_{1}^{2}
Z_{2}^{2} =W_{12}^{2}x_{1} + W_{22}^{2}x_{2} + b_{2}^{2}
and
A_{1}^{2} = S(Z_{1}^{2})
A_{2}^{2} = S(Z_{2}^{2})
where S() is the Softmax activation function
S=\begin{pmatrix} S(Z_{1}^{2})\\ S(Z_{2}^{2}) \end{pmatrix}
S=\begin{pmatrix} \frac{e^{Z1}}{e^{Z1}+e^{Z2}}\\ \frac{e^{Z2}}{e^{Z1}+e^{Z2}} \end{pmatrix}

The Jacobian of the softmax ‘S’ is given by
\begin{pmatrix} \frac {\partial S_{1}}{\partial Z_{1}} & \frac {\partial S_{1}}{\partial Z_{2}}\\ \frac {\partial S_{2}}{\partial Z_{1}} & \frac {\partial S_{2}}{\partial Z_{2}} \end{pmatrix}
\begin{pmatrix} \frac{\partial}{\partial Z_{1}} \frac {e^{Z1}}{e^{Z1}+ e^{Z2}} & \frac{\partial}{\partial Z_{2}} \frac {e^{Z1}}{e^{Z1}+ e^{Z2}}\\ \frac{\partial}{\partial Z_{1}} \frac {e^{Z2}}{e^{Z1}+ e^{Z2}} & \frac{\partial}{\partial Z_{2}} \frac {e^{Z2}}{e^{Z1}+ e^{Z2}} \end{pmatrix}     – (A)

Now the ‘division-rule’  of derivatives is as follows. If u and v are functions of x, then
\frac{d}{dx} \frac {u}{v} =\frac {vdu -udv}{v^{2}}
Using this to compute each element of the above Jacobian matrix, we see that
when i=j we have
\frac {\partial}{\partial Z1}\frac{e^{Z1}}{e^{Z1}+e^{Z2}} = \frac {\sum e^{Z1} - e^{Z1^{2}}}{\sum ^{2}}
and when i \neq j
\frac {\partial}{\partial Z1}\frac{e^{Z2}}{e^{Z1}+e^{Z2}} = \frac {0 - e^{z1}e^{Z2}}{\sum ^{2}}
This is of the general form
\frac {\partial S_{j}}{\partial z_{i}} = S_{i}( 1-S_{j})  when i=j
and
\frac {\partial S_{j}}{\partial z_{i}} = -S_{i}S_{j}  when i \neq j
Note: Since the Softmax essentially gives the probability the following
notation is also used
\frac {\partial p_{j}}{\partial z_{i}} = p_{i}( 1-p_{j}) when i=j
and
\frac {\partial p_{j}}{\partial z_{i}} = -p_{i}p_{j} when i \neq j
If you throw the “Kronecker delta” into the equation, then the above equations can be expressed even more concisely as
\frac {\partial p_{j}}{\partial z_{i}} = p_{i} (\delta_{ij} - p_{j})
where \delta_{ij} = 1 when i=j and 0 when i \neq j

This reduces the Jacobian of the simple 2 output softmax vectors  equation (A) as
\begin{pmatrix} p_{1}(1-p_{1}) & -p_{1}p_{2} \\ -p_{2}p_{1} & p_{2}(1-p_{2}) \end{pmatrix}
The loss of Softmax is given by
L = -\sum y_{i} log(p_{i})
For the 2 valued Softmax output this is
\frac {dL}{dp1} = -\frac {y_{1}}{p_{1}}
\frac {dL}{dp2} = -\frac {y_{2}}{p_{2}}
Using the chain rule we can write
\frac {\partial L}{\partial w_{pq}} = \sum _{i}\frac {\partial L}{\partial p_{i}} \frac {\partial p_{i}}{\partial w_{pq}} (1)
and
\frac {\partial p_{i}}{\partial w_{pq}} = \sum _{k}\frac {\partial p_{i}}{\partial z_{k}} \frac {\partial z_{k}}{\partial w_{pq}} (2)
In expanded form this is
\frac {\partial L}{\partial w_{pq}} = \sum _{i}\frac {\partial L}{\partial p_{i}} \sum _{k}\frac {\partial p_{i}}{\partial z_{k}} \frac {\partial z_{k}}{\partial w_{pq}}
Also
\frac {\partial L}{\partial Z_{i}} =\sum _{i} \frac {\partial L}{\partial p} \frac {\partial p}{\partial Z_{i}}
Therefore
\frac {\partial L}{\partial Z_{1}} =\frac {\partial L}{\partial p_{1}} \frac {\partial p_{1}}{\partial Z_{1}} +\frac {\partial L}{\partial p_{2}} \frac {\partial p_{2}}{\partial Z_{1}}
\frac {\partial L}{\partial z_{1}}=-\frac {y1}{p1} p1(1-p1) - \frac {y2}{p2}*(-p_{2}p_{1})
Since
\frac {\partial p_{j}}{\partial z_{i}} = p_{i}( 1-p_{j}) when i=j
and
\frac {\partial p_{j}}{\partial z_{i}} = -p_{i}p_{j} when i \neq j
which simplifies to
\frac {\partial L}{\partial Z_{1}} = -y_{1} + y_{1}p_{1} + y_{2}p_{1} =
p_{1}\sum (y_{1} + y_2) - y_{1}
\frac {\partial L}{\partial Z_{1}}= p_{1} - y_{1}
Since
\sum_{i} y_{i} =1
Similarly
\frac {\partial L}{\partial Z_{2}} =\frac {\partial L}{\partial p_{1}} \frac {\partial p_{1}}{\partial Z_{2}} +\frac {\partial L}{\partial p_{2}} \frac {\partial p_{2}}{\partial Z_{2}}
\frac {\partial L}{\partial z_{2}}=-\frac {y1}{p1}*(p_{1}p_{2}) - \frac {y2}{p2}*p_{2}(1-p_{2})
y_{1}p_{2} + y_{2}p_{2} - y_{2}
\frac {\partial L}{\partial Z_{2}} =p_{2}\sum (y_{1} + y_2) - y_{2}\\ = p_{2} - y_{2}
In general this is of the form
\frac {\partial L}{\partial z_{i}} = p_{i} -y_{i}
For e.g if the probabilities computed were p=[0.1, 0.7, 0.2] then this implies that the class with probability 0.7 is the likely class. This would imply that the ‘One hot encoding’ for  yi  would be yi=[0,1,0] therefore the gradient pi-yi = [0.1,-0.3,0.2]

<strong>Note: Further, we could extend this derivation for a Softmax activation output that outputs 3 classes
S=\begin{pmatrix} \frac{e^{z1}}{e^{z1}+e^{z2}+e^{z3}}\\ \frac{e^{z2}}{e^{z1}+e^{z2}+e^{z3}} \\ \frac{e^{z3}}{e^{z1}+e^{z2}+e^{z3}} \end{pmatrix}

We could derive
\frac {\partial L}{\partial z1}= \frac {\partial L}{\partial p_{1}} \frac {\partial p_{1}}{\partial z_{1}} +\frac {\partial L}{\partial p_{2}} \frac {\partial p_{2}}{\partial z_{1}} +\frac {\partial L}{\partial p_{3}} \frac {\partial p_{3}}{\partial z_{1}} which similarly reduces to
\frac {\partial L}{\partial z_{1}}=-\frac {y1}{p1} p1(1-p1) - \frac {y2}{p2}*(-p_{2}p_{1}) - \frac {y3}{p3}*(-p_{3}p_{1})
-y_{1}+ y_{1}p_{1} + y_{2}p_{1} + y_{3}p1 = p_{1}\sum (y_{1} + y_2 + y_3) - y_{1} = p_{1} - y_{1}
Interestingly, despite the lengthy derivations the final result is simple and intuitive!

As seen in my post ‘Deep Learning from first principles with Python, R and Octave – Part 3 the key equations for forward and backward propagation are

Forward propagation equations layer 1
Z_{1} = W_{1}X +b_{1}     and  A_{1} = g(Z_{1})
Forward propagation equations layer 1
Z_{2} = W_{2}A_{1} +b_{2}  and  A_{2} = S(Z_{2})

Using the result (A) in the back propagation equations below we have
Backward propagation equations layer 2
\partial L/\partial W_{2} =\partial L/\partial Z_{2}*A_{1}=(p_{2}-y_{2})*A_{1}
\partial L/\partial b_{2} =\partial L/\partial Z_{2}=p_{2}-y_{2}
\partial L/\partial A_{1} = \partial L/\partial Z_{2} * W_{2}=(p_{2}-y_{2})*W_{2}
Backward propagation equations layer 1
\partial L/\partial W_{1} =\partial L/\partial Z_{1} *A_{0}=(p_{1}-y_{1})*A_{0}
\partial L/\partial b_{1} =\partial L/\partial Z_{1}=(p_{1}-y_{1})

2.0 Spiral data set

As I mentioned earlier, I will be using the ‘spiral’ data from CS231n Convolutional Neural Networks to ensure that my vectorized implementations in Python, R and Octave are correct. Here is the ‘spiral’ data set.

import numpy as np
import matplotlib.pyplot as plt
import os
os.chdir("C:/junk/dl-4/dl-4")
exec(open("././DLfunctions41.py").read())

# Create an input data set - Taken from CS231n Convolutional Neural networks
# http://cs231n.github.io/neural-networks-case-study/
N = 100 # number of points per class
D = 2 # dimensionality
K = 3 # number of classes
X = np.zeros((N*K,D)) # data matrix (each row = single example)
y = np.zeros(N*K, dtype='uint8') # class labels
for j in range(K):
  ix = range(N*j,N*(j+1))
  r = np.linspace(0.0,1,N) # radius
  t = np.linspace(j*4,(j+1)*4,N) + np.random.randn(N)*0.2 # theta
  X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
  y[ix] = j
# Plot the data
plt.scatter(X[:, 0], X[:, 1], c=y, s=40, cmap=plt.cm.Spectral)
plt.savefig("fig1.png", bbox_inches='tight')


The implementations of the vectorized Python, R and Octave code are shown diagrammatically below

2.1 Multi-class classification with Softmax – Python code

A simple 2 layer Neural network with a single hidden layer , with 100 Relu activation units in the hidden layer and the Softmax activation unit in the output layer is used for multi-class classification. This Deep Learning Network, plots the non-linear boundary of the 3 classes as shown below

import numpy as np
import matplotlib.pyplot as plt
import os
os.chdir("C:/junk/dl-4/dl-4")
exec(open("././DLfunctions41.py").read())

# Read the input data
N = 100 # number of points per class
D = 2 # dimensionality
K = 3 # number of classes
X = np.zeros((N*K,D)) # data matrix (each row = single example)
y = np.zeros(N*K, dtype='uint8') # class labels
for j in range(K):
  ix = range(N*j,N*(j+1))
  r = np.linspace(0.0,1,N) # radius
  t = np.linspace(j*4,(j+1)*4,N) + np.random.randn(N)*0.2 # theta
  X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
  y[ix] = j
  
# Set the number of features, hidden units in hidden layer and number of classess
numHidden=100 # No of hidden units in hidden layer
numFeats= 2 # dimensionality
numOutput = 3 # number of classes

# Initialize the model
parameters=initializeModel(numFeats,numHidden,numOutput)
W1= parameters['W1']
b1= parameters['b1']
W2= parameters['W2']
b2= parameters['b2']

# Set the learning rate
learningRate=0.6 

# Initialize losses
losses=[]
# Perform Gradient descent
for i in range(10000):
    # Forward propagation through hidden layer with Relu units
    A1,cache1= layerActivationForward(X.T,W1,b1,'relu')
    
    # Forward propagation through output layer with Softmax
    A2,cache2 = layerActivationForward(A1,W2,b2,'softmax')
    
    # No of training examples
    numTraining = X.shape[0]
    # Compute log probs. Take the log prob of correct class based on output y
    correct_logprobs = -np.log(A2[range(numTraining),y])
    # Conpute loss
    loss = np.sum(correct_logprobs)/numTraining
    
    # Print the loss
    if i % 1000 == 0:
        print("iteration %d: loss %f" % (i, loss))
        losses.append(loss)

    dA=0

    # Backward  propagation through output layer with Softmax
    dA1,dW2,db2 = layerActivationBackward(dA, cache2, y, activationFunc='softmax')
    # Backward  propagation through hidden layer with Relu unit
    dA0,dW1,db1 = layerActivationBackward(dA1.T, cache1, y, activationFunc='relu')
    
    #Update paramaters with the learning rate
    W1 += -learningRate * dW1
    b1 += -learningRate * db1
    W2 += -learningRate * dW2.T
    b2 += -learningRate * db2.T

#Plot losses vs iterations  
i=np.arange(0,10000,1000)
plt.plot(i,losses)

plt.xlabel('Iterations')
plt.ylabel('Loss')
plt.title('Losses vs Iterations')
plt.savefig("fig2.png", bbox="tight")

#Compute the multi-class Confusion Matrix
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score

# We need to determine the predicted values from the learnt data
# Forward propagation through hidden layer with Relu units
A1,cache1= layerActivationForward(X.T,W1,b1,'relu')
    
# Forward propagation through output layer with Softmax
A2,cache2 = layerActivationForward(A1,W2,b2,'softmax')
#Compute predicted values from weights and biases
yhat=np.argmax(A2, axis=1)

a=confusion_matrix(y.T,yhat.T)
print("Multi-class Confusion Matrix")
print(a)
## iteration 0: loss 1.098507
## iteration 1000: loss 0.214611
## iteration 2000: loss 0.043622
## iteration 3000: loss 0.032525
## iteration 4000: loss 0.025108
## iteration 5000: loss 0.021365
## iteration 6000: loss 0.019046
## iteration 7000: loss 0.017475
## iteration 8000: loss 0.016359
## iteration 9000: loss 0.015703
## Multi-class Confusion Matrix
## [[ 99   1   0]
##  [  0 100   0]
##  [  0   1  99]]

Check out my compact and minimal book  “Practical Machine Learning with R and Python:Second edition- Machine Learning in stereo”  available in Amazon in paperback($10.99) and kindle($7.99) versions. My book includes implementations of key ML algorithms and associated measures and metrics. The book is ideal for anybody who is familiar with the concepts and would like a quick reference to the different ML algorithms that can be applied to problems and how to select the best model. Pick your copy today!!

2.2 Multi-class classification with Softmax – R code

The spiral data set created with Python was saved, and is used as the input with R code. The R Neural Network seems to perform much,much slower than both Python and Octave. Not sure why! Incidentally the computation of loss and the softmax derivative are identical for both R and Octave. yet R is much slower. To compute the softmax derivative I create matrices for the One Hot Encoded yi and then stack them before subtracting pi-yi. I am sure there is a more elegant and more efficient way to do this, much like Python. Any suggestions?

library(ggplot2)
library(dplyr)
library(RColorBrewer)
source("DLfunctions41.R")
# Read the spiral dataset
Z <- as.matrix(read.csv("spiral.csv",header=FALSE)) 
Z1=data.frame(Z)
#Plot the dataset
ggplot(Z1,aes(x=V1,y=V2,col=V3)) +geom_point() + 
  scale_colour_gradientn(colours = brewer.pal(10, "Spectral"))

# Setup the data
X <- Z[,1:2]
y <- Z[,3]
X1 <- t(X)
Y1 <- t(y)

# Initialize number of features, number of hidden units in hidden layer and
# number of classes
numFeats<-2 # No features
numHidden<-100 # No of hidden units
numOutput<-3 # No of classes

# Initialize model
parameters <-initializeModel(numFeats, numHidden,numOutput)

W1 <-parameters[['W1']]
b1 <-parameters[['b1']]
W2 <-parameters[['W2']]
b2 <-parameters[['b2']]

# Set the learning rate
learningRate <- 0.5
# Initialize losses
losses <- NULL
# Perform gradient descent
for(i in 0:9000){

# Forward propagation through hidden layer with Relu units
retvals <- layerActivationForward(X1,W1,b1,'relu')
A1 <- retvals[['A']]
cache1 <- retvals[['cache']]
forward_cache1 <- cache1[['forward_cache1']]
activation_cache <- cache1[['activation_cache']]

# Forward propagation through output layer with Softmax units
retvals = layerActivationForward(A1,W2,b2,'softmax')
A2 <- retvals[['A']]
cache2 <- retvals[['cache']]
forward_cache2 <- cache2[['forward_cache1']]
activation_cache2 <- cache2[['activation_cache']]

# No oftraining examples
numTraining <- dim(X)[1]
dA <-0

# Select the elements where the y values are 0, 1 or 2 and make a vector
a=c(A2[y==0,1],A2[y==1,2],A2[y==2,3])
# Take log
correct_probs = -log(a)
# Compute loss
loss= sum(correct_probs)/numTraining

if(i %% 1000 == 0){
sprintf("iteration %d: loss %f",i, loss)
print(loss)
}
# Backward propagation through output layer with Softmax units
retvals = layerActivationBackward(dA, cache2, y, activationFunc='softmax')
dA1 = retvals[['dA_prev']]
dW2= retvals[['dW']]
db2= retvals[['db']]
# Backward propagation through hidden layer with Relu units
retvals = layerActivationBackward(t(dA1), cache1, y, activationFunc='relu')
dA0 = retvals[['dA_prev']]
dW1= retvals[['dW']]
db1= retvals[['db']]

# Update parameters
W1 <- W1 - learningRate * dW1
b1 <- b1 - learningRate * db1
W2 <- W2 - learningRate * t(dW2)
b2 <- b2 - learningRate * t(db2)
}
## [1] 1.212487
## [1] 0.5740867
## [1] 0.4048824
## [1] 0.3561941
## [1] 0.2509576
## [1] 0.7351063
## [1] 0.2066114
## [1] 0.2065875
## [1] 0.2151943
## [1] 0.1318807

 

#Create iterations
iterations <- seq(0,10)
#df=data.frame(iterations,losses)
ggplot(df,aes(x=iterations,y=losses)) + geom_point() + geom_line(color="blue") +
    ggtitle("Losses vs iterations") + xlab("Iterations") + ylab("Loss")

plotDecisionBoundary(Z,W1,b1,W2,b2)



Multi-class Confusion Matrix

library(caret)
library(e1071)

# Forward propagation through hidden layer with Relu units
retvals <- layerActivationForward(X1,W1,b1,'relu')
A1 <- retvals[['A']]

# Forward propagation through output layer with Softmax units
retvals = layerActivationForward(A1,W2,b2,'softmax')
A2 <- retvals[['A']]
yhat <- apply(A2, 1,which.max) -1
Confusion Matrix and Statistics
          Reference
Prediction  0  1  2
         0 97  0  1
         1  2 96  4
         2  1  4 95

Overall Statistics                                        
               Accuracy : 0.96            
                 95% CI : (0.9312, 0.9792)
    No Information Rate : 0.3333          
    P-Value [Acc > NIR] : <2e-16          
                                          
                  Kappa : 0.94            
 Mcnemar's Test P-Value : 0.5724          
Statistics by Class:

                     Class: 0 Class: 1 Class: 2
Sensitivity            0.9700   0.9600   0.9500
Specificity            0.9950   0.9700   0.9750
Pos Pred Value         0.9898   0.9412   0.9500
Neg Pred Value         0.9851   0.9798   0.9750
Prevalence             0.3333   0.3333   0.3333
Detection Rate         0.3233   0.3200   0.3167
Detection Prevalence   0.3267   0.3400   0.3333
Balanced Accuracy      0.9825   0.9650   0.9625

My book “Practical Machine Learning with R and Python” includes the implementation for many Machine Learning algorithms and associated metrics. Pick up your copy today!

2.3 Multi-class classification with Softmax – Octave code

A 2 layer Neural network with the Softmax activation unit in the output layer is constructed in Octave. The same spiral data set is used for Octave also

source("DL41functions.m")
# Read the spiral data
data=csvread("spiral.csv");
# Setup the data
X=data(:,1:2);
Y=data(:,3);
# Set the number of features, number of hidden units in hidden layer and number of classes
numFeats=2; #No features
numHidden=100; # No of hidden units
numOutput=3; # No of classes
# Initialize model
[W1 b1 W2 b2] = initializeModel(numFeats,numHidden,numOutput);
# Initialize losses
losses=[]
#Initialize learningRate
learningRate=0.5;
for k =1:10000
# Forward propagation through hidden layer with Relu units
[A1,cache1 activation_cache1]= layerActivationForward(X',W1,b1,activationFunc ='relu');
# Forward propagation through output layer with Softmax units
[A2,cache2 activation_cache2] =
layerActivationForward(A1,W2,b2,activationFunc='softmax');
# No of training examples
numTraining = size(X)(1);
# Select rows where Y=0,1,and 2 and concatenate to a long vector
a=[A2(Y==0,1) ;A2(Y==1,2) ;A2(Y==2,3)];
#Select the correct column for log prob
correct_probs = -log(a);
#Compute log loss
loss= sum(correct_probs)/numTraining;
if(mod(k,1000) == 0)
disp(loss);
losses=[losses loss];
endif
dA=0;
# Backward propagation through output layer with Softmax units
[dA1 dW2 db2] = layerActivationBackward(dA, cache2, activation_cache2,Y,activationFunc='softmax');
# Backward propagation through hidden layer with Relu units
[dA0,dW1,db1] = layerActivationBackward(dA1', cache1, activation_cache1, Y, activationFunc='relu');
#Update parameters
W1 += -learningRate * dW1;
b1 += -learningRate * db1;
W2 += -learningRate * dW2';
b2 += -learningRate * db2';
endfor
# Plot Losses vs Iterations
iterations=0:1000:9000
plotCostVsIterations(iterations,losses)
# Plot the decision boundary
plotDecisionBoundary( X,Y,W1,b1,W2,b2)

The code for the Python, R and Octave implementations can be downloaded from Github at Deep Learning – Part 4

Conclusion

In this post I have implemented a 2 layer Neural Network with the Softmax classifier. In Part 3, I implemented a multi-layer Deep Learning Network. I intend to include the Softmax activation unit into the generalized multi-layer Deep Network along with the other activation units of sigmoid,tanh and relu.

Stick around, I’ll be back!!
Watch this space!

References
1. Deep Learning Specialization
2. Neural Networks for Machine Learning
3. CS231 Convolutional Neural Networks for Visual Recognition
4. Eli Bendersky’s Website – The Softmax function and its derivative
5. Cross Validated – Backpropagation with Softmax / Cross Entropy
6. Stackoverflow – CS231n: How to calculate gradient for Softmax loss function?
7. Math Stack Exchange – Derivative of Softmax
8. The Matrix Calculus for Deep Learning

You may like
1.My book ‘Practical Machine Learning with R and Python’ on Amazon
2. My travels through the realms of Data Science, Machine Learning, Deep Learning and (AI)
3. Deblurring with OpenCV: Weiner filter reloaded
4. A method to crowd source pothole marking on (Indian) roads
5. Rock N’ Roll with Bluemix, Cloudant & NodeExpress
6. Sea shells on the seashore
7. Design Principles of Scalable, Distributed Systems

To see all post click Index of posts

Deep Learning from first principles in Python, R and Octave – Part 3

“Once upon a time, I, Chuang Tzu, dreamt I was a butterfly, fluttering hither and thither, to all intents and purposes a butterfly. I was conscious only of following my fancies as a butterfly, and was unconscious of my individuality as a man. Suddenly, I awoke, and there I lay, myself again. Now I do not know whether I was then a man dreaming I was a butterfly, or whether I am now a butterfly dreaming that I am a man.”
from The Brain: The Story of you – David Eagleman

“Thought is a great big vector of neural activity”
Prof Geoffrey Hinton

Introduction

This is the third part in my series on Deep Learning from first principles in Python, R and Octave. In the first part Deep Learning from first principles in Python, R and Octave-Part 1, I implemented logistic regression as a 2 layer neural network. The 2nd part Deep Learning from first principles in Python, R and Octave-Part 2, dealt with the implementation of 3 layer Neural Networks with 1 hidden layer to perform classification tasks, where the 2 classes cannot be separated by a linear boundary. In this third part, I implement a multi-layer, Deep Learning (DL) network of arbitrary depth (any number of hidden layers) and arbitrary height (any number of activation units in each hidden layer). The implementations of these Deep Learning networks, in all the 3 parts, are based on vectorized versions in Python, R and Octave. The implementation in the 3rd part is for a L-layer Deep Netwwork, but without any regularization, early stopping, momentum or learning rate adaptation techniques. However even the barebones multi-layer DL, is a handful and has enough hyperparameters to fine-tune and adjust.

Checkout my book ‘Deep Learning from first principles: Second Edition – In vectorized Python, R and Octave’. My book starts with the implementation of a simple 2-layer Neural Network and works its way to a generic L-Layer Deep Learning Network, with all the bells and whistles. The derivations have been discussed in detail. The code has been extensively commented and included in its entirety in the Appendix sections. My book is available on Amazon as paperback ($18.99) and in kindle version($9.99/Rs449).

The implementation of the vectorized L-layer Deep Learning network in Python, R and Octave were both exhausting, and exacting!! Keeping track of the indices, layer number and matrix dimensions required quite bit of focus. While the implementation was demanding, it was also very exciting to get the code to work. The trick was to be able to shift gears between the slight quirkiness between the languages. Here are some of challenges I faced.

1. Python and Octave allow multiple return values to be unpacked in a single statement. With R, unpacking multiple return values from a list, requires the list returned, to be unpacked separately. I did see that there is a package gsubfn, which does this.  I hope this feature becomes a base R feature.
2. Python and R allow dissimilar elements to be saved and returned from functions using dictionaries or lists respectively. However there is no real equivalent in Octave. The closest I got to this functionality in Octave, was the ‘cell array’. But the cell array can be accessed only by the index, and not with the key as in a Python dictionary or R list. This makes things just a bit more difficult in Octave.
3. Python and Octave include implicit broadcasting. In R, broadcasting is not implicit, but R has a nifty function, the sweep(), with which we can broadcast either by columns or by rows
4. The closest equivalent of Python’s dictionary, or R’s list, in Octave is the cell array. However I had to manage separate cell arrays for weights and biases and during gradient descent and separate gradients dW and dB
5. In Python the rank-1 numpy arrays can be annoying at times. This issue is not present in R and Octave.

Though the number of lines of code for Deep Learning functions in Python, R and Octave are about ~350 apiece, they have been some of the most difficult code I have implemented. The current vectorized implementation supports the relu, sigmoid and tanh activation functions as of now. I will be adding other activation functions like the ‘leaky relu’, ‘softmax’ and others, to the implementation in the weeks to come.

While testing with different hyper-parameters namely i) the number of hidden layers, ii) the number of activation units in each layer, iii) the activation function and iv) the number iterations, I found the L-layer Deep Learning Network to be very sensitive to these hyper-parameters. It is not easy to tune the parameters. Adding more hidden layers, or more units per layer, does not help and mostly results in gradient descent getting stuck in some local minima. It does take a fair amount of trial and error and very close observation on how the DL network performs for logical changes. We then can zero in on the most the optimal solution. Feel free to download/fork my code from Github DeepLearning-Part 3 and play around with the hyper-parameters for your own problems.

Derivation of a Multi Layer Deep Learning Network

Note: A detailed discussion of the derivation below is available in my video presentation Neural Network 4
Lets take a simple 3 layer Neural network with 3 hidden layers and an output layer

In the forward propagation cycle the equations are

Z_{1} = W_{1}A_{0} +b_{1}  and  A_{1} = g(Z_{1})
Z_{2} = W_{2}A_{1} +b_{2}  and  A_{2} = g(Z_{2})
Z_{3} = W_{3}A_{2} +b_{3}  and A_{3} = g(Z_{3})

The loss function is given by
L = -(ylogA3 + (1-y)log(1-A3))
and dL/dA3 = -(Y/A_{3} + (1-Y)/(1-A_{3}))

For a binary classification the output activation function is the sigmoid function given by
A_{3} = 1/(1+ e^{-Z3}). It can be shown that
dA_{3}/dZ_{3} = A_{3}(1-A_3) see equation 2 in Part 1

\partial L/\partial Z_{3} = \partial L/\partial A_{3}* \partial A_{3}/\partial Z_{3} = A3-Y see equation (f) in  Part 1
and since
\partial L/\partial A_{2} = \partial L/\partial Z_{3} * \partial Z_{3}/\partial A_{2} = (A_{3} -Y) * W_{3} because \partial Z_{3}/\partial A_{2} = W_{3} -(1a)
and \partial L/\partial Z_{2} =\partial L/\partial A_{2} * \partial A_{2}/\partial Z_{2} = (A_{3} -Y) * W_{3} *g'(Z_{2}) -(1b)
\partial L/\partial W_{2} = \partial L/\partial Z_{2} * A_{1} -(1c)
since \partial Z_{2}/\partial W_{2} = A_{1}
and
\partial L/\partial b_{2} = \partial L/\partial Z_{2} -(1d)
because
\partial Z_{2}/\partial b_{2} =1

Also

\partial L/\partial A_{1} =\partial L/\partial Z_{2} * \partial Z_{2}/\partial A_{1} = \partial L/\partial Z_{2} * W_{2}     – (2a)
\partial L/\partial Z_{1} =\partial L/\partial A_{1} * \partial A_{1}/\partial Z_{1} = \partial L/\partial A_{1} * W_{2} *g'(Z_{1})          – (2b)
\partial L/\partial W_{1} = \partial L/\partial Z_{1} * A_{0} – (2c)
\partial L/\partial b_{1} = \partial L/\partial Z_{1} – (2d)

Inspecting the above equations (1a – 1d & 2a-2d), our ‘Uber deep, bottomless’ brain  can easily discern the pattern in these equations. The equation for any layer ‘l’ is of the form
Z_{l} = W_{l}A_{l-1} +b_{l}     and  A_{l} = g(Z_{l})
The equation for the backward propagation have the general form
\partial L/\partial A_{l} = \partial L/\partial Z_{l+1} * W^{l+1}
\partial L/\partial Z_{l}=\partial L/\partial A_{l} *g'(Z_{l})
\partial L/\partial W_{l} =\partial L/\partial Z_{l} *A^{l-1}
\partial L/\partial b_{l} =\partial L/\partial Z_{l}

Some other important results The derivatives of the activation functions in the implemented Deep Learning network
g(z) = sigmoid(z) = 1/(1+e^{-z}) = a g’(z) = a(1-a) – See Part 1
g(z) = tanh(z) = a g’(z) = 1 - a^{2}
g(z) = relu(z) = z  when z>0 and 0 when z 0 and 0 when z <= 0
While it appears that there is a discontinuity for the derivative at 0 the small value at the discontinuity does not present a problem

The implementation of the multi layer vectorized Deep Learning Network for Python, R and Octave is included below. For all these implementations, initially I create the size and configuration of the the Deep Learning network with the layer dimennsions So for example layersDimension Vector ‘V’ of length L indicating ‘L’ layers where

V (in Python)= [v_{0}, v_{1}, v_{2}, … v_{L-1}]
V (in R)= c(v_{1}, v_{2}, v_{3} , … v_{L})
V (in Octave)= [ v_{1} v_{2} v_{3}v_{L}]

In all of these implementations the first element is the number of input features to the Deep Learning network and the last element is always a ‘sigmoid’ activation function since all the problems deal with binary classification.

The number of elements between the first and the last element are the number of hidden layers and the magnitude of each v_{i} is the number of activation units in each hidden layer, which is specified while actually executing the Deep Learning network using the function L_Layer_DeepModel(), in all the implementations Python, R and Octave

1a. Classification with Multi layer Deep Learning Network – Relu activation(Python)

In the code below a 4 layer Neural Network is trained to generate a non-linear boundary between the classes. In the code below the ‘Relu’ Activation function is used. The number of activation units in each layer is 9. The cost vs iterations is plotted in addition to the decision boundary. Further the accuracy, precision, recall and F1 score are also computed

import os
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors
import sklearn.linear_model

from sklearn.model_selection import train_test_split
from sklearn.datasets import make_classification, make_blobs
from matplotlib.colors import ListedColormap
import sklearn
import sklearn.datasets

#from DLfunctions import plot_decision_boundary
execfile("./DLfunctions34.py") # 
os.chdir("C:\\software\\DeepLearning-Posts\\part3")

# Create clusters of 2 classes
X1, Y1 = make_blobs(n_samples = 400, n_features = 2, centers = 9,
                       cluster_std = 1.3, random_state = 4)
#Create 2 classes
Y1=Y1.reshape(400,1)
Y1 = Y1 % 2
X2=X1.T
Y2=Y1.T
# Set the dimensions of DL Network 
#  Below we have 
#  2 - 2 input features
#  9,9 - 2 hidden layers with 9 activation units per layer and
#  1 - 1 sigmoid activation unit in the output layer as this is a binary classification
# The activation in the hidden layer is the 'relu' specified in L_Layer_DeepModel

layersDimensions = [2, 9, 9,1] #  4-layer model
parameters = L_Layer_DeepModel(X2, Y2, layersDimensions,hiddenActivationFunc='relu', learning_rate = 0.3,num_iterations = 2500, fig="fig1.png")
#Plot the decision boundary
plot_decision_boundary(lambda x: predict(parameters, x.T), X2,Y2,str(0.3),"fig2.png")

# Compute the confusion matrix
yhat = predict(parameters,X2)
from sklearn.metrics import confusion_matrix
a=confusion_matrix(Y2.T,yhat.T)
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
print('Accuracy: {:.2f}'.format(accuracy_score(Y2.T, yhat.T)))
print('Precision: {:.2f}'.format(precision_score(Y2.T, yhat.T)))
print('Recall: {:.2f}'.format(recall_score(Y2.T, yhat.T)))
print('F1: {:.2f}'.format(f1_score(Y2.T, yhat.T)))
## Accuracy: 0.90
## Precision: 0.91
## Recall: 0.87
## F1: 0.89

For more details on metrics like Accuracy, Recall, Precision etc. used in classification take a look at my post Practical Machine Learning with R and Python – Part 2. More details about these and other metrics besides implementation of the most common machine learning algorithms are available in my book My book ‘Practical Machine Learning with R and Python’ on Amazon

1b. Classification with Multi layer Deep Learning Network – Relu activation(R)

In the code below, binary classification is performed on the same data set as above using the Relu activation function. The DL network is same as above

library(ggplot2)
# Read the data
z <- as.matrix(read.csv("data.csv",header=FALSE)) 
x <- z[,1:2]
y <- z[,3]
X1 <- t(x)
Y1 <- t(y)

# Set the dimensions of the Deep Learning network
# No of input features =2, 2 hidden layers with 9 activation units and 1 output layer
layersDimensions = c(2, 9, 9,1)
# Execute the Deep Learning Neural Network
retvals = L_Layer_DeepModel(X1, Y1, layersDimensions,
                               hiddenActivationFunc='relu', 
                               learningRate = 0.3,
                               numIterations = 5000, 
                               print_cost = True)
library(ggplot2)
source("DLfunctions33.R")
# Get the computed costs
costs <- retvals[['costs']]
# Create a sequence of iterations
numIterations=5000
iterations <- seq(0,numIterations,by=1000)
df <-data.frame(iterations,costs)
# Plot the Costs vs number of iterations
ggplot(df,aes(x=iterations,y=costs)) + geom_point() +geom_line(color="blue") +
    xlab('No of iterations') + ylab('Cost') + ggtitle("Cost vs No of iterations")

# Plot the decision boundary
plotDecisionBoundary(z,retvals,hiddenActivationFunc="relu",0.3)

library(caret)
# Predict the output for the data values
yhat <-predict(retvals$parameters,X1,hiddenActivationFunc="relu")
yhat[yhat==FALSE]=0
yhat[yhat==TRUE]=1
# Compute the confusion matrix
confusionMatrix(yhat,Y1)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction   0   1
##          0 201  10
##          1  21 168
##                                           
##                Accuracy : 0.9225          
##                  95% CI : (0.8918, 0.9467)
##     No Information Rate : 0.555           
##     P-Value [Acc > NIR] : < 2e-16         
##                                           
##                   Kappa : 0.8441          
##  Mcnemar's Test P-Value : 0.07249         
##                                           
##             Sensitivity : 0.9054          
##             Specificity : 0.9438          
##          Pos Pred Value : 0.9526          
##          Neg Pred Value : 0.8889          
##              Prevalence : 0.5550          
##          Detection Rate : 0.5025          
##    Detection Prevalence : 0.5275          
##       Balanced Accuracy : 0.9246          
##                                           
##        'Positive' Class : 0               
## 

1c. Classification with Multi layer Deep Learning Network – Relu activation(Octave)

Included below is the code for performing classification. Incidentally Octave does not seem to have implemented the confusion matrix,  but confusionmat is available in Matlab.
# Read the data
data=csvread("data.csv");
X=data(:,1:2);
Y=data(:,3);
# Set layer dimensions
layersDimensions = [2 9 7 1] #tanh=-0.5(ok), #relu=0.1 best!
# Execute Deep Network
[weights biases costs]=L_Layer_DeepModel(X', Y', layersDimensions,
hiddenActivationFunc='relu',
learningRate = 0.1,
numIterations = 10000);
plotCostVsIterations(10000,costs);
plotDecisionBoundary(data,weights, biases,hiddenActivationFunc="tanh")


2a. Classification with Multi layer Deep Learning Network – Tanh activation(Python)

Below the Tanh activation function is used to perform the same classification. I found the Tanh activation required a simpler Neural Network of 3 layers.

# Tanh activation
import os
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors
import sklearn.linear_model

from sklearn.model_selection import train_test_split
from sklearn.datasets import make_classification, make_blobs
from matplotlib.colors import ListedColormap
import sklearn
import sklearn.datasets

#from DLfunctions import plot_decision_boundary
os.chdir("C:\\software\\DeepLearning-Posts\\part3")
execfile("./DLfunctions34.py") 
# Create the dataset
X1, Y1 = make_blobs(n_samples = 400, n_features = 2, centers = 9,
                       cluster_std = 1.3, random_state = 4)
#Create 2 classes
Y1=Y1.reshape(400,1)
Y1 = Y1 % 2
X2=X1.T
Y2=Y1.T
# Set the dimensions of the Neural Network
layersDimensions = [2, 4, 1] #  3-layer model
# Compute the DL network
parameters = L_Layer_DeepModel(X2, Y2, layersDimensions, hiddenActivationFunc='tanh', learning_rate = .5,num_iterations = 2500,fig="fig3.png")
#Plot the decision boundary
plot_decision_boundary(lambda x: predict(parameters, x.T), X2,Y2,str(0.5),"fig4.png")

2b. Classification with Multi layer Deep Learning Network – Tanh activation(R)

R performs better with a Tanh activation than the Relu as can be seen below

 #Set the dimensions of the Neural Network
layersDimensions = c(2, 9, 9,1)
library(ggplot2)
# Read the data
z <- as.matrix(read.csv("data.csv",header=FALSE)) 
x <- z[,1:2]
y <- z[,3]
X1 <- t(x)
Y1 <- t(y)
# Execute the Deep Model
retvals = L_Layer_DeepModel(X1, Y1, layersDimensions,
                            hiddenActivationFunc='tanh', 
                            learningRate = 0.3,
                            numIterations = 5000, 
                            print_cost = True)
# Get the costs
costs <- retvals[['costs']]
iterations <- seq(0,numIterations,by=1000)
df <-data.frame(iterations,costs)
# Plot Cost vs number of iterations
ggplot(df,aes(x=iterations,y=costs)) + geom_point() +geom_line(color="blue") +
    xlab('No of iterations') + ylab('Cost') + ggtitle("Cost vs No of iterations")

#Plot the decision boundary
plotDecisionBoundary(z,retvals,hiddenActivationFunc="tanh",0.3)

2c. Classification with Multi layer Deep Learning Network – Tanh activation(Octave)

The code below uses the   Tanh activation in the hidden layers for Octave
# Read the data
data=csvread("data.csv");
X=data(:,1:2);
Y=data(:,3);
# Set layer dimensions
layersDimensions = [2 9 7 1] #tanh=-0.5(ok), #relu=0.1 best!
# Execute Deep Network
[weights biases costs]=L_Layer_DeepModel(X', Y', layersDimensions,
hiddenActivationFunc='tanh',
learningRate = 0.1,
numIterations = 10000);
plotCostVsIterations(10000,costs);
plotDecisionBoundary(data,weights, biases,hiddenActivationFunc="tanh")


3. Bernoulli’s Lemniscate

To make things  more interesting, I create a 2D figure of the Bernoulli’s lemniscate to perform non-linear classification. The Lemniscate is given by the equation
(x^{2} + y^{2})^{2} = 2a^{2}*(x^{2}-y^{2})

3a. Classifying a lemniscate with Deep Learning Network – Relu activation(Python)

import os
import numpy as np 
import matplotlib.pyplot as plt
os.chdir("C:\\software\\DeepLearning-Posts\\part3")
execfile("./DLfunctions33.py") 
x1=np.random.uniform(0,10,2000).reshape(2000,1)
x2=np.random.uniform(0,10,2000).reshape(2000,1)

X=np.append(x1,x2,axis=1)
X.shape

# Create a subset of values where squared is <0,4. Perform ravel() to flatten this vector
# Create the equation
# (x^{2} + y^{2})^2 - 2a^2*(x^{2}-y^{2}) <= 0
a=np.power(np.power(X[:,0]-5,2) + np.power(X[:,1]-5,2),2)
b=np.power(X[:,0]-5,2) - np.power(X[:,1]-5,2)
c= a - (b*np.power(4,2)) <=0
Y=c.reshape(2000,1)
# Create a scatter plot of the lemniscate
plt.scatter(X[:,0], X[:,1], c=Y, marker= 'o', s=15,cmap="viridis")
Z=np.append(X,Y,axis=1)
plt.savefig("fig50.png",bbox_inches='tight')
plt.clf()

# Set the data for classification
X2=X.T
Y2=Y.T
# These settings work the best
# Set the Deep Learning layer dimensions for a Relu activation
layersDimensions = [2,7,4,1]
#Execute the DL network
parameters = L_Layer_DeepModel(X2, Y2, layersDimensions, hiddenActivationFunc='relu', learning_rate = 0.5,num_iterations = 10000, fig="fig5.png")
#Plot the decision boundary
plot_decision_boundary(lambda x: predict(parameters, x.T), X2, Y2,str(2.2),"fig6.png")

# Compute the Confusion matrix
yhat = predict(parameters,X2)
from sklearn.metrics import confusion_matrix
a=confusion_matrix(Y2.T,yhat.T)
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
print('Accuracy: {:.2f}'.format(accuracy_score(Y2.T, yhat.T)))
print('Precision: {:.2f}'.format(precision_score(Y2.T, yhat.T)))
print('Recall: {:.2f}'.format(recall_score(Y2.T, yhat.T)))
print('F1: {:.2f}'.format(f1_score(Y2.T, yhat.T)))
## Accuracy: 0.93
## Precision: 0.77
## Recall: 0.76
## F1: 0.76

We could get better performance by tuning further. Do play around if you fork the code.
Note:: The lemniscate data is saved as a CSV and then read in R and also in Octave. I do this instead of recreating the lemniscate shape

3b. Classifying a lemniscate with Deep Learning Network – Relu activation(R code)

The R decision boundary for the Bernoulli’s lemniscate is shown below

Z <- as.matrix(read.csv("lemniscate.csv",header=FALSE))
Z1=data.frame(Z)
# Create a scatter plot of the lemniscate
ggplot(Z1,aes(x=V1,y=V2,col=V3)) +geom_point()
#Set the data for the DL network
X=Z[,1:2]
Y=Z[,3]

X1=t(X)
Y1=t(Y)

# Set the layer dimensions for the tanh activation function
layersDimensions = c(2,5,4,1)
# Execute the Deep Learning network with Tanh activation
retvals = L_Layer_DeepModel(X1, Y1, layersDimensions, 
                               hiddenActivationFunc='tanh', 
                               learningRate = 0.3,
                               numIterations = 20000, print_cost = True)
# Plot cost vs iteration
costs <- retvals[['costs']]
numIterations = 20000
iterations <- seq(0,numIterations,by=1000)
df <-data.frame(iterations,costs)
ggplot(df,aes(x=iterations,y=costs)) + geom_point() +geom_line(color="blue") +
    xlab('No of iterations') + ylab('Cost') + ggtitle("Cost vs No of iterations")

#Plot the decision boundary
plotDecisionBoundary(Z,retvals,hiddenActivationFunc="tanh",0.3)

3c. Classifying a lemniscate with Deep Learning Network – Relu activation(Octave code)

Octave is used to generate the non-linear lemniscate boundary.

# Read the data
data=csvread("lemniscate.csv");
X=data(:,1:2);
Y=data(:,3);
# Set the dimensions of the layers
layersDimensions = [2 9 7 1]
# Compute the DL network
[weights biases costs]=L_Layer_DeepModel(X', Y', layersDimensions,
hiddenActivationFunc='relu',
learningRate = 0.20,
numIterations = 10000);
plotCostVsIterations(10000,costs);
plotDecisionBoundary(data,weights, biases,hiddenActivationFunc="relu")


4a. Binary Classification using MNIST – Python code

Finally I perform a simple classification using the MNIST handwritten digits, which according to Prof Geoffrey Hinton is “the Drosophila of Deep Learning”.

The Python code for reading the MNIST data is taken from Alex Kesling’s github link MNIST.

In the Python code below, I perform a simple binary classification between the handwritten digit ‘5’ and ‘not 5’ which is all other digits. I will perform the proper classification of all digits using the  Softmax classifier some time later.

import os
import numpy as np 
import matplotlib.pyplot as plt
os.chdir("C:\\software\\DeepLearning-Posts\\part3")
execfile("./DLfunctions34.py") 
execfile("./load_mnist.py")
training=list(read(dataset='training',path="./mnist"))
test=list(read(dataset='testing',path="./mnist"))
lbls=[]
pxls=[]
print(len(training))

# Select the first 10000 training data and the labels
for i in range(10000):
       l,p=training[i]
       lbls.append(l)
       pxls.append(p)
labels= np.array(lbls)
pixels=np.array(pxls)   

#  Sey y=1  when labels == 5 and 0 otherwise
y=(labels==5).reshape(-1,1)
X=pixels.reshape(pixels.shape[0],-1)

# Create the necessary feature and target variable
X1=X.T
Y1=y.T

# Create the layer dimensions. The number of features are 28 x 28 = 784 since the 28 x 28
# pixels is flattened to single vector of length 784.
layersDimensions=[784, 15,9,7,1] # Works very well
parameters = L_Layer_DeepModel(X1, Y1, layersDimensions, hiddenActivationFunc='relu', learning_rate = 0.1,num_iterations = 1000, fig="fig7.png")

# Test data
lbls1=[]
pxls1=[]
for i in range(800):
       l,p=test[i]
       lbls1.append(l)
       pxls1.append(p)
 
testLabels=np.array(lbls1)
testData=np.array(pxls1)

ytest=(testLabels==5).reshape(-1,1)
Xtest=testData.reshape(testData.shape[0],-1)
Xtest1=Xtest.T
Ytest1=ytest.T

yhat = predict(parameters,Xtest1)
from sklearn.metrics import confusion_matrix
a=confusion_matrix(Ytest1.T,yhat.T)
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
print('Accuracy: {:.2f}'.format(accuracy_score(Ytest1.T, yhat.T)))
print('Precision: {:.2f}'.format(precision_score(Ytest1.T, yhat.T)))
print('Recall: {:.2f}'.format(recall_score(Ytest1.T, yhat.T)))
print('F1: {:.2f}'.format(f1_score(Ytest1.T, yhat.T)))

probs=predict_proba(parameters,Xtest1)
from sklearn.metrics import precision_recall_curve

precision, recall, thresholds = precision_recall_curve(Ytest1.T, probs.T)
closest_zero = np.argmin(np.abs(thresholds))
closest_zero_p = precision[closest_zero]
closest_zero_r = recall[closest_zero]
plt.xlim([0.0, 1.01])
plt.ylim([0.0, 1.01])
plt.plot(precision, recall, label='Precision-Recall Curve')
plt.plot(closest_zero_p, closest_zero_r, 'o', markersize = 12, fillstyle = 'none', c='r', mew=3)
plt.xlabel('Precision', fontsize=16)
plt.ylabel('Recall', fontsize=16)
plt.savefig("fig8.png",bbox_inches='tight')

## Accuracy: 0.99
## Precision: 0.96
## Recall: 0.89
## F1: 0.92

In addition to plotting the Cost vs Iterations, I also plot the Precision-Recall curve to show how the Precision and Recall, which are complementary to each other vary with respect to the other. To know more about Precision-Recall, please check my post Practical Machine Learning with R and Python – Part 4.

Check out my compact and minimal book  “Practical Machine Learning with R and Python:Second edition- Machine Learning in stereo”  available in Amazon in paperback($10.99) and kindle($7.99) versions. My book includes implementations of key ML algorithms and associated measures and metrics. The book is ideal for anybody who is familiar with the concepts and would like a quick reference to the different ML algorithms that can be applied to problems and how to select the best model. Pick your copy today!!

A physical copy of the book is much better than scrolling down a webpage. Personally, I tend to use my own book quite frequently to refer to R, Python constructs,  subsetting, machine Learning function calls and the necessary parameters etc. It is useless to commit any of this to memory, and a physical copy of a book is much easier to thumb through for the relevant code snippet. Pick up your copy today!

4b. Binary Classification using MNIST – R code

In the R code below the same binary classification of the digit ‘5’ and the ‘not 5’ is performed. The code to read and display the MNIST data is taken from Brendan O’ Connor’s github link at MNIST

source("mnist.R")
load_mnist()
#show_digit(train$x[2,]
layersDimensions=c(784, 7,7,3,1) # Works at 1500
x <- t(train$x)
# Choose only 5000 training data
x2 <- x[,1:5000]
y <-train$y
# Set labels for all digits that are 'not 5' to 0
y[y!=5] <- 0
# Set labels of digit 5 as 1
y[y==5] <- 1
# Set the data
y1 <- as.matrix(y)
y2 <- t(y1)
# Choose the 1st 5000 data
y3 <- y2[,1:5000]

#Execute the Deep Learning Model
retvals = L_Layer_DeepModel(x2, y3, layersDimensions, 
                               hiddenActivationFunc='tanh', 
                               learningRate = 0.3,
                               numIterations = 3000, print_cost = True)
# Plot cost vs iteration
costs <- retvals[['costs']]
numIterations = 3000
iterations <- seq(0,numIterations,by=1000)
df <-data.frame(iterations,costs)
ggplot(df,aes(x=iterations,y=costs)) + geom_point() +geom_line(color="blue") +
    xlab('No of iterations') + ylab('Cost') + ggtitle("Cost vs No of iterations")

# Compute probability scores
scores <- computeScores(retvals$parameters, x2,hiddenActivationFunc='relu')
a=y3==1
b=y3==0

# Compute probabilities of class 0 and class 1
class1=scores[a]
class0=scores[b]

# Plot ROC curve
pr <-pr.curve(scores.class0=class1,
        scores.class1=class0,
       curve=T)

plot(pr)

The AUC curve hugs the top left corner and hence the performance of the classifier is quite good.

4c. Binary Classification using MNIST – Octave code

This code to load MNIST data was taken from Daniel E blog.
Precision recall curves are available in Matlab but are yet to be implemented in Octave’s statistics package.

load('./mnist/mnist.txt.gz'); % load the dataset
# Subset the 'not 5' digits
a=(trainY != 5);
# Subset '5'
b=(trainY == 5);
#make a copy of trainY
#Set 'not 5' as 0 and '5' as 1
y=trainY;
y(a)=0;
y(b)=1;
X=trainX(1:5000,:);
Y=y(1:5000);
# Set the dimensions of layer
layersDimensions=[784, 7,7,3,1];
# Compute the DL network
[weights biases costs]=L_Layer_DeepModel(X', Y', layersDimensions,
hiddenActivationFunc='relu',
learningRate = 0.1,
numIterations = 5000);

Conclusion

It was quite a challenge coding a Deep Learning Network in Python, R and Octave. The Deep Learning network implementation, in this post,is the base Deep Learning network, without any of the regularization methods included. Here are some key learning that I got while playing with different multi-layer networks on different problems

a. Deep Learning Networks come with many levers, the hyper-parameters,
– learning rate
– activation unit
– number of hidden layers
– number of units per hidden layer
– number of iterations while performing gradient descent
b. Deep Networks are very sensitive. A change in any of the hyper-parameter makes it perform very differently
c. Initially I thought adding more hidden layers, or more units per hidden layer will make the DL network better at learning. On the contrary, there is a performance degradation after the optimal DL configuration
d. At a sub-optimal number of hidden layers or number of hidden units, gradient descent seems to get stuck at a local minima
e. There were occasions when the cost came down, only to increase slowly as the number of iterations were increased. Probably early stopping would have helped.
f. I also did come across situations of ‘exploding/vanishing gradient’, cost went to Inf/-Inf. Here I would think inclusion of ‘momentum method’ would have helped

I intend to add the additional hyper-parameters of L1, L2 regularization, momentum method, early stopping etc. into the code in my future posts.
Feel free to fork/clone the code from Github Deep Learning – Part 3, and take the DL network apart and play around with it.

I will be continuing this series with more hyper-parameters to handle vanishing and exploding gradients, early stopping and regularization in the weeks to come. I also intend to add some more activation functions to this basic Multi-Layer Network.
Hang around, there are more exciting things to come.

Watch this space!

References
1. Deep Learning Specialization
2. Neural Networks for Machine Learning
3. Deep Learning, Ian Goodfellow, Yoshua Bengio and Aaron Courville
4. Neural Networks: The mechanics of backpropagation
5. Machine Learning

Also see
1.My book ‘Practical Machine Learning with R and Python’ on Amazon
2. My travels through the realms of Data Science, Machine Learning, Deep Learning and (AI)
3. Designing a Social Web Portal
4. GooglyPlus: yorkr analyzes IPL players, teams, matches with plots and tables
4. Introducing QCSimulator: A 5-qubit quantum computing simulator in R
6. Presentation on “Intelligent Networks, CAMEL protocol, services & applications
7. Design Principles of Scalable, Distributed Systems

To see all posts see Index of posts

Deep Learning from first principles in Python, R and Octave – Part 2

“What does the world outside your head really ‘look’ like? Not only is there no color, there’s also no sound: the compression and expansion of air is picked up by the ears, and turned into electrical signals. The brain then presents these signals to us as mellifluous tones and swishes and clatters and jangles. Reality is also odorless: there’s no such thing as smell outside our brains. Molecules floating through the air bind to receptors in our nose and are interpreted as different smells by our brain. The real world is not full of rich sensory events; instead, our brains light up the world with their own sensuality.”
The Brain: The Story of You” by David Eagleman

The world is Maya, illusory. The ultimate reality, the Brahman, is all-pervading and all-permeating, which is colourless, odourless, tasteless, nameless and formless
Bhagavad Gita

1. Introduction

This post is a follow-up post to my earlier post Deep Learning from first principles in Python, R and Octave-Part 1. In the first part, I implemented Logistic Regression, in vectorized Python,R and Octave, with a wannabe Neural Network (a Neural Network with no hidden layers). In this second part, I implement a regular, but somewhat primitive Neural Network (a Neural Network with just 1 hidden layer). The 2nd part implements classification of manually created datasets, where the different clusters of the 2 classes are not linearly separable.

Neural Network perform really well in learning all sorts of non-linear boundaries between classes. Initially logistic regression is used perform the classification and the decision boundary is plotted. Vanilla logistic regression performs quite poorly. Using SVMs with a radial basis kernel would have performed much better in creating non-linear boundaries. To see R and Python implementations of SVMs take a look at my post Practical Machine Learning with R and Python – Part 4.

Checkout my book ‘Deep Learning from first principles: Second Edition – In vectorized Python, R and Octave’. My book starts with the implementation of a simple 2-layer Neural Network and works its way to a generic L-Layer Deep Learning Network, with all the bells and whistles. The derivations have been discussed in detail. The code has been extensively commented and included in its entirety in the Appendix sections. My book is available on Amazon as paperback ($18.99) and in kindle version($9.99/Rs449).

You may also like my companion book “Practical Machine Learning with R and Python:Second Edition- Machine Learning in stereo” available in Amazon in paperback($10.99) and Kindle($7.99/Rs449) versions. This book is ideal for a quick reference of the various ML functions and associated measurements in both R and Python which are essential to delve deep into Deep Learning.

Take a look at my video presentation which discusses the below derivation step-by- step Elements of Neural Networks and Deep Learning – Part 3

You can clone and fork this R Markdown file along with the vectorized implementations of the 3 layer Neural Network for Python, R and Octave from Github DeepLearning-Part2

2. The 3 layer Neural Network

A simple representation of a 3 layer Neural Network (NN) with 1 hidden layer is shown below.

In the above Neural Network, there are 2 input features at the input layer, 3 hidden units at the hidden layer and 1 output layer as it deals with binary classification. The activation unit at the hidden layer can be a tanh, sigmoid, relu etc. At the output layer the activation is a sigmoid to handle binary classification

# Superscript indicates layer 1
z_{11} = w_{11}^{1}x_{1} + w_{21}^{1}x_{2} + b_{1}
z_{12} = w_{12}^{1}x_{1} + w_{22}^{1}x_{2} + b_{1}
z_{13} = w_{13}^{1}x_{1} + w_{23}^{1}x_{2} + b_{1}

Also a_{11} = tanh(z_{11})
a_{12} = tanh(z_{12})
a_{13} = tanh(z_{13})

# Superscript indicates layer 2
z_{21} = w_{11}^{2}a_{11} + w_{21}^{2}a_{12} + w_{31}^{2}a_{13} + b_{2}
a_{21} = sigmoid(z21)

Hence
Z1= \begin{pmatrix}  z11\\  z12\\  z13  \end{pmatrix} =\begin{pmatrix}  w_{11}^{1} & w_{21}^{1} \\  w_{12}^{1} & w_{22}^{1} \\  w_{13}^{1} & w_{23}^{1}  \end{pmatrix} * \begin{pmatrix}  x1\\  x2  \end{pmatrix} + b_{1}
And
A1= \begin{pmatrix}  a11\\  a12\\  a13  \end{pmatrix} = \begin{pmatrix}  tanh(z11)\\  tanh(z12)\\  tanh(z13)  \end{pmatrix}

Similarly
Z2= z_{21}  = \begin{pmatrix}  w_{11}^{2} & w_{21}^{2} & w_{31}^{2}  \end{pmatrix} *\begin{pmatrix}  z_{11}\\  z_{12}\\  z_{13}  \end{pmatrix} +b_{2}
and A2 = a_{21} = sigmoid(z_{21})

These equations can be written as
Z1 = W1 * X + b1
A1 = tanh(Z1)
Z2 = W2 * A1 + b2
A2 = sigmoid(Z2)

I) Some important results (a memory refresher!)
d/dx(e^{x}) = e^{x} and d/dx(e^{-x}) = -e^{-x} -(a) and
sinhx = (e^{x} - e^{-x})/2 and coshx = (e^{x} + e^{-x})/2
Using (a) we can shown that d/dx(sinhx) = coshx and d/dx(coshx) = sinhx (b)
Now d/dx(f(x)/g(x)) = (g(x)*d/dx(f(x)) - f(x)*d/dx(g(x)))/g(x)^{2} -(c)

Since tanhx =z= sinhx/coshx and using (b) we get
tanhx = (coshx*d/dx(sinhx) - sinhx*d/dx(coshx))/(cosh^{2})
Using the values of the derivatives of sinhx and coshx from (b) above we get
d/dx(tanhx) = (coshx^{2} - sinhx{2})/coshx{2} = 1 - tanhx^{2}
Since tanhx =z
d/dx(tanhx) = 1 - tanhx^{2}= 1 - z^{2} -(d)

II) Derivatives
L=-(Ylog(A2) + (1-Y)log(1-A2))
dL/dA2 = -(Y/A2 + (1-Y)/(1-A2))
Since A2 = sigmoid(Z2) therefore dA2/dZ2 = A2(1-A2) see Part1
Z2 = W2A1 +b2
dZ2/dW2 = A1
dZ2/db2 = 1
A1 = tanh(Z1) and dA1/dZ1 = 1 - A1^{2}
Z1 = W1X + b1
dZ1/dW1 = X
dZ1/db1 = 1

III) Back propagation
Using the derivatives from II) we can derive the following results using Chain Rule
\partial L/\partial Z2 = \partial L/\partial A2 * \partial A2/\partial Z2
= -(Y/A2 + (1-Y)/(1-A2)) * A2(1-A2) = A2 - Y
\partial L/\partial W2 = \partial L/\partial A2 * \partial A2/\partial Z2 * \partial Z2/\partial W2
= (A2-Y) *A1 -(A)
\partial L/\partial b2 = \partial L/\partial A2 * \partial A2/\partial Z2 * \partial Z2/\partial b2 = (A2-Y) -(B)

\partial L/\partial Z1 = \partial L/\partial A2 * \partial A2/\partial Z2 * \partial Z2/\partial A1 *\partial A1/\partial Z1 = (A2-Y) * W2 * (1-A1^{2})
\partial L/\partial W1 = \partial L/\partial A2 * \partial A2/\partial Z2 * \partial Z2/\partial A1 *\partial A1/\partial Z1 *\partial Z1/\partial W1
=(A2-Y) * W2 * (1-A1^{2}) * X -(C)
\partial L/\partial b1 = \partial L/\partial A2 * \partial A2/\partial Z2 * \partial Z2/\partial A1 *dA1/dZ1 *dZ1/db1
= (A2-Y) * W2 * (1-A1^{2}) -(D)

IV) Gradient Descent
The key computations in the backward cycle are
W1 = W1-learningRate * \partial L/\partial W1 – From (C)
b1 = b1-learningRate * \partial L/\partial b1 – From (D)
W2 = W2-learningRate * \partial L/\partial W2 – From (A)
b2 = b2-learningRate * \partial L/\partial b2 – From (B)

The weights and biases (W1,b1,W2,b2) are updated for each iteration thus minimizing the loss/cost.

These derivations can be represented pictorially using the computation graph (from the book Deep Learning by Ian Goodfellow, Joshua Bengio and Aaron Courville)

3. Manually create a data set that is not lineary separable

Initially I create a dataset with 2 classes which has around 9 clusters that cannot be separated by linear boundaries. Note: This data set is saved as data.csv and is used for the R and Octave Neural networks to see how they perform on the same dataset.

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors
import sklearn.linear_model

from sklearn.model_selection import train_test_split
from sklearn.datasets import make_classification, make_blobs
from matplotlib.colors import ListedColormap
import sklearn
import sklearn.datasets


colors=['black','gold']
cmap = matplotlib.colors.ListedColormap(colors)
X, y = make_blobs(n_samples = 400, n_features = 2, centers = 7,
                       cluster_std = 1.3, random_state = 4)
#Create 2 classes
y=y.reshape(400,1)
y = y % 2
#Plot the figure
plt.figure()
plt.title('Non-linearly separable classes')
plt.scatter(X[:,0], X[:,1], c=y,
           marker= 'o', s=50,cmap=cmap)
plt.savefig('fig1.png', bbox_inches='tight')

4. Logistic Regression

On the above created dataset, classification with logistic regression is performed, and the decision boundary is plotted. It can be seen that logistic regression performs quite poorly

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors
import sklearn.linear_model

from sklearn.model_selection import train_test_split
from sklearn.datasets import make_classification, make_blobs
from matplotlib.colors import ListedColormap
import sklearn
import sklearn.datasets

#from DLfunctions import plot_decision_boundary
execfile("./DLfunctions.py") # Since import does not work in Rmd!!!

colors=['black','gold']
cmap = matplotlib.colors.ListedColormap(colors)
X, y = make_blobs(n_samples = 400, n_features = 2, centers = 7,
                       cluster_std = 1.3, random_state = 4)
#Create 2 classes
y=y.reshape(400,1)
y = y % 2

# Train the logistic regression classifier
clf = sklearn.linear_model.LogisticRegressionCV();
clf.fit(X, y);

# Plot the decision boundary for logistic regression
plot_decision_boundary_n(lambda x: clf.predict(x), X.T, y.T,"fig2.png")

5. The 3 layer Neural Network in Python (vectorized)

The vectorized implementation is included below. Note that in the case of Python a learning rate of 0.5 and 3 hidden units performs very well.

## Random data set with 9 clusters
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import sklearn.linear_model
import pandas as pd

from sklearn.datasets import make_classification, make_blobs
execfile("./DLfunctions.py") # Since import does not work in Rmd!!!

X1, Y1 = make_blobs(n_samples = 400, n_features = 2, centers = 9,
                       cluster_std = 1.3, random_state = 4)
#Create 2 classes
Y1=Y1.reshape(400,1)
Y1 = Y1 % 2
X2=X1.T
Y2=Y1.T

#Perform gradient descent
parameters,costs = computeNN(X2, Y2, numHidden = 4, learningRate=0.5, numIterations = 10000)
plot_decision_boundary(lambda x: predict(parameters, x.T), X2, Y2,str(4),str(0.5),"fig3.png")
## Cost after iteration 0: 0.692669
## Cost after iteration 1000: 0.246650
## Cost after iteration 2000: 0.227801
## Cost after iteration 3000: 0.226809
## Cost after iteration 4000: 0.226518
## Cost after iteration 5000: 0.226331
## Cost after iteration 6000: 0.226194
## Cost after iteration 7000: 0.226085
## Cost after iteration 8000: 0.225994
## Cost after iteration 9000: 0.225915

 

6. The 3 layer Neural Network in R (vectorized)

For this the dataset created by Python is saved  to see how R performs on the same dataset. The vectorized implementation of a Neural Network was just a little more interesting as R does not have a similar package like ‘numpy’. While numpy handles broadcasting implicitly, in R I had to use the ‘sweep’ command to broadcast. The implementaion is included below. Note that since the initialization with random weights is slightly different, R performs best with a learning rate of 0.1 and with 6 hidden units

source("DLfunctions2_1.R")
z <- as.matrix(read.csv("data.csv",header=FALSE)) # 
x <- z[,1:2]
y <- z[,3]
x1 <- t(x)
y1 <- t(y)
#Perform gradient descent
nn <-computeNN(x1, y1, 6, learningRate=0.1,numIterations=10000) # Good
## [1] 0.7075341
## [1] 0.2606695
## [1] 0.2198039
## [1] 0.2091238
## [1] 0.211146
## [1] 0.2108461
## [1] 0.2105351
## [1] 0.210211
## [1] 0.2099104
## [1] 0.2096437
## [1] 0.209409
plotDecisionBoundary(z,nn,6,0.1)

 

 7.  The 3 layer Neural Network in Octave (vectorized)

This uses the same dataset that was generated using Python code.
source("DL-function2.m")
data=csvread("data.csv");
X=data(:,1:2);
Y=data(:,3);
# Make sure that the model parameters are correct. Take the transpose of X & Y

#Perform gradient descent
[W1,b1,W2,b2,costs]= computeNN(X', Y',4, learningRate=0.5, numIterations = 10000);

8a. Performance  for different learning rates (Python)

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import sklearn.linear_model
import pandas as pd

from sklearn.datasets import make_classification, make_blobs
execfile("./DLfunctions.py") # Since import does not work in Rmd!!!
# Create data
X1, Y1 = make_blobs(n_samples = 400, n_features = 2, centers = 9,
                       cluster_std = 1.3, random_state = 4)
#Create 2 classes
Y1=Y1.reshape(400,1)
Y1 = Y1 % 2
X2=X1.T
Y2=Y1.T
# Create a list of learning rates
learningRate=[0.5,1.2,3.0]
df=pd.DataFrame()
#Compute costs for each learning rate
for lr in learningRate:
   parameters,costs = computeNN(X2, Y2, numHidden = 4, learningRate=lr, numIterations = 10000)
   print(costs)
   df1=pd.DataFrame(costs)
   df=pd.concat([df,df1],axis=1)
#Set the iterations
iterations=[0,1000,2000,3000,4000,5000,6000,7000,8000,9000]   
#Create data frame
#Set index
df1=df.set_index([iterations])
df1.columns=[0.5,1.2,3.0]
fig=df1.plot()
fig=plt.title("Cost vs No of Iterations for different learning rates")
plt.savefig('fig4.png', bbox_inches='tight')

8b. Performance  for different hidden units (Python)

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import sklearn.linear_model
import pandas as pd

from sklearn.datasets import make_classification, make_blobs
execfile("./DLfunctions.py") # Since import does not work in Rmd!!!
#Create data set
X1, Y1 = make_blobs(n_samples = 400, n_features = 2, centers = 9,
                       cluster_std = 1.3, random_state = 4)
#Create 2 classes
Y1=Y1.reshape(400,1)
Y1 = Y1 % 2
X2=X1.T
Y2=Y1.T
# Make a list of hidden unis
numHidden=[3,5,7]
df=pd.DataFrame()
#Compute costs for different hidden units
for numHid in numHidden:
   parameters,costs = computeNN(X2, Y2, numHidden = numHid, learningRate=1.2, numIterations = 10000)
   print(costs)
   df1=pd.DataFrame(costs)
   df=pd.concat([df,df1],axis=1)
#Set the iterations
iterations=[0,1000,2000,3000,4000,5000,6000,7000,8000,9000]   
#Set index
df1=df.set_index([iterations])
df1.columns=[3,5,7]
#Plot
fig=df1.plot()
fig=plt.title("Cost vs No of Iterations for different no of hidden units")
plt.savefig('fig5.png', bbox_inches='tight')

9a. Performance  for different learning rates (R)

source("DLfunctions2_1.R")
# Read data
z <- as.matrix(read.csv("data.csv",header=FALSE)) # 
x <- z[,1:2]
y <- z[,3]
x1 <- t(x)
y1 <- t(y)
#Loop through learning rates and compute costs
learningRate <-c(0.1,1.2,3.0)
df <- NULL
for(i in seq_along(learningRate)){
   nn <-  computeNN(x1, y1, 6, learningRate=learningRate[i],numIterations=10000) 
   cost <- nn$costs
   df <- cbind(df,cost)
  
}      

#Create dataframe
df <- data.frame(df) 
iterations=seq(0,10000,by=1000)
df <- cbind(iterations,df)
names(df) <- c("iterations","0.5","1.2","3.0")
library(reshape2)
df1 <- melt(df,id="iterations")  # Melt the data
#Plot  
ggplot(df1) + geom_line(aes(x=iterations,y=value,colour=variable),size=1)  + 
    xlab("Iterations") +
    ylab('Cost') + ggtitle("Cost vs No iterations for  different learning rates")

9b. Performance  for different hidden units (R)

source("DLfunctions2_1.R")
# Loop through Num hidden units
numHidden <-c(4,6,9)
df <- NULL
for(i in seq_along(numHidden)){
    nn <-  computeNN(x1, y1, numHidden[i], learningRate=0.1,numIterations=10000) 
    cost <- nn$costs
    df <- cbind(df,cost)
    
}      
df <- data.frame(df) 
iterations=seq(0,10000,by=1000)
df <- cbind(iterations,df)
names(df) <- c("iterations","4","6","9")
library(reshape2)
# Melt
df1 <- melt(df,id="iterations") 
# Plot   
ggplot(df1) + geom_line(aes(x=iterations,y=value,colour=variable),size=1)  + 
    xlab("Iterations") +
    ylab('Cost') + ggtitle("Cost vs No iterations for  different number of hidden units")

10a. Performance of the Neural Network for different learning rates (Octave)

source("DL-function2.m")
plotLRCostVsIterations()
print -djph figa.jpg

10b. Performance of the Neural Network for different number of hidden units (Octave)

source("DL-function2.m")
plotHiddenCostVsIterations()
print -djph figa.jpg

11. Turning the heat on the Neural Network

In this 2nd part I create a a central region of positives and and the outside region as negatives. The points are generated using the equation of a circle (x – a)^{2} + (y -b) ^{2} = R^{2} . How does the 3 layer Neural Network perform on this?  Here’s a look! Note: The same dataset is also used for R and Octave Neural Network constructions

12. Manually creating a circular central region

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors
import sklearn.linear_model

from sklearn.model_selection import train_test_split
from sklearn.datasets import make_classification, make_blobs
from matplotlib.colors import ListedColormap
import sklearn
import sklearn.datasets

colors=['black','gold']
cmap = matplotlib.colors.ListedColormap(colors)
x1=np.random.uniform(0,10,800).reshape(800,1)
x2=np.random.uniform(0,10,800).reshape(800,1)
X=np.append(x1,x2,axis=1)
X.shape
# Create (x-a)^2 + (y-b)^2 = R^2
# Create a subset of values where squared is <0,4. Perform ravel() to flatten this vector
a=(np.power(X[:,0]-5,2) + np.power(X[:,1]-5,2) <= 6).ravel()
Y=a.reshape(800,1)

cmap = matplotlib.colors.ListedColormap(colors)

plt.figure()
plt.title('Non-linearly separable classes')
plt.scatter(X[:,0], X[:,1], c=Y,
           marker= 'o', s=15,cmap=cmap)
plt.savefig('fig6.png', bbox_inches='tight')

13a. Decision boundary with hidden units=4 and learning rate = 2.2 (Python)

With the above hyper parameters the decision boundary is triangular

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors
import sklearn.linear_model
execfile("./DLfunctions.py")
x1=np.random.uniform(0,10,800).reshape(800,1)
x2=np.random.uniform(0,10,800).reshape(800,1)
X=np.append(x1,x2,axis=1)
X.shape

# Create a subset of values where squared is <0,4. Perform ravel() to flatten this vector
a=(np.power(X[:,0]-5,2) + np.power(X[:,1]-5,2) <= 6).ravel()
Y=a.reshape(800,1)

X2=X.T
Y2=Y.T

parameters,costs = computeNN(X2, Y2, numHidden = 4, learningRate=2.2, numIterations = 10000)
plot_decision_boundary(lambda x: predict(parameters, x.T), X2, Y2,str(4),str(2.2),"fig7.png")
## Cost after iteration 0: 0.692836
## Cost after iteration 1000: 0.331052
## Cost after iteration 2000: 0.326428
## Cost after iteration 3000: 0.474887
## Cost after iteration 4000: 0.247989
## Cost after iteration 5000: 0.218009
## Cost after iteration 6000: 0.201034
## Cost after iteration 7000: 0.197030
## Cost after iteration 8000: 0.193507
## Cost after iteration 9000: 0.191949

13b. Decision boundary with hidden units=12 and learning rate = 2.2 (Python)

With the above hyper parameters the decision boundary is triangular

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors
import sklearn.linear_model
execfile("./DLfunctions.py")
x1=np.random.uniform(0,10,800).reshape(800,1)
x2=np.random.uniform(0,10,800).reshape(800,1)
X=np.append(x1,x2,axis=1)
X.shape

# Create a subset of values where squared is <0,4. Perform ravel() to flatten this vector
a=(np.power(X[:,0]-5,2) + np.power(X[:,1]-5,2) <= 6).ravel()
Y=a.reshape(800,1)

X2=X.T
Y2=Y.T

parameters,costs = computeNN(X2, Y2, numHidden = 12, learningRate=2.2, numIterations = 10000)
plot_decision_boundary(lambda x: predict(parameters, x.T), X2, Y2,str(12),str(2.2),"fig8.png")
## Cost after iteration 0: 0.693291
## Cost after iteration 1000: 0.383318
## Cost after iteration 2000: 0.298807
## Cost after iteration 3000: 0.251735
## Cost after iteration 4000: 0.177843
## Cost after iteration 5000: 0.130414
## Cost after iteration 6000: 0.152400
## Cost after iteration 7000: 0.065359
## Cost after iteration 8000: 0.050921
## Cost after iteration 9000: 0.039719

14a. Decision boundary with hidden units=9 and learning rate = 0.5 (R)

When the number of hidden units is 6 and the learning rate is 0,1, is also a triangular shape in R

source("DLfunctions2_1.R")
z <- as.matrix(read.csv("data1.csv",header=FALSE)) # N
x <- z[,1:2]
y <- z[,3]
x1 <- t(x)
y1 <- t(y)
nn <-computeNN(x1, y1, 9, learningRate=0.5,numIterations=10000) # Triangular
## [1] 0.8398838
## [1] 0.3303621
## [1] 0.3127731
## [1] 0.3012791
## [1] 0.3305543
## [1] 0.3303964
## [1] 0.2334615
## [1] 0.1920771
## [1] 0.2341225
## [1] 0.2188118
## [1] 0.2082687
plotDecisionBoundary(z,nn,6,0.1)

14b. Decision boundary with hidden units=8 and learning rate = 0.1 (R)

source("DLfunctions2_1.R")
z <- as.matrix(read.csv("data1.csv",header=FALSE)) # N
x <- z[,1:2]
y <- z[,3]
x1 <- t(x)
y1 <- t(y)
nn <-computeNN(x1, y1, 8, learningRate=0.1,numIterations=10000) # Hemisphere
## [1] 0.7273279
## [1] 0.3169335
## [1] 0.2378464
## [1] 0.1688635
## [1] 0.1368466
## [1] 0.120664
## [1] 0.111211
## [1] 0.1043362
## [1] 0.09800573
## [1] 0.09126161
## [1] 0.0840379
plotDecisionBoundary(z,nn,8,0.1)

15a. Decision boundary with hidden units=12 and learning rate = 1.5 (Octave)

source("DL-function2.m")
data=csvread("data1.csv");
X=data(:,1:2);
Y=data(:,3);
# Make sure that the model parameters are correct. Take the transpose of X & Y
[W1,b1,W2,b2,costs]= computeNN(X', Y',12, learningRate=1.5, numIterations = 10000);
plotDecisionBoundary(data, W1,b1,W2,b2)
print -djpg fige.jpg

Conclusion: This post implemented a 3 layer Neural Network to create non-linear boundaries while performing classification. Clearly the Neural Network performs very well when the number of hidden units and learning rate are varied.

To be continued…
Watch this space!!

References
1. Deep Learning Specialization
2. Neural Networks for Machine Learning
3. Deep Learning, Ian Goodfellow, Yoshua Bengio and Aaron Courville
4. Neural Networks: The mechanics of backpropagation
5. Machine Learning

Also see
1. My book ‘Practical Machine Learning with R and Python’ on Amazon
2. GooglyPlus: yorkr analyzes IPL players, teams, matches with plots and tables
3. The 3rd paperback & kindle editions of my books on Cricket, now on Amazon
4. Exploring Quantum Gate operations with QCSimulator
5. Simulating a Web Joint in Android
6. My travels through the realms of Data Science, Machine Learning, Deep Learning and (AI)
7. Presentation on Wireless Technologies – Part 1

To see all posts check Index of posts

Neural Networks: The mechanics of backpropagation

The initial work in the  ‘Backpropagation Algorithm’  started in the 1980’s and led to an explosion of interest in Neural Networks and  the application of backpropagation

The ‘Backpropagation’ algorithm computes the minimum of an error function with respect to the weights in the Neural Network. It uses the method of gradient descent. The combination of weights in a multi-layered neural network, which minimizes the error/cost function is considered to be a solution of the learning problem.

neuron-1

In the Neural Network above
out_{o1} =\sum_{i} w_{i}*x_{i}
E = 1/2(target - out)^{2}
\partial E/\partial out= 1/2*2*(target - out) *-1 = -(target - out)
\partial E/\partial w_{i} =\partial E/\partial y* \partial y/\partial w_{i}
\partial E/\partial w_{i} = -(target - out) * x_{i}

Checkout my book ‘Deep Learning from first principles: Second Edition – In vectorized Python, R and Octave’. My book starts with the implementation of a simple 2-layer Neural Network and works its way to a generic L-Layer Deep Learning Network, with all the bells and whistles. The derivations have been discussed in detail. The code has been extensively commented and included in its entirety in the Appendix sections. My book is available on Amazon as paperback ($18.99) and in kindle version($9.99/Rs449).

Perceptrons and single layered neural networks can only classify, if the sample space is linearly separable. For non-linear decision boundaries, a multi layered neural network with  backpropagation is required to generate more complex boundaries.The backpropagation algorithm, computes the minimum of the error function in weight space using the method of gradient descent. This computation of the gradient, requires the activation function to be both differentiable and continuous. Hence the sigmoid or logistic function is typically chosen as the activation function at every layer.

This post looks at a 3 layer neural network with 1 input, 1 hidden and 1 output. To a large extent this post is based on Matt Mazur’s detailed “A step by step backpropagation example“, and Prof Hinton’s “Neural Networks for Machine Learning” at Coursera and a few other sources.

While Matt Mazur’s post uses example values, I generate the formulas for the gradient derivatives for each weight in the hidden and input layers. I intend to implement a vector version of backpropagation in Octave, R and Python. So this post is a prequel to that.

The 3 layer neural network is as below

nn

Some basic derivations which are used in backpropagation

Chain rule of differentiation
Let y=f(u)
and u=g(x) then
\partial y/\partial x = \partial y/\partial u * \partial u/\partial x

An important result
y=1/(1+e^{-z})
Let x= 1 + e^{-z}  then
y = 1/x
\partial y/\partial x = -1/x^{2}
\partial x/\partial z = -e^{-z}

Using the chain rule of differentiation we get
\partial y/\partial z = \partial y/\partial x * \partial x/\partial z
=-1/(1+e^{-z})^{2}* -e^{-z} = e^{-z}/(1+e^{-z})^{2}
Therefore \partial y/\partial z = y(1-y)                                   -(A)

1) Feed forward network
The net output at the 1st hidden layer
in_{h1} = w_{1}i_{1} + w_{2}i_{2} + b_{1}
in_{h2} = w_{3}i_{1} + w_{4}i_{2} + b_{1}

The sigmoid/logistic function function is used to generate the activation outputs for each hidden layer. The sigmoid is chosen because it is continuous and also has a continuous derivative

out_{h1} = 1/1+e^{-in_{h1}}
out_{h2} = 1/1+e^{-in_{h2}}

The net output at the output layer
in_{o1} = w_{5}out_{h_{1}} +  w_{6}out_{h_{2}} + b_{2}
in_{o2} = w_{7}out_{h_{1}} +  w_{8}out_{h_{2}} + b_{2}

Total error
E_{total} = 1/2\sum (target - output)^{2}
E_{total} = E_{o1} + E_{o2}
E_{total} = 1/2(target_{o_{1}} - out_{o_{1}})^{2} + 1/2(target_{o_{2}} - out_{o_{2}})^{2}

2)The backwards pass
In the backward pass we need to compute how the squared error changes with changing weight. i.e we compute \partial E_{total}/\partial w_{i} for each weight w_{i}. This is shown below

A squared error is assumed

Error gradient  with w_{5}

output
 \partial E_{total}/\partial w_{5} = \partial E_{total}/\partial out_{o_{1}} * \partial out_{o_{1}}/\partial in_{o_{1}} * \partial in_{o_{1}}/ \partial w_{5}                -(B)

Since
E_{total} = 1/2\sum (target - output)^{2}
E_{total} = 1/2(target_{o_{1}} - out_{o_{1}})^{2} + 1/2(target_{o_{2}} - out_{o_{2}})^{2}
 \partial E _{total}/\partial out_{o1} = \partial E_{o1}/\partial out_{o1} + \partial E_{o2}/\partial out_{o1}
 \partial E _{total}/\partial out_{o1} = \partial /\partial _{out_{o1}}[1/2(target_{01}-out_{01})^{2}- 1/2(target_{02}-out_{02})^{2}]
 \partial E _{total}/\partial out_{o1} = 2 * 1/2*(target_{01} - out_{01}) *-1 + 0

Now considering the 2nd term in (B)
\partial out_{o1}/\partial in_{o1} = \partial/\partial in_{o1} [1/(1+e^{-in_{o1}})]

Using result (A)
 \partial out_{o1}/\partial in_{o1} = \partial/\partial in_{o1} [1/(1+e^{-in_{o1}})] = out_{o1}(1-out_{o1})

The 3rd term in (B)
 \partial in_{o1}/\partial w_{5} = \partial/\partial w_{5} [w_{5}*out_{h1} + w_{6}*out_{h2}] = out_{h1}
 \partial E_{total}/\partial w_{5}=-(target_{o1} - out_{o1}) * out_{o1} *(1-out_{o1}) * out_{h1}

Having computed \partial E_{total}/\partial w_{5}, we now perform gradient descent, by computing a new weight, assuming a learning rate \alpha
 w_{5}^{+} = w_{5} - \alpha * \partial E_{total}/\partial w_{5}

If we do this for  \partial E_{total}/\partial w_{6} we would get
 \partial E_{total}/\partial w_{6}=-(target_{02} - out_{02}) * out_{02} *(1-out_{02}) * out_{h2}

3)Hidden layer

hidden
We now compute how the total error changes for a change in weight w_{1}
 \partial E_{total}/\partial w_{1}= \partial E_{total}/\partial out_{h1}* \partial out_{h1}/\partial in_{h1} * \partial in_{h1}/\partial w_{1} – (C)

Using
E_{total} = E_{o1} + E_{o2} we get
 \partial E_{total}/\partial w_{1}= (\partial E_{o1}/\partial out_{h1}+  \partial E_{o2}/\partial out_{h1}) * \partial out_{h1}/\partial in_{h1} * \partial in_{h1}/\partial w_{1}
\partial E_{total}/\partial w_{1}=(\partial E_{o1}/\partial out_{h1}+  \partial E_{o2}/\partial out_{h1}) * out_{h1}*(1-out_{h1})*i_{1}     -(D)

Considering the 1st term in (C)
 \partial E_{total}/\partial out_{h1}= \partial E_{o1}/\partial out_{h1}+  \partial E_{o2}/\partial out_{h1}

Now
 \partial E_{o1}/\partial out_{h1} = \partial E_{o1}/\partial out_{o1} *\partial out_{o1}/\partial in_{01} * \partial in_{o1}/\partial out_{h1}
 \partial E_{o2}/\partial out_{h1} = \partial E_{o2}/\partial out_{o2} *\partial out_{o2}/\partial in_{02} * \partial in_{o2}/\partial out_{h1}

which gives the following
 \partial E_{o1}/\partial out_{o1} *\partial out_{o1}/\partial in_{o1} * \partial in_{o1}/\partial out_{h1} =-(target_{o1}-out_{o1}) *out_{o1}(1-out_{o1})*w_{5} – (E)
 \partial E_{o2}/\partial out_{o2} *\partial out_{o2}/\partial in_{02} * \partial in_{o2}/\partial out_{h1} =-(target_{o2}-out_{o2}) *out_{o2}(1-out_{o2})*w_{6} – (F)

Combining (D), (E) & (F) we get
\partial E_{total}/\partial w_{1} = -[(target_{o1}-out_{o1}) *out_{o1}(1-out_{o1})*w_{5} + (target_{o2}-out_{o2}) *out_{o2}(1-out_{o2})*w_{6}]*out_{h1}*(1-out_{h1})*i_{1}

This can be represented as
\partial E_{total}/\partial w_{1} = -\sum_{i}[(target_{oi}-out_{oi}) *out_{oi}(1-out_{oi})*w_{j}]*out_{h1}*(1-out_{h1})*i_{1}

With this derivative a new value of w_{1} is computed
 w_{1}^{+} = w_{1} - \alpha * \partial E_{total}/\partial w_{1}

Hence there are 2 important results
At the output layer we have
a)  \partial E_{total}/\partial w_{j}=-(target_{oi} - out_{oi}) * out_{oi} *(1-out_{oi}) * out_{hi}
At each hidden layer we compute
b) \partial E_{total}/\partial w_{k} = -\sum_{i}[(target_{oi}-out_{oi}) *out_{oi}(1-out_{oi})*w_{j}]*out_{hk}*(1-out_{hk})*i_{k}

Backpropagation, was very successful in the early years,  but the algorithm does have its problems for e.g the issue of the ‘vanishing’ and ‘exploding’ gradient. Yet it is a very key development in Neural Networks, and  the issues with the backprop gradients have been addressed through techniques such as the  momentum method and adaptive learning rate etc.

In this post. I derive the weights at the output layer and the hidden layer. As I already mentioned above, I intend to implement a vector version of the backpropagation algorithm in Octave, R and Python in the days to come.

Watch this space! I’ll be back

P.S. If you find any typos/errors, do let me know!

References
1. Neural Networks for Machine Learning by Prof Geoffrey Hinton
2. A Step by Step Backpropagation Example by Matt Mazur
3. The Backpropagation algorithm by R Rojas
4. Backpropagation Learning Artificial Neural Networks David S Touretzky
5. Artificial Intelligence, Prof Sudeshna Sarkar, NPTEL

Also see my other posts
1. Introducing QCSimulator: A 5-qubit quantum computing simulator in R
2. Design Principles of Scalable, Distributed Systems
3. A method for optimal bandwidth usage by auctioning available bandwidth using the OpenFlow protocol
4. De-blurring revisited with Wiener filter using OpenCV
5. GooglyPlus: yorkr analyzes IPL players, teams, matches with plots and tables
6. Re-introducing cricketr! : An R package to analyze performances of cricketers

To see all my posts go to ‘Index of Posts