Near Real-time Analytics of ICC Men’s T20 World Cup with GooglyPlusPlus

In my last post GooglyPlusPlus gets ready for ICC Men’s T20 World Cup, I had mentioned that GooglyPlusPlus was preparing for the big event the ICC Men’s T20 World cup. Now that the T20 World cup is underway, my Shiny app in R, GooglyPlusPlus ,will be generating near real-time analytics of matches completed the previous day. Besides the app can also do historical analysis of players, teams and matches.

The whole process is automated. A cron job will execute every day, in the morning, which will automatically download the matches of the previous day from Cricsheet, unzip them, start a pipeline which will transform and process the match data into necessary folders and finally upload the newly acquired data into my Shiny app. Hence, you will be able to access all the breathless, pulsating cricketing action in timeless, interactive plots and tables which will capture all aspects of Men’s T20 matches, namely batsman, bowler performance, match analysis, team-vs-team, team-vs-all teams besides ranking of batsmen & bowlers. Since the data is cumulative, all the analytics are historical and current.

Check out GooglyPlusPlus!!

The data for GooglyPlusPlus is taken from Cricsheet

Interest in cricket, has mushroomed in recent times around the world, with the addition of new formats which started with ODI, T20, T10, 100 ball and so on. There are leagues which host these matches at different levels around the world. While GooglyPlusPlus, provides near real-time analytics of Men’s T20 World cup, we can clearly envision a big data platform which ingests matches daily from multiple cricket formats, leagues around the world generating real-time and near real-time analytics which are essential these days to selection of teams at different levels through auctions. For more discussion on this see my posts

  1. Big Data 7: yorkr waltzes with Apache NiFi
  2. Big Data 6: The T20 Dance of Apache NiFi and yorkpy

We could imagine a Data Lake, into which are ingested data from the different cricket formats, leagues through appropriate technology connectors. Once the data is ingested, we could have data pipelines, based on Azure ADF, Apache NiFi, Apache Airflow or Amazon EMR etc., to transform, process and enhance the data, generating real-time analytics on the fly. Recent formats like T20, T10 require more urgency in strategic thinking based on scoring within limited overs, or containing batsmen from going on a rampage within the set of overs, the analytics on a fly may help the coach to modify the batting or bowling lineup at points in match. In this context see my earlier post Using Linear Programming (LP) for optimizing bowling change or batting lineup in T20 cricket

All of these are not just possible, but are likely to become reality as more and more formats, leagues and cricket data proliferate around the world.

This post, focuses on generating near-real time analytics for ICC Men’s T20 World Cup using GooglyPlusPlus. Included below, is a sampling of the analytics that you can perform for analysing the matches. In addition you can do all the analysis included in my post GooglyPlusPlus gets ready for ICC Men’s T20 World Cup

  1. Namibia-Sri Lanka-16 Oct 2022 : Match Worm graph

The opening match between Namibia vs Sri Lanka resulted in an upset. We can see this in the match worm-wicket graph below

2. Scotland vs West Indies – 17 Oct 2022: Batsmen vs Bowlers

George Munsey was the top scorer for Scotland and was instrumental in the win against WI. His performance against West Indies bowlers is shown below. Note, the charts are interactive

3. Zimbabwe vs Ireland – 17 Oct 2022 : Team Runs vs SR

Sikander Raza of Zimbabwe with 82 runs with the strike rate ~ 170

4. United Arab Emirates vs Netherlands – 16 Oct 2022: Team runs across 20 overs

UAE pipped Netherlands in the middle overs and were able to win by 1 ball and 3 wickets

5. Scotland vs Ireland – 19 Oct 2022 : Team Runs vs SR Middle overs plot

Curtis Campher snatched the game away from Scotland with his stellar performance in middle and death overs

6. UAE vs Namibia : 20 Oct 2022 : Team Wickets vs ER plot

Basoor Hameed and Zahoor Khan got 2 wickets apiece with an economy rate of ~5.00 but still they were not able to stop UAE from stealing a win

7. Overall Runs vs SR in T20 World Cup 2022

It is too early to rank the players, nevertheless in the current T20 World Cup, MP O’Dowd (Netherlands), BKG Mendis (Sri Lanka) and JN Frylinck(Namibia) are the top 3 batsmen with good runs and Strike Rate

8. Overall Wickets over ER in T20 World Cup 2022

The top 3 bowlers so far in T20 World Cup 2022 are a) BFW de Leede (Netherlands) b) PWH De Silva (Sri Lanka) c) KP Meiyappan (UAE) with a total of 7,7, and 6 wickets respectively

Note: Besides the match analysis GooglyPlusPlus also provides detailed analysis of batsmen, bowlers, matches as above, team-vs-team, team-vs-all teams, ranking of batsmen & bowlers etc. For more details see my post GooglyPlusPlus gets ready for ICC Men’s T20 World Cup

Do visit GooglyPlusPlus everyday to check out the cricketing actions of matches gone by. You can also follow me on twitter @tvganesh_85 for daily highlights.

You may also like

  1. Introducing QCSimulator: A 5-qubit quantum computing simulator in R
  2. De-blurring revisited with Wiener filter using OpenCV
  3. Using Reinforcement Learning to solve Gridworld
  4. Deep Learning from first principles in Python, R and Octave – Part 3
  5. Getting started with Tensorflow, Keras in Python and R
  6. Big Data-4: Webserver log analysis with RDDs, Pyspark, SparkR and SparklyR
  7. Practical Machine Learning with R and Python – Part 5
  8. Cricpy takes a swing at the ODIs
  9. Video presentation on Machine Learning, Data Science, NLP and Big Data – Part 1

To see all posts click Index of posts

Then, Now(IPL 2022), Beyond : Insights from GooglyPlusPlus

IPL 2022 has just concluded and yet again, it is has thrown a lot of promising and potential youngsters in its wake, while established players have fallen! With IPL 2022, we realise that “Sceptre and Crown must tumble down” and that ‘the glories‘ of form and class like everything else are “shadows not substantial things” (Death the Leveller by James Shirley).

So King Kohli had to kneel, and hitman’ himself got hit. Rishabh Pant, Jadeja also had a poor season. On the contrary there were several youngsters who shone like Abhishek Sharma, Tilak Verma, Umran Malik or a Mohsin Khan

This post is about my potential T20 Indian players for the World Cup 2022 and beyond.

The post below includes my own analysis and thoughts. Feel free to try out my Shiny app GooglyPlusPlus and draw your own conclusions.

You can also view the analyais as a youtube video at Insights from GooglyPlusPlus

How often we hear that data by itself is useless, unless we can draw insights from it? This is a prevailing theme in the corporate world and everybody uses all sorts of tools to analyse and subsequently draw insights. Data analysis can be done in many ways as data can be sliced, diced, chopped in a zillion ways. There are many facets and perspectives to analysing data. Creating insights is easy, but arriving at actionable insights is anything but. So, the problem of selecting the best 11 is difficult as there are so many ways to look at the analysis. My Shiny app GooglyPlusPlus based on my R package yorkr can analyse data in several ways namely

  1. Batsman analysis
  2. Bowler analysis
  3. Match analysis
  4. Team vs team analysis
  5. Team vs all teams analysis
  6. Batsman vs bowler and vice versa
  7. Analysis of in 3,4,5 in power play, middle and death overs

GooglyPlusPlus uses my R package yorkr which has ~ 160 functions some which have several options. So, we can say roughly there are ~500 different ways that analysis can be done or in other words we can gather almost roughly 500+ different insights, not to mention that there are so many combinations of head-on matches and one-vs-all matches.

So generating insights or different ways of analysis data alone is not enough. The question is whether we can get a consolidated view from the different insights. In this post, I try to identify the best contenders for the Indian T20 team. This is far more difficult than it looks. Do you select players on past historical performance or do you choose from the newer crop of players, who have excelled in the recent IPL season. I think this boils down the typical situation in any domain. In engineering, we have tradeoffs – processing power vs memory tradeoff, throughput vs latency tradeoff or in the financial domain it is cost vs benefit or risk vs reward tradeoff. For team selection, the quandary is, whether to choose seasoned players with good historical performance but a poor performances in recent times or go with youngsters who have played with great courage and flair in this latest episode of IPL 2022. Hence there is a tradeoff between reliable but below average performance or risky but superlative performances of new players.

For this I base my potential list from

  • Then (past history of batsmen & bowlers) – I have chosen the performance of batsmen and bowlers in the last 3 years. With we can arrive at those who have had reasonably reliable performance for the last 3 years
  • Now (IPL 2022) – Performance in the current season IPL 2022

A. Then (Jan 2020 – May 2022) – Batsmen analysis

In this section I analyse the performances of batsmen and bowlers from Jan 2022 – May 2022. This is done based on ranking, and plots of Runs vs Strike Rate in Power Play, Middle and Death overs

Also I analyse bowlers based on the overall rank from Jan 2022- May 2022. Further more analysis is done on Wickets vs Economy Rate overall and in Power Play, Middle and Death overs

a. Ranks of batsmen (Runs over Strike Rate) : Jan 2020 – May 2022

The top batsmen consistency wise

[KL Rahul, Shikhar Dhawan, Ruturaj Gaikwad, Ishan Kishan, Shubman Gill, Suryakumar Yadav, Sanju Samson, Mayank Agarwal, Prithvi Shaw, Devdutt Padikkal, Nitish Rana, Virat Kohli, Shreyas Iyer, Ambati Rayadu, Rahul Tripathi, Rishabh Pant, Rohit Sharma, Hardik Pandya]

b. Ranks of batsmen (Strike Rate over Runs) : Jan 2020 – May 2022

The most consistent players from the Strike Rate perspective are

The batsmen with best Strike Rate in the last 3 years are

[Dinesh Karthik, Prithvi Shaw, Hardik Pandya, Rishabh Pant, Sanju Samson, Rahul Tripathi, Suryakumar Yadav, Nitish Rana, Mayank Agarwal, Krunal Pandya, MS Dhoni, Shikhar Dhawan, Ishan Kishan, KL Rahul]

c.Best Batsmen Runs vs SR : Jan 2020 – May 2022

The best batsmen should have a reasonable combination of Runs and SR. The best batsmen are

[KL Rahul, Shikhar Dhawan, Ruturaj Gaikwad, Ishan Kishan, Shubman Gill , Sanju Samson, Suryakumar Yadav, Shubman Gill, Mayank Agarwal, Prithvi Shaw, Nitish Rana, Hardik Pandya, Rishabh Pant, Rahul Tripathi,

d. Best batsmen Runs vs SR in Powerplay: Jan 2020 – May 2022

The best players in Power play

The best players in Power play in the last 3 years are

[KL Rahul, Prithvi Shaw, Rohit Sharma, Devdutt Padikkal, Mayank Agarwal, Virat Kohli, Ishan Kishan, Yashashvi Jaiswal, Wriddhiman Saha, Rahul Tripathi, Sanju Samson, Robin Uthappa, Venkatesh Iyer, Nitish Rana,Suryakumar Yadav, Abhishek Sharma Shreyas Iyer ]

e. Best batsmen Runs vs SR in Middleovers: Jan 2020 – May 2022

The most consistent players in the last 3 years in the middle overs are

[KL Rahul, Sanju Samson, Shikhar Dhawan, Rishabh Pant, Nitish Rana, Shreyas Iyer, Shubman Gill, Ishan Kishan, Devdutt Padikkal, Rahul Tripathi, Ruturaj Gaikwad, Shivam Dube, Hardik Pandya]

f. Best batsmen Runs vs SR in Death overs: Jan 2020 – May 2022

The best batsmen in death overs are

[Dinesh Karthik, Ravindra Jadeja, Hardik Pandya, Rahul Tewatia, MS Dhoni, KL Rahul, Rishabh Pant, Suryakumar Yadav, Ambati Rayadu, Virat Kohli, Nitish Rana, Shikhar Dhawan, Ruturaj Gaikwad, Ishan Kishan]

B) Now (IPL 2022) – Batsmen analysis

IPL 2022 just finished and clearly brings out the batsmen who are in great nick. It is always going to be a judgment call of whether to go for ‘old reliable’ or ‘new and awesome’.

a. Ranks of batsmen (Runs over Strike Rate) : IPL 2022

The best batsmen this season in Runs over Strike rate are

The best batsmen are

[KL Rahul, Shikhar Dhawan, Hardik Pandya, Deepak Hooda, Shubman Gill, Rahul Tripathi, Abhishek Sharma, Ishan Kishan, Wriddhiman Saha, Shreyas Iyer, Tilak Verma, Ruturaj Gaikwad, Sanju Samson, Shivam Dube]

b. Ranks of batsmen (Strike Rate over Runs) : IPL 2022

The batsmen with the best strike rate are

[Dinesh Karthik, Rishabh Pant, Rahul Tewathia, Rahul Tripathi, Sanju Samson, R Ashwin, Deepak Hooda, MS Dhoni, Nitish Rana, Riyan Parag, Shreya Iyer]

c.Best Batsmen Runs vs SR :IPL 2022

From an overall performance the following batsmen shone this season

[KL Rahul, Shikhar Dhawan, Shubman Gill, Hardik Pandya, Abhishel Sharma, Deepak Hooda, Rahul Tripathi, Tilak Verma, Shreya Iyer, Nitish Rana, Sanju Samson, Rishabh Pant]

d. Best batsmen Runs vs SR in Powerplay: IPL 2022

Top batsmen in Power play in IPL 2022

[Abhishek Sharma, Shikhar Dhawan, Rohit Sharma, Ishan Kishan, Shubman Gill, Prithvi Shaw, Wriddhiman Saha, Ishan Kishan, KL Rahul, Ruturaj Gaikwad, Virat Kohli, Yashasvi Jaiswal, Mayank Agarwal, Robin Uthappa, Sanju Samson, Nitish Rana]

e. Best batsmen Runs vs SR in Middleovers: IPL 2022

Best batsmen in middle overs in IPL 2022

[Deepak Hooda, Hardik Pandya, Tilak Verma, KL Rahul, Sanju Samson, Rishabh Pant, Shubman Gill, Ambati Rayudu, Suryaprakash Yadav, Shikhar Dhawan, Ruturaj Gaikwad]

f. Best batsmen Runs vs SR in Death overs: IPL 2022

Top batsmen in death overs in IPL 2022

[Dinesh Karthik, Rahul Tewatia, MS Dhoni, KL Rahul, Azar Patel, Washington Sundar, R Ashwin, Hardik Pandya, Ayush Badoni, Shivam Dube, Suryakumar Yadav, Ravindra Jadeja, Sanju Samson]

Overall Batting Performance in season

Kohli peaked in 2016 and from then on it has been a downward slide (see below)

Taking a look at Kohli’s moving average it is clear that he is past his prime and it will take a herculean effort to regain his lost glory

Similarly, Rohit Sharma’s moving average is constantly around ~30 as seen below

The cumulative average of Rohit Sharma is shown below

Comparing KL Rahul, Shikhar Dhawan, Rohit Sharma and V Kohli we see that KL Rahul and Shikhar Dhawan have had a much superior performance in the last 2-3 years. Rohit has averaged about ~25 runs every season.

Comparing the 4 wicket-keeper batsmen Sanju Samson, Rishabh Pant, Ishan Kishan and Dinesh Karthik from 2016

i) Runs over Strike Rate

We see that Pant peaked in 2018 but has not performed as well since. In the last 2 years Sanju Samson and Ishan Kishan have done well

ii) Strike Rate over Runs

For the last couple of seasons Rishabh Pant and Dinesh Kartik top the strike rate over the other 2

Similar analysis can be done other combinations of batsmen

Choosing the best batsmen from the above, my top 5 batsmen would be

  1. KL Rahul
  2. Shikhar Dhawan
  3. Prithvi Shaw, Ruturaj Gaikwad, Ishan Kishan
  4. Sanju Samson, Shreyas Iyer, Shubman Gill, Shivam Dube,
  5. Abhishek Sharma, Tilak Verma, Rahul Tripathi, Suryakumar Yadav, Deepak Hooda
  6. Rishabh Pant, Dinesh Karthik

Personally, I feel Ishan Kishan and Shreyas Iyer are a little tardy while playing express speeds, as compared to Sanju Samson or Rishabh Pant.

If you notice, I have not included both Virat Kohli or Rohit Sharma who have been below par for some time

C. Then (Jan 2020 – May 2022) – Bowler analysis

This section I analyse the performances of bowlers from Jan 2022 – May 2022. This is done based on ranking, and plots of Wickets vs Economy Rate in Power Play, Middle and Death overs

a. Ranks of bowlers (Wickets over Economy Rate) : Jan 2020 – May 2022

The most consistent bowlers Wickets over Economy Rate for the last 3 years are

[YS Chahal, Jasprit Bumrah, Mohammed Dhami, Harshal Patel, Shardul Thakur, Arshdeep Singh, Rahul Chahar, Varun Chakravarthy, Ravi Bishnoi, Prasidh Krishna, R Ashwon, Axar Patel, Mohammed Siraj, Ravindra Jadeja, Krunal Pandya, Rahul Tewatia]

b. Ranks of bowlers (Economy Rate over Wickets) : Jan 2020 – May 2022

The most economical bowlers since 2020 are

[Axar Patel, Krunal Pandya, Jasprit Bumrah, CV Varun, R Ashwin, Ravi Bishnoi, Rahul Chahar, YS Chahal, Ravindra Jadeja, Harshal Patel, Mohammed Shami, Mohammed Siraj, Rahul Tewatia, Arshdeep Singh, Prasidh Krishna, Shardul Thakur]

c.Best Bowlers Wickets vs ER : Jan 2020 – May 2022

The best bowlers Wickets vs ER will be in the bottom right quadrant. The most consistent and reliable bowlers are

[YS Chahal, Jasprit Bumrah, Mohammed Shami, Harshal Patel, CV Arun, Ravi Bishnoi, Rahul Chahar, R Ashwin, Axar Patel]

d. Best bowlers Wickets vs ER in Powerplay: Jan 2020 – May 2022

The best bowlers in Powerplay are

[Mohammed Shami, Deepak Chahar, Mohammed Siraj, Arshdeep Singh, Jasprit Bumrah, Avesh Khan, Mukesh Choudhary, Shardul Thakur, T Natarajan, Bhuvaneshwar Kumar, WashingtonSundar, Shivam Mavi]

e. Best bowlers Wickets vs ER in Middle overs : Jan 2020 – May 2022

The most reliable performers in middle overs from 2020-2022 are

[YS Chahal, Rahul Chahr, Ravi Bishnoi, Harshal Patel, Axar Patel, Jasprit Bumrah, Umran Malik, R Ashwin, Avesh Khan, Shardul Thakur, Kuldeep Yadav]

f. Best bowlers Wickets vs ER in Death overs : Jan 2020 – May 2022

The most reliable bowlers are

[Harshal Patel, Mohammed Shami, Jasprit Bumrah, Arshdeep Singh, T Natarajan, Avesh Khan, Shardul Thakur, Bhuvaneshwar Kumar, Shivam Mavi, YS Chahal, Prasidh Krishna, Mohammed Siraj, Chetan Sakariya]

B) Now (IPL 2022) – Bowler analysis

a. Ranks of bowlers (Wickets over Economy Rate) : IPL 2022

The best bowlers in IPL 2022 when considering Wickets over Economy Rate

[YS Chahal, Umran Malik, Prasidh Krishna, Mohammed Shami, Kuldeep Yadav, Harshal Patel, T Natarajan, Avesh Khan, Shardul Thakur, Mukesh Choudhary, Jasprit Bumrah, Ravi Bishnoi]

a. Ranks of bowlers (Economy Rate over Wickets) : IPL 2022

The most economical bowlers in IPL 2022 are

[Axar Patel, Jasprit Bumrah, Krunal Pandya, Umesh Yadav, Bhuvaneshwar Kumar, Rahul Chahr, Harshal Patel, Arshdeep Singh, R Ashwion, Umran Malik, Kuldeep Yadav, YS Chahal, Mohammed Shami, Avesh Khan, Prasidh Krishna]

c.Best Bowlers Wickets vs ER : IPL 2022

The overall best bowlers in IPL 2022 are

[YS Chahal, Umran Malik, Harshal Patel, Prasidh Krishna, Mohammed Shami, Kuldeep Yadav, Avesh Khan, Jasprit Bumrah, Umesh Yadav, Bhuvaneshwar Kumar, Arshdeep Singh, R Ashwin, Rahul Chahar, Krunal Pandya]

d. Best bowlers Wickets vs ER in Powerplay: IPL 2022

The best bowlers in IPL 2022 in Power play are

[Mukesh Choudhary, Mohammed Shami, Prasidh Krishna, Umesh Yadav, Avesh Khan, Mohsin Khan, T Natarajan, Jasprit Bumrah, Yash Dayal, Mohammed Siraj]

d. Best bowlers Wickets vs ER in Middle overs: IPL 2022

The best bowlers in IPL 2022 during middle overs

The best bowlers are

[YS Chahal, Umran Malik, Kuldeep Yadav, Harshal Patel, Ravi Bishnoi, R Ashwin]

e. Best bowlers Wickets vs ER in Death overs: IPL 2022

The best bowlers in death overs in IPL 2022 are

[T Natarajan, Harshal Patel, Bhuvaneshwar Kumar, Mohammed Shami, Jasprit Bumrah, Shardul Thakur, YS Chahal, Prasidh Krishna, Avesh Khan, Mohsin Khan, Yash Dayal, Umran Malik, Arshdeep Singh]

Typically in a team we would need a combination of 4 bowlers (2 fast & 2 spinner or 3 fast and 1 spinner) with an additional player who is all rounder.

For 4 bowlers we could have

  1. JJ Bumrah
  2. Mohammed Shami, Umran Malik, Bhuvaneshwar Kumar, Umesh Yadav
  3. Arshdeep Singh, Avesh Khan, Mohsin Khan, Harshal Patel
  4. YS Chahal, Ravi Bishnoi, Rahul Chahar, Axar Patel
  5. Ravindra Jadeja, Hardik Pandya, Rahul Tewathia, R Ashwin

i) Performance comparison (Wickets over Economy Rate)

Bumrah had the best season in 2020. He has been doing quite well and has been among the wickets

ii) Performance comparison (Economy Rate over Wickets)

Bumrah has the best Economy Rate

We can do a wicket prediction of bowlers. So for example for Bumrah it is

iii) Performance evaluation (Wickets over Economy Rate)

Harshal Patel followed by Avesh Khan had a good season last year, but Umran Malik pipped them this year (see below)

iv) Performance analysis of spinners

a. Wickets over Economy Rate: 2022

Chahal has the best season followed by Bishnoi and Chahar this season

b) Economy Rate over WIckets

Axar Patel has the best economy rate followed by Rahul Chahar

Conclusion

The above post identified the best candidates for the Indian team in the future and beyond. In my T20 list, I have neither included Virat Kohli or Rohit Sharma. The data in T20 clearly indicates that they have had their days. There is a lot more talent around. The tradeoff is a little risk for a greater potential performance. My list would be

  1. KL Rahul
  2. Shikhar Dhawan
  3. Ruturaj Gaikwad, Prithvi Shaw, Rahul Tripathi
  4. Suryakumar Yadav, Shreyas Iyer, Abhishek Sharma, Deepak Hooda
  5. Sanju Samson (Wicket keeper/captain)/ Rishabh Pant/Dinesh Karthik
  6. Hardik Pandya, Ravindra Jadeja, Rahul Tewathia
  7. Jasprit Bumrah
  8. Mohammed Shami, Bhuvaneshwar Kumar, Umran Malik
  9. Arshdeep Singh, Avesh Khan, Harshal Patel
  10. YS Chahal
  11. Axar Patel, Ravi Bishnoi, Rahul Chahar

You may agree/ disagree with my list. Feel free to do your analysis with GooglyPlusPlus and come to your own conclusions

This analysis is also available on youtube Insights from GooglyPlusPlus

You may also like

  1. Deep Learning from first principles in Python, R and Octave – Part 1
  2. Player Performance Estimation using AI Collaborative Filtering
  3. The mechanics of Convolutional Neural Networks in Tensorflow and Keras
  4. TWS-4: Gossip protocol: Epidemics and rumors to the rescue
  5. Big Data-4: Webserver log analysis with RDDs, Pyspark, SparkR and SparklyR
  6. Programming languages in layman’s language
  7. Practical Machine Learning with R and Python – Part 4
  8. Pitching yorkpy…swinging away from the leg stump to IPL – Part 3
  9. Revisiting World Bank data analysis with WDI and gVisMotionChart
  10. Natural language processing: What would Shakespeare say?

To see all posts click Index of posts


IPL 2022: Near real-time analytics with GooglyPlusPlus!!!

It is that time of the year when there is “a song in the air, the lark’s on the wing, and the snail’s on the the thorn“. Yes, it is the that time of year when the grand gala event of IPL 2022 is underway. So, I managed to wake myself from my Covid-induced slumber, worked up my ‘creaking bones‘ and cranked up the GooglyPlusPlus machinery.

So now, every morning, a scheduled CRON tab entry will automatically download the previous night’s match data from Cricsheet, unzip, process and transform it into the necessary format required by my R package yorkr, and make it available to my Shiny app GooglyPlusPlus. Hence the data is current and you have access to ‘analytics-in-the-now’!.

As you know in 2021, I added a lot of new features to GooglyPlusPlus, new tabs to do even more. analytics – or in other words there is “more GooglyPlusPlus per click!!”. So now, you have the following

  • Batsman tab: For detailed analysis of batsmen
  • Bowler tab: For detailed analysis of bowlers
  • Match tab: Analysis of individual matches, plot of Runs vs SR, Wickets vs ER in power play, middle and death overs
  • Head-to-head tab: Detailed analysis of team-vs-team batting/bowling scorecard, batting, bowling performances, performances in power play, middle and death overs
  • Team performance tab: Analysis of team-vs-all other teams with batting /bowling scorecard, batting, bowling performances, performances in power play, middle and death overs
  • Optimisation tab: Allows one to pit batsmen vs bowlers and vice-versa. This tab also uses integer programming to optimise batting and bowling lineup
  • Batting analysis tab: Ranks batsmen using Runs or SR. Also plots performances of batsmen in power play, middle and death overs and plots them in a 4×4 grid
  • Bowling analysis tab: Ranks bowlers based on Wickets or ER. Also plots performances of bowlers in power play, middle and death overs and plots them in a 4×4 grid

Also note all these tabs and features are available for all T20 formats namely IPL, Intl. T20 (men, women), BBL, NTB, PSL, CPL, SSM.

Note: All charts are interactive, which means that you can hover, zoom-in, zoom-out, pan etc on the charts

The latest avatar of GooglyPlusPlus2022 is based on my R package yorkr with data from Cricsheet.

Go ahead, give GooglyPlusPlus a try!!!

To know all the new features and how to use them, check out these posts

  1. Ranking of batsmen, bowlers – GooglyPlusPlus2021 interactively ranks T20 batsmen and bowlers!!!
  2. Interactive charts – GooglyPlusPlus2021 is now fully interactive!!!
  3. Detailed batsmen/bowler analytics – GooglyPlusPlus2021 enhanced with drill-down batsman, bowler analytics
  4. Addition of Date Range picker to charts – GooglyPlusPlus2021 adds new bells and whistles!!
  5. Analysis of power play, middle and death overs across players, teams – GooglyPlusPlus2021 now with power play, middle and death over analysis
  6. Analysis based on 4 x 4 grid of players – GooglyPlusPlus2021: Towards more picturesque analytics!
  7. Optimisation of batsmen/bowlers – GooglyPlusPlus2022 optimizes batting/bowling lineup

Here are some random analysis that can be done by GooglyPlusPlus across the tabs. Note the app will be updated daily and the analytics will be current throughout the season of IPL 2022

A) Match tab

a) GT vs DC – 2 Apr 2022

Runs vs SR – Gujarat Titans

b) CSK vs LSG – 31 Mar 2022

Runs across 20 overs

c) KKR vs PBKS -Match wicket worm chart – 1 Apr 2022

B) Batsmen tab

a) Faf Du Plessis – Runs vs Deliveries

b) Sanju Samson – Runs against opposition

C) Bowler’s tab

a) D J Bravo – No of deliveries to wicket

b) Trent Boult – Wickets at Venues

D) Head-to-head tab

a) DC vs MI – Mar -2019 till date : Batting scorecard

b) CSK vs KKR – Jan 2019 till date : Runs vs SR

E) Team vs All Teams tab

a) Punjab Kings vs all Teams – Wickets vs ER in Power play

b) Rajasthan Royals vs all Teams : Jan 2019 till date : Runs vs SR in Power play

F) Optimisation tab

a) Batsmen vs Bowlers

b) Bowlers vs batsmen

G) Batting analysis

This tab is for ranking batsmen

a) Batsmen rank from 2019 till date (Runs over SR)

b) Overall Runs vs SR (Jan 2020 till date)

Best batsmen in top right quadrant

zooming in on the above (right-most)

H) Bowling analysis tab

a) Best middle over bowlers in IPL (2019 onwards)

The bottom right quadrant are the best bowlers

b) Best bowlers in death overs (bottom-right)

Check out GooglyPlusPlus!!!

Also see

  1. Deconstructing Convolutional Neural Networks with Tensorflow and Keras
  2. Deep Learning from first principles in Python, R and Octave – Part 5
  3. Big Data-4: Webserver log analysis with RDDs, Pyspark, SparkR and SparklyR
  4. Latency, throughput implications for the Cloud
  5. Introducing QCSimulator: A 5-qubit quantum computing simulator in R
  6. Practical Machine Learning with R and Python – Part 3
  7. Natural language processing: What would Shakespeare say?
  8. Introducing cricpy:A python package to analyze performances of cricketers

To see all posts click Index of posts

GooglyPlusPlus2021 now with power play, middle and death over analysis

This latest edition of GooglyPlusPlus2021 now includes detailed analysis of teams, batsmen and bowlers in power play, middle and death overs. The T20 format is based on 3 phases as each side faces 20 overs.

Power play: Overs: 0 – 6 – No more than 2 players can be outside the 30 yard circle

Middle overs: Overs: 7- 16 – During these overs the batting side tries to consolidate their innings

Death overs: Overs: 16 -20 – During these 5 overs the batting side tries to accelerate the scoring rate, while the bowling side will try to restrict the batsmen against going for big hits

This is shown below

This latest update of GooglyPlusPlus2021 includes the following functions

a) Match tab

  1. teamRunsAcrossOvers
  2. teamSRAcrossOvers
  3. teamWicketsAcrossOvers
  4. teamERAcrossOvers
  5. matchWormWickets

b) Head-to-head tab

  1. teamRunsAcrossOversOppnAllMatches
  2. teamSRAcrossOversOppnAllMatches
  3. teamWicketsAcrossOversOppnAllMatches
  4. teamERAcrossOversOppnAllMatches
  5. topRunsBatsmenAcrossOversOppnAllMatches
  6. topSRBatsmenAcrossOversOppnAllMatches
  7. topWicketsBowlersAcrossOversOppnAllMatches
  8. topERBowlerAcrossOverOppnAllMatches

c) Overall performance tab

  1. teamRunsAcrossOversAllOppnAllMatches
  2. teamSRAcrossOversAllOppnAllMatches
  3. teamWicketsAcrossOversAllOppnAllMatches
  4. teamERAcrossOversAllOppnAllMatches
  5. topRunsBatsmenAcrossOversAllOppnAllMatches
  6. topSRBatsmenAcrossOversAllOppnAllMatches
  7. topWicketsBowlersAcrossOversAllOppnAllMatches
  8. topERBowlerAcrossOverAllOppnAllMatches

Hence a total of 8 + 8 + 5 = 21 functions have been added. These functions can be utilized across all the 9 T20 formats that are supported in GooglyPlusPlus2021 namely

i) IPL ii) Intl. T20 (men) iii) Intl. T20 (women) iv) BBL v) NTB vi) PSL vii) CPL viii) SSM ix) WBB

Hence there are a total of 21 x 9 = 189 new possibilities to explore in GooglyPlusPlus2021

GooglyPlusPlus2021 is based on my R package yorkr and is based on data from Cricsheet. To know how to use GooglyPlusPlus see any of earlier posts GooglyPlusPlus2021 is now fully interactive!!!, GooglyPlusPlus2021 adds new bells and whistles!!, GooglyPlusPlus2021 enhanced with drill-down batsman, bowler analytics

Take GooglyPlusPlus for a spin here GooglyPlusPlus2021-9

You can clone/fork the code for the Shiny app from Github – gpp2021-9

Included below is a random selection of options from the 189 possibilities mentioned above. Feel free to try out for yourself

A) IPL – CSK vs KKR 2018-04-10

a) Team Runs in power play, middle and death overs

b) Team Strike rate in power play, middle and death overs

B) Intl. T20 (men) – India vs Afghanistan (2021-11-03)

a) Team wickets in power play, middle and death overs

b) Team Economy rate in power play, middle and death overs

C) Intl. T20 (women) Head-to-head : India vs Australia since 2018

a) Team Runs in all matches in power play, middle and death overs

D) PSL Head-to-head strike rate since 2019

a) Team vs team Strike rate : Karachi Kings vs Lahore Qalanders since 2019 in power play, middle and death overs

E) Team overall performance in all matches against all opposition

a) BBL : Brisbane Heats : Team Wickets between 2015 – 2018 in power play, middle and death overs

F) Top Runs and Strike rate Batsman of Mumbai Indians vs Royal Challengers Bangalore since 2018

a) Top runs scorers for Mumbai Indians (MI) in power play, middle and death overs

b) Top strike rate for RCB in power play, middle and death overs

F) Intl. T20 (women) India vs England since 2018

a) Top wicket takers for England in power play, middle and death overs since 2018

b) Top wicket takers for India in power play, middle and death overs since 2018

G) Intl. T20 (men) All time best batsmen and bowlers for India

a) Most runs in power play, middle and death overs

b) Highest strike rate in power play, middle and death overs

H) Match worm wicket chart

In addition to the usual Match worm chart, I have also added a Match Wicket worm chart in the latest version

Note: You can zoom to the area where you would like to focus more

The option of looking at the Match worm chart (without wickets) also exists.

Go ahead take GooglyPlusPlus2021 for a test drive and check out how your favourite players perform in power play, middle and death overs. Click GooglyPlusPlus2021-9

You can fork/download the app code from Github at gpp2021-9

Hope you have fun with GooglyPlusPlus

You may also like

  1. Using Linear Programming (LP) for optimizing bowling change or batting lineup in T20 cricket
  2. Practical Machine Learning with R and Python – Part 6
  3. Big Data 6: The T20 Dance of Apache NiFi and yorkpy
  4. Understanding Neural Style Transfer with Tensorflow and Keras
  5. Using Reinforcement Learning to solve Gridworld
  6. Exploring Quantum Gate operations with QCSimulator
  7. Experiments with deblurring using OpenCV
  8. Deep Learning from first principles in Python, R and Octave – Part 5
  9. Re-introducing cricketr! : An R package to analyze performances of cricketers
  10. Natural language processing: What would Shakespeare say?

To see all posts click Index of posts

GooglyPlusPlus2021:ICC WC T20:Pavilion-view analytics as-it-happens!

This year 2021, we are witnessing a rare spectacle in the cricketing universe, where IPL playoffs are immediately followed by ICC World Cup T20. Cricket pundits have claimed such a phenomenon occurs once in 127 years! Jokes apart, the World cup T20 is underway and as usual GooglyPlusPlus is ready for the action.

GooglyPlusPlus will provide near-real time analytics, by automatically downloading the latest match data daily, processing and organising the match data into appropriate folders so that my R package yorkr can slice and dice the data to provide the pavilion-view analytics.

The charts capture all the breathless, heart-pounding, and nail-biting action in great details in the many tables and plots. Every table and chart tell a story. You just have to ‘read between the lines!’

GooglyPlusPlus2021 will update itself automatically every day, so the data will be current and you can analyse all matches upto the previous day, along with the historical performances of the teams. So make sure you check it everyday.

Note:

  1. All charts are interactive. To know how to use the interactive charts see my post GooglyPlusPlus2021 is now fully interactive!!!
  2. The are 5 tabs for each of the formats supported by GooglyPlusPlus2021 which now supports IPL, Intl. T20(men), Intl. T20(women), BBL, NTB, PSL, CPL, SSM, WBB. Besides, it also supports ODI (men) and ODI (women)
  3. Each of the formats have 5 tabs – Batsman, Bowler, Match, Head-to-head and Overall Performace.
  4. All T20 formats also include a ranking functionality for the batsmen and bowlers
  5. You can now perform drill-down analytics for batsmen, bowlers, head-to-head and overall performance based on date-range selector functionality. The ranking tabs also include date range selector granular analysis. For more details see GooglyPlusPlus2021 enhanced with drill-down batsman, bowler analytics

Try out GooglyPlusPlus2021 here gpp2021-8!!

You can clone fork the code from Github gpp2021-8

I am including some random screenshots of things that can be done with GooglyPlusPlus2021

A. Papua New Guinea vs Oman (2021-10-17)

a. Batting partnership

B. Match worm chart (New Papua Guinea v Oman)

This was a no contest as Oman cruised to victory

C. Scotland vs Bangladesh (2021-10-17)

a. Scorland upset Bangladesh

b. March worm chart (Scotland vs Bangladesh)

Fortunes see-sawed one way, then another, as can be seen in the match worm chart

C. Netherlands vs Ireland (2021-10-18)

a. Batman vs Bowler

D. Historical performance head-to-head

a. Sri Lanka vs West Indies (2019-2021) – Batting partnerships

b. India vs England (2018 – 2021) – Bowling scorecard

c) Australia vs South Africa – Team wicket opposition

E) Overall performance

a. Pakistan batting scorecard since 2019

a. Win loss of Australia since 2019

F) Batsman Performance

a. PR Stirling’s runs against opposition since 2019

b. KJ Brien’s cumulative average runs since 2019

G. Bowler performance

a. PWH De Silva’s wicket prediction since 2019

b. T Shamsi’s cumulative average wickets since 2019

H. Ranking Intl. T20 batsman since 2019

a. Runs over Strike rate

b. Strike rate over runs

I. Ranking bowlers since 2019

a. Wickets over Economy rate

b. Economy rate over wickets

As mentioned above GooglyPlusPlus2021 will be updated daily automatically, so you won’t miss any analytic action.

Do give GooglyPlusPlus2021 a spin!

Clone/fork the code for the Shiny app from Github gpp2021-8

You may also like

  1. Natural language processing: What would Shakespeare say?
  2. Literacy in India – A deepR dive
  3. Practical Machine Learning with R and Python – Part 5
  4. Big Data 7: yorkr waltzes with Apache NiFi
  5. Getting started with Tensorflow, Keras in Python and R
  6. Deep Learning from first principles in Python, R and Octave – Part 7
  7. Introducing QCSimulator: A 5-qubit quantum computing simulator in R
  8. Video presentation on Machine Learning, Data Science, NLP and Big Data – Part 1

To see all post click Index of posts

GooglyPlusPlus2021: Restarting IPL 2021 as-it-happens!!!

The IPL 2021 extravaganza has restarted again, now in Dubai, and it was time for me to crank up good ol’ GooglyPlusPlus2021. As in my earlier post, GooglyPlus2021 with IPL 2021 as it happens, during the initial set of IPL 2021 games,, a command script will execute automatically every day, download the latest data files, unzip, sort, process and put them in appropriate directories so that GooglyPlusPlus can work its magic on the data, with my R package yorkr. You can do analysis of IPL 2021 matches, batsmen, bowlers, historical performance analysis of head-to-head clashes and performances of teams.

Note: Since the earlier instalment of IPL 2021, there are 2 key changes that have taken place in GooglyPlusPlus.

Now,

a) All charts are interactive. You can hover over charts, click, double-click to get more details. To see more details on how to use the interactive charts, see my post GooglyPlusPlus2021 is now fully interactive!

b) You can now analyse historical performances, compute team batting and bowling scorecards for specified periods. To know details see GooglyPlusPlus2021 adds new bells and whistles!

You can try out my app GooglyPlusPlus2021 by clicking GooglyPlusPlus2021

The code for my R package yorkr is available at Github at yorkr

You can clone/fork GooglyPlusPlus2021 from github at gpp2021-6

IPL 2021 is already underway.

Some key analysis and highlights of the 2 recently concluded IPL matches

  • CSK vs MI
  • KKR vs RCB

a) CSK vs MI (19 Sep 2021) – Batting Partnerships (CSK)

b) CSK vs MI (19 Sep 2021) – Bowling scorecard (MI)

c) CSK vs MI (19 Sep 2021) – Match worm chart

Even though MI had a much better start and were cruising along to a victory, they lost the plot around the 18.1 th over as seen below (hover on the chart)

d

d) KKR vs RCB ( 20 Sep 2021) – Bowling wicket match

This chart gives the wickets taken by the bowler and the total runs conceded

e) KKR vs RCB ( 20 Sep 2021) – Match worm chart

This was a no contest. RCB batting was pathetic and KKR blasted their way to victory as seen in this worm chart

Note: You can also do historical analysis of teams with GooglyPlusPlus2021

For the match to occur today PBKS vs RR (21 Sep 2021) we can perform head-to-head historical analysis. Here Kings XI Punjab has been chosen instead of Punjab Kings as that was its name.

f) Head-to-head (PBKS vs RR) today’s match 21 Sep 2021

For the Rajasthan Royals Sanjy Samson and Jos Buttler have the best performance from 2018 -2021 as seen below

For Punjab Kings KL Rahul and Chris Gayle are the leading scorers for the period 2018-2021

g) Current ranking of batsmen IPL 2021

h) Current ranking of bowlers IPL 2021

Also you analyse individual batsman and bowlers

i) Batsman analysis

To see Rituraj Gaikwad performance checkout the batsman tab

j) Bowler analysis

Performance of Varun Chakaravarty

Remember to check out GooglyPlusPlus2021 for your daily analysis of matches, teams, batsmen and bowlers. Your ride will be waiting for you!!!

You can clone/fork GooglyPlusPlus2021 from github at gpp2021-6

GooglyPlusPlus2021 has been updated with all completed 31 matches

 

Mumbai Indians-Royal Challengers Bangalore-2021-04-09Chennai Super Kings-Delhi Capitals-2021-04-10
Kolkata Knight Riders-Sunrisers Hyderabad-2021-04-11Punjab Kings-Rajasthan Royals-2021-04-12
Mumbai Indians-Kolkata Knight Riders-2021-04-13Royal Challengers Bangalore-Sunrisers Hyderabad-2021-04-14
Delhi Capitals-Rajasthan Royals-2021-04-15Punjab Kings-Chennai Super Kings-2021-04-16
Mumbai Indians-Sunrisers Hyderabad-2021-04-17Royal Challengers Bangalore-Kolkata Knight Riders-2021-04-18
Punjab Kings-Delhi Capitals-2021-04-18Chennai Super Kings-Rajasthan Royals-2021-04-19
Mumbai Indians-Delhi Capitals-2021-04-20Punjab Kings-Sunrisers Hyderabad-2021-04-21
Chennai Super Kings-Kolkata Knight Riders-2021-04-21Rajasthan Royals-Royal Challengers Bangalore-2021-04-22
Mumbai Indians-Punjab Kings-2021-04-23Kolkata Knight Riders-Rajasthan Royals-2021-04-24
Chennai Super Kings-Royal Challengers Bangalore-2021-04-25Delhi Capitals-Sunrisers Hyderabad-2021-04-25
Punjab Kings-Kolkata Knight Riders-2021-04-26Royal Challengers Bangalore-Delhi Capitals-2021-04-27
Sunrisers Hyderabad-Chennai Super Kings-2021-04-28Rajasthan Royals-Mumbai Indians-2021-04-29
Kolkata Knight Riders-Delhi Capitals-2021-04-29Punjab Kings-Royal Challengers Bangalore-2021-04-30.RData
Chennai Super Kings-Mumbai Indians-2021-05-01Rajasthan Royals-Sunrisers Hyderabad-2021-05-02
Punjab Kings-Delhi Capitals-2021-05-02Chennai Super Kings-Mumbai Indians-2021-09-19
Royal Challengers Bangalore-Kolkata Knight Riders-2021-09-20Rajasthan Royals-Punjab Kings-2021-09-21
Sunrisers Hyderabad-Delhi Capitals-2021-09-22.RDataMumbai Indians-Kolkata Knight Riders-2021-09-23.RData
Royal Challengers Bangalore-Chennai Super Kings-2021-09-24.RDataPunjab Kings-Sunrisers Hyderabad-2021-09-25
Delhi Capitals-Rajasthan Royals-2021-09-25.RDataRoyal Challengers Bangalore-Mumbai Indians-2021-09-26.RData
Kolkata Knight Riders-Chennai Super Kings-2021-09-26.RDataKolkata Knight Riders-Chennai Super Kings-2021-09-26.RData
Delhi Capitals-Kolkata Knight Riders-2021-09-28.RDataRajasthan Royals-Royal Challengers Bangalore-2021-09-29.RData
Sunrisers Hyderabad-Chennai Super Kings-2021-09-30.RDataKolkata Knight Riders-Punjab Kings-2021-10-01.RData
Chennai Super Kings-Rajasthan Royals-2021-10-02.RDataMumbai Indians-Delhi Capitals-2021-10-02.RData
Royal Challengers Bangalore-Punjab Kings-2021-10-03.RDataChennai Super Kings-Delhi Capitals-2021-10-04.RData
Rajasthan Royals-Mumbai Indians-2021-10-05.RDataSunrisers Hyderabad-Royal Challengers Bangalore-2021-10-06.RData

Also see

  1. Deep Learning from first principles in Python, R and Octave – Part 5
  2. Introducing QCSimulator: A 5-qubit quantum computing simulator in R
  3. Computer Vision: Ramblings on derivatives, histograms and contours
  4. Designing a Social Web Portal
  5. Understanding Neural Style Transfer with Tensorflow and Keras
  6. Big Data 6: The T20 Dance of Apache NiFi and yorkpy
  7. Practical Machine Learning with R and Python – Part 6
  8. Introducing cricpy:A python package to analyze performances of cricketers
  9. A closer look at “Robot Horse on a Trot” in Android
  10. Cricketr adds team analytics to its repertoire!!!

To see all posts click Index of posts

GooglyPlusPlus2021 adds new bells and whistles!!

This latest update of GooglyPlusPlus2021 includes new controls which allow for granular analysis of teams and matches. This version includes a new ‘Date Range’ widget which will allow you to choose a specific interval between which you would like to analyze data. The Date Range widget has been added to 2 tabs namely

a) Head-to-Head

b) Overall Performance

Important note:

This change is applicable to all T20 formats and ODI formats that GooglyPlusPlus2021 handles. This means you can do fine-grained analysis of the following formats

a. IPL b. Intl. T20 (men) c. Intl. T20 (women)

d. BBL e. NTB f. PSL

g. WBB h. CPL i. SSM

j. ODI (men) k. ODI (women)

Important note 1: Also note that all charts in GooglyPlusPlus2021 are interactive. You ca hover over the charts to get details of the data below. You can also selectively filter in bar charts using double-click and click. To know more about how to use GooglyPlusPlus2021 interactively, please see my post GooglyPlusPlus2021 is now fully interactive!!

You can clone/download the code for GooglyPlusPlus2021 from Github at GooglyPlusPlus2021

Try out GooglyPlusPlus2021 here GooglyPlusPlus2021

Here are some random examples from the latest version of GooglyPlusPlus2021

a) Team Batting Scorecard – MI vs CSK (all matches 2008-2013) – Tendulkar era

Tendulkar is the top scorer, followed by Rohit Sharma and Jayasuriya for Mumbai Indians

b) Team Batting Partnerships (MI -CSK) – Tendulkar’s partnerships

Partnerships for Tendulkar with his MI team mates

c) Team Bowler Wicket Kinds (Opposition countries vs India in all matches in T20)

d) Win vs Loss India vs Australia T20 Women (2010 – 2015)

Australia won all 3 matches against India

e) Win vs Loss India vs Australia T20 Women (2015 – 2020)

Between 2016-2020 the tally is 3-2 for Australia vs India

f) Wins vs Losses – MI vs all other teams 2013 – 2018

g) Team Batting Partnerships Head-to-head Australia vs England ODI (Women)

Partnerships of Australia women EA Perry and AJ Blackwell for Australia

Go ahead give GooglyPlusPlus2021 a try!

Hope you have fun!

Also see

  1. Exploring Quantum Gate operations with QCSimulator
  2. De-blurring revisited with Wiener filter using OpenCV
  3. Deep Learning from first principles in Python, R and Octave – Part 3
  4. Big Data-4: Webserver log analysis with RDDs, Pyspark, SparkR and SparklyR
  5. Cricpy adds team analytics to its arsenal!!
  6. Practical Machine Learning with R and Python – Part 5

To see all posts see Index of posts

GooglyPlusPlus2021 interactively ranks T20 batsmen and bowlers!!!

Every time I think that I have my R packages or Shiny apps all wrapped up, I find another idea trots up and knocks at my door. Since I intend to keep GooglyPlusPlus current with the latest data, I decided to include the ranking functions in my Shiny app GooglyPlusPlus.

Fortunately, since GooglyPlusPlus is based on my R package ‘yorkr‘ (see Introducing cricket package yorkr: Beaten by sheer pace!), I could make the necessary changes to the ranking functions in the package, so that it could be incorporated into my latest Shiny app GooglyPlusPlus2021!! To know how to use GooglyPlusPlus see my post Introducing GooglyPlusPlus

Note: GooglyPlusPlus can analyze batsmen, bowlers, matches and teams.

Take GooglyPlusPlus2021 for a test drive!!!

You can clone/fork GooglyPlusPlus2021 from Github

Here are a few scenarios from GooglyPlusPlus2021

A) Ranking batsmen

Ranking IPL batsmen (minMatches = 80) – The following table shows the ranking of IPL players who have played 80 matches or more

B) Identifying batsmen of potential and promise

Ranking IPL batsmen (minMatches =70) –  If we reduce the minimum number of matches played to 70, then we see it pushes up KL Rahul above Kohli.

Ranking IPL batsmen (minMatches =60) – When the slider is moved to 60, we see that Rishabh Pant has a better mean average and mean strike rate and is also ranked above Kohli. We can identify promising players this way. However, it is also likely that some players may be just a bright flash in the pan

C) Ranking T20 bowlers (men)

D) Ranking NTB Batsmen

GooglyPlusPlus2021 can rank all T20 formats (IPL, BBL, Intl. T20 (men), Intl. T20 (women), NTB, PSL and WBB. Do give it a try!

Also remember that GooglyPlusPlus2021 includes close to 100+ functions which enable it to perform analysis of batsmen, bowlers, T20 matches, head-to-head confrontation of T20 teams and overall performance of T20 teams . To know more about GooglyPlusPlus2021 see Introducing GooglyPlusPlus

You can download the code for this app from Github at GooglyPlusPlus2021

Do give GooglyPlusPlus2021 a spin!!

I do have some other ideas also which I will be incorporating  into GooglyPlusPlus2021.

Watch this space!!

Also see
1. Deep Learning from first principles in Python, R and Octave – Part 7
2. A method to crowd source pothole marking on (Indian) roads
3. Big Data 7: yorkr waltzes with Apache NiFi
4. Understanding Neural Style Transfer with Tensorflow and Keras
5. Revisiting World Bank data analysis with WDI and gVisMotionChart
6. Natural language processing: What would Shakespeare say?
7. Introducing QCSimulator: A 5-qubit quantum computing simulator in R
8. Introducing cricpy:A python package to analyze performances of cricketers
9. Simulating an Edge Shape in Android

To see all posts click Index of posts

Introducing GooglyPlusPlus!!!

“We can lift ourselves out of ignorance, we can find ourselves as creatures of excellence and intelligence and skill.”
“Heaven is not a place, and it is not a time. Heaven is being perfect.”
“Your whole body, from wingtip to wingtip, is nothing more than your thought itself, in a form you can see. Break the chains of your thought, and you break the chains of your body, too.”

From Jonathan Livingstone Seagull, by Richard Bach

Introduction

The metamorphosis is complete, from eggs to the butterfly! My R package yorkr, went on to become Googly,  and then to GooglyPlus and  now finally GooglyPlusPlus. My latest R Shiny app now provides interactive visualisation of almost all data in Cricsheet. GooglyPlusPlus visualizes the following matches

1. ODI (men)
2. ODI (women)
3. Intl. T20 (men)
4. Intl T20 (women)
5. IPL (Indian Premier League)
6. BBL (Big Bash League)
7. NTB (Natwest T20)
8. PSL (Pakistan Super League)
9. WBBL – Women’s BBL

GooglyPlusPlus is entirely based on my R package yorkr. To know more about yorkr see ‘Revitalizing R package yorkr‘ and the roughly 25+ posts on yorkr in Index of posts

This Shiny app was quite involved, and it took a lot of work to keep things organised and separate for the different forms of cricket. Anyway it is done and I am happy with the outcome.

Before you use the app, I would suggest that you take a look at the video “How to use GooglyPlusPlus?“. In this video, I show the different features of GooglyPlusPlus and how to navigate through them.

Check out GooglyPlusPlus Shiny at GooglyPlusPlus

You can clone/fork and play around with the code of GooglyPlusPlus here at Github

A. Highlights of GooglyPlusPlus.

The R Shiny app GooglyPlusPlus has the following main pages for the 9 different cricket formats. See below

 

Important note: Below I will be including some random output from the GooglyPlusPlus app for different match formats, however there is a lot more features in GooglyPlusPlus

1.  Indian Premier League (IPL)

a. IPL batsman – Batsman Runs vs Deliveries

 

b. IPL Match – Match  batting scorecard

 

c. Head-to-head between 2 IPL Teams – Team Batsmen Batting Partnership All Matches

 

 

 

d. Overall Performance – Team Bowling Scorecard Overall

 

 

 

2. International T20 Men

a. Batsman Function- Runs vs Strike rate

 

 

 

b. Bowler Function – Mean Economy Rate

 

 

3. International T20 (Women)

a.Batsman Functions – Batsman Cumulative Average Runs

 

 

b. Intl T20 Women’s match – Match worm Graph

 

 

 

 

 

4. Big Bash League (BBL)

a.Head-to-Head: Team batsmen batting partnerships

 

b.  Overall Performance – Team batsmen vs bowlers

 

 

5. Natwest T20 (NTB)

a. Head-to-head : Team bowlers vs batsmen

 

 

 

b. Batsman Runs vs Deliveries

 

 

6. Pakistan Super League (PSL)

a. Overall Performance – Batsmen Partnership

 

b. Bowling Scorecard

 

7. Women’s Big Bash League (WBBL)

a. Bowler wicket against opposition

 

 

8. One Day International (ODI) Men

a. Batsman Runs Against Opposition

 

b. Team Batsmen against bowlers

 

 

9. One Day International (ODI) women)

a. Match Batting Scorecard

b. Batsman Cumulative Strike Rate

 

 

 

Conclusion

There you have it. I have randomly shown  2 functions for each cricket format. There are many functions in each tab for the for the different match formats – namely IPL, BBL, Intl T20 (men,women), PSL etc.  Go ahead and give GooglyPlusPlus a spin!

To try out GooglyPlusPlus click GooglyPlusPlus. Don’t forget to check out the video How to use GooglyPlusPlus?

You can clone/fork the code from Github at GooglyPlusPlus

Hope you have fun with GooglyPlusPlus!!

You may also like

1. Big Data 6: The T20 Dance of Apache NiFi and yorkpy
2. Deep Learning from first principles in Python, R and Octave – Part 7
3. De-blurring revisited with Wiener filter using OpenCV
4. Exploring Quantum Gate operations with QCSimulator
5. Latency, throughput implications for the Cloud
6. Programming Zen and now – Some essential tips-2
7. The Anomaly
8. Practical Machine Learning with R and Python – Part 3
9. Introducing cricpy:A python package to analyze performances of cricketers
10. The making of Total Control Android game

To see all posts click Index of posts

My travels through the realms of Data Science, Machine Learning, Deep Learning and (AI)

Then felt I like some watcher of the skies 
When a new planet swims into his ken; 
Or like stout Cortez when with eagle eyes 
He star’d at the Pacific—and all his men 
Look’d at each other with a wild surmise— 
Silent, upon a peak in Darien. 
On First Looking into Chapman’s Homer by John Keats

The above excerpt from John Keat’s poem captures the the exhilaration that one experiences, when discovering something for the first time. This also  summarizes to some extent my own as enjoyment while pursuing Data Science, Machine Learning and the like.

I decided to write this post, as occasionally youngsters approach me and ask me where they should start their adventure in Data Science & Machine Learning. There are other times, when the ‘not-so-youngsters’ want to know what their next step should be after having done some courses. This post includes my travels through the domains of Data Science, Machine Learning, Deep Learning and (soon to be done AI).

By no means, am I an authority in this field, which is ever-widening and almost bottomless, yet I would like to share some of my experiences in this fascinating field. I include a short review of the courses I have done below. I also include alternative routes through  courses which I did not do, but are probably equally good as well.  Feel free to pick and choose any course or set of courses. Alternatively, you may prefer to read books or attend bricks-n-mortar classes, In any case,  I hope the list below will provide you with some overall direction.

All my learning in the above domains have come from MOOCs and I restrict myself to the top 3 MOOCs, or in my opinion, ‘the original MOOCs’, namely Coursera, edX or Udacity, but may throw in some courses from other online sites if they are only available there. I would recommend these 3 MOOCs over the other numerous online courses and also over face-to-face classroom courses for the following reasons. These MOOCs

  • Are taken by world class colleges and the lectures are delivered by top class Professors who have a great depth of knowledge and a wealth of experience
  • The Professors, besides delivering quality content, also point out to important tips, tricks and traps
  • You can revisit lectures in online courses anytime to refresh your memory
  • Lectures are usually short between 8 -15 mins (Personally, my attention span is around 15-20 mins at a time!)

Here is a fair warning and something quite obvious. No amount of courses, lectures or books will help if you don’t put it to use through some language like Octave, R or Python.

The journey
My trip through Data Science, Machine Learning  started with an off-chance remark,about 3 years ago,  from an old friend of mine who spoke to me about having done a few  courses at Coursera, and really liked it.  He further suggested that I should try. This was the final push which set me sailing into this vast domain.

I have included the list of the courses I have done over the past 5 years (37+ certifications completed and another 9 audited-listened only without doing the assignments). For each of the courses I have included a short review of the course, whether I think the course is mandatory, the language in which the course is based on, and finally whether I have done the course myself etc. I have also included alternative courses, which I may have not done, but which I think are equally good. Finally, I suggest some courses which I have heard of and which are very good and worth taking.

1. Machine Learning, Stanford, Prof Andrew Ng, Coursera
(Requirement: Mandatory, Language:Octave,Status:Completed)
This course provides an excellent foundation to build your Machine Learning citadel on. The course covers the mathematical details of linear, logistic and multivariate regression. There is also a good coverage of topics like Neural Networks, SVMs, Anamoly Detection, underfitting, overfitting, regularization etc. Prof Andrew Ng presents the material in a very lucid manner. It is a great course to start with. It would be a good idea to brush up  some basics of linear algebra, matrices and a little bit of calculus, specifically computing the local maxima/minima. You should be able to take this course even if you don’t know Octave as the Prof goes over the key aspects of the language.

2. Statistical Learning, Prof Trevor Hastie & Prof Robert Tibesherani, Online Stanford– (Requirement:Mandatory, Language:R, Status;Completed) –
The course includes linear and polynomial regression, logistic regression. Details also include cross-validation and the bootstrap methods, how to do model selection and regularization (ridge and lasso). It also touches on non-linear models, generalized additive models, boosting and SVMs. Some unsupervised learning methods are  also discussed. The 2 Professors take turns in delivering lectures with a slight touch of humor.

3a. Data Science Specialization: Prof Roger Peng, Prof Brian Caffo & Prof Jeff Leek, John Hopkins University (Requirement: Option A, Language: R Status: Completed)
This is a comprehensive 10 module specialization based on R. This Specialization gives a very broad overview of Data Science and Machine Learning. The modules cover R programming, Statistical Inference, Practical Machine Learning, how to build R products and R packages and finally has a very good Capstone project on NLP

3b. Applied Data Science with Python Specialization: University of Michigan (Requirement: Option B, Language: Python, Status: Not done)
In this specialization I only did  the Applied Machine Learning in Python (Prof Kevyn-Collin Thomson). This is a very good course that covers a lot of Machine Learning algorithms(linear, logistic, ridge, lasso regression, knn, SVMs etc. Also included are confusion matrices, ROC curves etc. This is based on Python’s Scikit Learn

3c. Machine Learning Specialization, University Of Washington (Requirement:Option C, Language:Python, Status : Not completed). This appears to be a very good Specialization in Python

4. Statistics with R Specialization, Duke University (Requirement: Useful and a must know, Language R, Status:Not Completed)
I audited (listened only) to the following 2 modules from this Specialization.
a.Inferential Statistics
b.Linear Regression and Modeling
Both these courses are taught by Prof Mine Cetikya-Rundel who delivers her lessons with extraordinary clarity.  Her lectures are filled with many examples which she walks you through in great detail

5.Bayesian Statistics: From Concept to Data Analysis: Univ of California, Santa Cruz (Requirement: Optional, Language : R, Status:Completed)
This is an interesting course and provides an alternative point of view to frequentist approach

6. Data Science and Engineering with Spark, University of California, Berkeley, Prof Antony Joseph, Prof Ameet Talwalkar, Prof Jon Bates
(Required: Mandatory for Big Data, Status:Completed, Language; pySpark)
This specialization contains 3 modules
a.Introduction to Apache Spark
b.Distributed Machine Learning with Apache Spark
c.Big Data Analysis with Apache Spark

This is an excellent course for those who want to make an entry into Distributed Machine Learning. The exercises are fairly challenging and your code will predominantly be made of map/reduce and lambda operations as you process data that is distributed across Spark RDDs. I really liked  the part where the Prof shows how a matrix multiplication on a single machine is of the order of O(nd^2+d^3) (which is the basis of Machine Learning) is reduced to O(nd^2) by taking outer products on data which is distributed.

7. Deep Learning Prof Andrew Ng, Younes Bensouda Mourri, Kian Katanforoosh : Requirement:Mandatory,Language:Python, Tensorflow Status:Completed)

This course had 5 Modules which start from the fundamentals of Neural Networks, their derivation and vectorized Python implementation. The specialization also covers regularization, optimization techniques, mini batch normalization, Convolutional Neural Networks, Recurrent Neural Networks, LSTMs applied to a wide variety of real world problems

The modules are
a. Neural Networks and Deep Learning
In this course Prof Andrew Ng explains differential calculus, linear algebra and vectorized Python implementations of Deep Learning algorithms. The derivation for back-propagation is done and then the Prof shows how to compute a multi-layered DL network
b.Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization
Deep Neural Networks can be very flexible, and come with a lots of knobs (hyper-parameters) to tune with. In this module, Prof Andrew Ng shows a systematic way to tune hyperparameters and by how much should one tune. The course also covers regularization(L1,L2,dropout), gradient descent optimization and batch normalization methods. The visualizations used to explain the momentum method, RMSprop, Adam,LR decay and batch normalization are really powerful and serve to clarify the concepts. As an added bonus,the module also includes a great introduction to Tensorflow.
c.Structuring Machine Learning Projects
A very good module with useful tips, tricks and traps that need to be considered while working on Machine Learning and Deep Learning projects
d. Convolutional Neural Networks
This domain has a lot of really cool ideas, where images represented as 3D volumes, are compressed and stretched longitudinally before applying a multi-layered deep learning neural network to this thin slice for performing classification,detection etc. The Prof provides a glimpse into this fascinating world of image classification, detection andl neural art transfer with frameworks like Keras and Tensorflow.
e. Sequence Models
In this module covers in good detail concepts like RNNs, GRUs, LSTMs, word embeddings, beam search and attention model.

8. Neural Networks for Machine Learning, Prof Geoffrey Hinton,University of Toronto
(Requirement: Mandatory, Language;Octave, Status:Completed)
This is a broad course which starts from the basic of Perceptrons, all the way to Boltzman Machines, RNNs, CNNS, LSTMs etc The course also covers regularisation, learning rate decay, momentum method etc

9.Probabilistic Graphical Models, Stanford  Prof Daphne Koller(Language:Octave, Status: Partially completed)
This has 3 courses
a.Probabilistic Graphical Models 1: Representation – Done
b.Probabilistic Graphical Models 2: Inference – To do
c.Probabilistic Graphical Models 3: Learning – To do
This course discusses how a system, which can be represented as a complex interaction
of probability distributions, will behave. This is probably the toughest course I did.  I did manage to get through the 1st module, While I felt that grasped a few things, I did not wholly understand the import of this. However I feel this is an important domain and I will definitely revisit this in future

10. Reinforcement Specialization : University of Alberta, Prof Adam White and Prof Martha White
(Requirement: Very important, Language;Python, Status: Partially Completed)
This is a set of 4 courses. I did the first 2 of the 4. Reinforcement Learning appears deceptively simple, but it is anything but simple. Definitely a very critical area to learn.

a.Fundamentals of Reinforcement Learning: This course discusses Markov models, value functions and Bellman equations and dynamic programming.
b.Sample based learning Learning methods: This course touches on Monte Carlo methods, Temporal Difference methods, Q Learning etc.

Reinforcement Learning is a must-have in your AI arsenal.

11. Tensorflow in Practice Specialization – Prof Laurence Moroney – Deep Learning.AI
(Requirement: Important, Language;Python, Status: Completed)
This is a good course but definitely do the Deep Learning Specialization by Prof Andrew Ng
There are 4 courses in this Specialization. I completed all 4 courses. They are fairly straight forward
a. Introduction to TensorFlow – This course introduces you to Tensorflow, image recognition with brute-force method
b. Convolutional Neural Networks in Tensorflow – This course touches on how to build a CNN, image augmentation, transfer learning and multi-class classification
c. Natural Language Processing in Tensorflow – Word embeddings, sentiment analysis, LSTMs, RNNs are discussed.
d. Sequences, time series and prediction – This course discusses using RNNs for time series, auto correlation

12. Natural Language Processing  Specialization – Prof Younes Bensouda, Lukasz Kaiser from DeepLearning.AI
(Requirement: Very Important, Language;Python, Status: Partially Completed)
This is the latest specialization from Deep Learning.AI. I have completed the first 2 courses
a.Natural Language Processing with Classification and Vector Spaces -The first course deals with sentiment analysis with Naive Bayes, vector space models, capturing dependencies using PCA etc
b. Natural Language Processing with Probabilistic Models – In this course techniques for auto correction, Markov models and Viterbi algorithm for Parts of Speech tagging, auto completion and word embedding are discussed.

13. Mining Massive Data Sets Prof Jure Leskovec, Prof Anand Rajaraman and ProfJeff Ullman. Online Stanford, Status Partially done.,
I did quickly audit this course, a year back, when it used to be in Coursera. It now seems to have moved to Stanford online. But this is a very good course that discusses key concepts of Mining Big Data of the order a few Petabytes

14. Introduction to Artificial Intelligence, Prof Sebastian Thrun & Prof Peter Norvig, Udacity
This is a really good course. I have started on this course a couple of times and somehow gave up. Will revisit to complete in future. Quite extensive in its coverage.Touches BFS,DFS, A-Star, PGM, Machine Learning etc.

15.Deep Learning (with TensorFlow), Vincent Vanhoucke, Principal Scientist at Google Brain.
Got started on this one and abandoned some time back. In my to do list though

My learning journey is based on Lao Tzu’s dictum of ‘A good traveler has no fixed plans and is not intent on arriving’. You could have a goal and try to plan your courses accordingly.
And so my journey continues…

I hope you find this list useful.
Have a great journey ahead!!!