My book ‘Cricket analytics with cricketr and cricpy’ is now on Amazon

‘Cricket analytics with cricketr and cricpy – Analytics harmony with R and Python’ is now available on Amazon in both paperback ($21.99) and kindle ($9.99/Rs 449) versions. The book includes analysis of cricketers using both my R package ‘cricketr’ and my python package ‘cricpy’ for all formats of the game namely Test, ODI and T20. Both packages use data from ESPN Cricinfo Statsguru. The paperback is available on Amazon for $21.99 and the kindle version is available for $9.99/Rs 449

Pick up your copy today!

The book includes the following chapters

CONTENTS

Introduction 7
1. Cricket analytics with cricketr 9
1.1. Introducing cricketr! : An R package to analyze performances of cricketers 10
1.2. Taking cricketr for a spin – Part 1 48
1.2. cricketr digs the Ashes! 69
1.3. cricketr plays the ODIs! 97
1.4. cricketr adapts to the Twenty20 International! 139
1.5. Sixer – R package cricketr’s new Shiny avatar 168
1.6. Re-introducing cricketr! : An R package to analyze performances of cricketers 178
1.7. cricketr sizes up legendary All-rounders of yesteryear 233
1.8. cricketr flexes new muscles: The final analysis 277
1.9. The Clash of the Titans in Test and ODI cricket 300
1.10. Analyzing performances of cricketers using cricketr template 338
2. Cricket analytics with cricpy 352
2.1 Introducing cricpy:A python package to analyze performances of cricketers 353
2.2 Cricpy takes a swing at the ODIs 405
Analysis of Top 4 batsman 448
2.3 Cricpy takes guard for the Twenty20s 449
2.4 Analyzing batsmen and bowlers with cricpy template 490
9. Average runs against different opposing teams 493
3. Other cricket posts in R 500
3.1 Analyzing cricket’s batting legends – Through the mirage with R 500
3.2 Mirror, mirror … the best batsman of them all? 527
4. Appendix 541
Cricket analysis with Machine Learning using Octave 541
4.1 Informed choices through Machine Learning – Analyzing Kohli, Tendulkar and Dravid 542
4.2 Informed choices through Machine Learning-2 Pitting together Kumble, Kapil, Chandra 555
Further reading 569
Important Links 570

Also see
1. My book “Deep Learning from first principles” now on Amazon
2. Practical Machine Learning with R and Python – Part 1
3. Revisiting World Bank data analysis with WDI and gVisMotionChart
4. Natural language processing: What would Shakespeare say?
5. Optimal Cloud Computing
6. Pitching yorkpy … short of good length to IPL – Part 1
7. Computer Vision: Ramblings on derivatives, histograms and contours

To see all posts click Index of posts

The Clash of the Titans in Test and ODI cricket

Who looks outside, dreams; who looks inside, awakes.
Show me a sane man and I will cure him for you.

            Carl Jung 

 

We’re made of star stuff. We are a way for the cosmos to know itself.
If you want to make an apple pie from scratch, you must first create the universe.

            Carl Sagan

Introduction

The biggest nag in the collective psyche of cricketing fraternity these days, is whether Virat Kohli has surpassed Sachin Tendulkar. This question has been troubling cricket lovers the world over and particularly in India, for quite a while. This nagging question has only grown stronger with Kohli’s 41st ODI century and with Michael Vaughan bestowing the GOAT title to Virat Kohli for ODI cricket. Hence, I decided to do my bit in addressing this, by doing analysis of Kohli’s and Tendulkar’s performance in ODI cricket. I also wanted to address the the best among the cricketing idols of India in Test cricket, namely Sunil Gavaskar, Sachin Tendulkar and Virat Kohli. Hence this post has 2 parts

  1. Analysis of Tendulkar, Gavaskar and Kohli in Test cricket
  2. Analysis of Tendulkar and Kohli in ODIs

In this post, I analyze the performances of these titans in Test and ODI cricket using my R package cricketr. While some may feel that comparisons are not possible as these batsmen are from different eras. To some extent this is true. I would give some leeway to Gavaskar as he had to bat in a pre-helmet era. But with Tendulkar and Kohli a fair and objective comparison is possible. There were pre-eminient bowlers in the times of Tendulkar as there are now.

From the analysis below, it can be seen that Tendulkar is ahead  of everybody else in Test cricket. However it must be noted that Tendulkar’s performance deteriorated towards the end of his career. Such was not the case with Gavaskar. Kohli has some catching up to do and he still has a lot of Test cricket in him.

In ODI Kohli can be seen to pulling ahead of Tendulkar in several aspects.

My R package cricketr can be installed directly from CRAN and you can use it analyze cricketers.

This package uses the statistics info available in ESPN Cricinfo Statsguru. The current version of this package supports all formats of the game including Test, ODI and Twenty20 versions.

You should be able to install the package from GitHub and use the many functions available in the package. Please mindful of the ESPN Cricinfo Terms of Use

Important note 1: The latest release of ‘cricketr’ now includes the ability to analyze performances of teams now!!  See Cricketr adds team analytics to its repertoire!!!

Important note 2 : Cricketr can now do a more fine-grained analysis of players, see Cricketr learns new tricks : Performs fine-grained analysis of players

Important note 3: Do check out the python avatar of cricketr, ‘cricpy’ in my post ‘Introducing cricpy:A python package to analyze performances of cricketers

Take a look at my short video tutorial on my R package cricketr on Youtube – R package cricketr – A short tutorial

Do check out my interactive Shiny app implementation using the cricketr package – Sixer – R package cricketr’s new Shiny avatar

Note 1: If you would like to do a similar analysis for a different set of batsman and bowlers, you can clone/download my skeleton cricketr templatefrom Github (which is the R Markdown file I have used for the analysis below).

Note 2: I sprinkle the charts with my observations. Feel free to look at them more closely and come to your conclusions.

If you are passionate about cricket, and love analyzing cricket performances, then check out my racy book on cricket ‘Cricket analytics with cricketr and cricpy – Analytics harmony with R & Python’! This book discusses and shows how to use my R package ‘cricketr’ and my Python package ‘cricpy’ to analyze batsmen and bowlers in all formats of the game (Test, ODI and T20). The paperback is available on Amazon at $21.99 and  the kindle version at $9.99/Rs 449/-. A must read for any cricket lover! Check it out!!

Untitled

Important note: Do check out the python avatar of cricketr, ‘cricpy’ in my post Introducing cricpy:A python package to analyze performances of cricketers

1 Load the cricketr package

if (!require("cricketr")){
    install.packages("cricketr",lib = "c:/test")
}
library(cricketr)

A Test cricket  – Analysis of Gavaskar, Tendulkar and Kohli

2. Get player data

tendulkar <- getPlayerData(35320,dir=".",file="tendulkar.csv",type="batting")
kohli <- getPlayerData(253802,dir=".",file="kohli.csv",type="batting")
gavaskar <- getPlayerData(28794,dir=".",file="gavaskar.csv",type="batting")

3a. Basic analyses for Tendulkar

par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
batsmanRunsFreqPerf("./tendulkar.csv","Tendulkar")
batsmanMeanStrikeRate("./tendulkar.csv","Tendulkar")
batsmanRunsRanges("./tendulkar.csv","Tendulkar")
dev.off()

3b Basic analyses for Kohli

par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
batsmanRunsFreqPerf("./kohli.csv","Kohli")
batsmanMeanStrikeRate("./kohli.csv","Kohli")
batsmanRunsRanges("./kohli.csv","Kohli")
dev.off()

3c Basic analyses for Gavaskar

par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
batsmanRunsFreqPerf("./gavaskar.csv","Gavaskar")
batsmanMeanStrikeRate("./gavaskar.csv","Gavaskar")
batsmanRunsRanges("./gavaskar.csv","Gavaskar")
dev.off()

4a.More analyses for Tendulkar

It can be seen that Tendulkar and Gavaskar has been bowled more often than Kohli. Also Kohli does not have as many sixes in Test cricket as Tendulkar and Gavaskar

par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
batsman4s("./tendulkar.csv","Tendulkar")
batsman6s("./tendulkar.csv","Tendulkar")
batsmanDismissals("./tendulkar.csv","Tendulkar")
dev.off()

4b. More analyses for Kohli

par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
batsman4s("./kohli.csv","Kohli")
batsman6s("./kohli.csv","Kohli")
batsmanDismissals("./kohli.csv","Kohli")
dev.off()

4c More analyses for Gavaskar

par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
batsman4s("./gavaskar.csv","Gavaskar")
batsman6s("./gavaskar.csv","Gavaskar")
batsmanDismissals("./gavaskar.csv","Gavaskar")
dev.off()

5 Performance of batsmen on different grounds

par(mar=c(4,4,2,2))
batsmanAvgRunsGround("./tendulkar.csv","Tendulkar")
batsmanAvgRunsGround("./kohli.csv","Kohli")
batsmanAvgRunsGround("./gavaskar.csv","Gavaskar")

a

#dev.off()

6. Performance if batsmen against different Opposition

  1. Tendulkar averages 50 against the following countries – Australia, Bangladesh, England, Sri Lanka, West Indies and Zimbabwe
  2. Kohli average almost 50 against all the nations he has played – Australia, Bangladesh, England, New Zealand, Sri Lanka and West Indies
  3. Gavaskar averages 50 against Australia, Pakistan, West Indies, Sri Lanka
par(mar=c(4,4,2,2))
batsmanAvgRunsOpposition("./tendulkar.csv","Tendulkar")
batsmanAvgRunsOpposition("./kohli.csv","Kohli")
batsmanAvgRunsOpposition("./gavaskar.csv","Gavaskar")

7. Get player data special

This is required for the next 2 function calls

tendulkarsp <- getPlayerDataSp(35320,tdir=".",tfile="tendulkarsp.csv",ttype="batting")
kohlisp <- getPlayerDataSp(253802,tdir=".",tfile="kohlisp.csv",ttype="batting")
gavaskarsp <- getPlayerDataSp(28794,tdir=".",tfile="gavaskarsp.csv",ttype="batting")

#dev.off()

8 Get contribution of batsmen in matches won and lost

Kohli contribution has had an equal contribution in won and lost matches. Tendulkar’s runs seem to have not helped in winning as much as only 50% of matches he has played have been won

par(mfrow=c(2,2))
par(mar=c(4,4,2,2))

batsmanContributionWonLost("tendulkarsp.csv","Tendulkar")
batsmanContributionWonLost("./kohlisp.csv","Kohli")
batsmanContributionWonLost("./gavaskarsp.csv","Gavaskar")
  

a

9 Performance of batsmen at home and overseas

The boxplots show that Kohli performs better overseas than at home. The 3rd quartile is higher, though the median seems to lower overseas. For Tendulkar the performance is similar both ways. Gavaskar’s median runs scored overseas is higher.

par(mfrow=c(2,2))
par(mar=c(4,4,2,2))


batsmanPerfHomeAway("tendulkarsp.csv","Tendulkar")
batsmanPerfHomeAway("./kohlisp.csv","Kohli")
batsmanPerfHomeAway("./gavaskarsp.csv","Gavaskar")

10. Moving average of runs

Gavaskar’s moving average was very good at the time of his retirement. Kohli seems to be going very strong. Tendulkar’s performance shows signs of deterioration around the time of his retirement.

par(mfrow=c(2,2))
par(mar=c(4,4,2,2))

batsmanMovingAverage("./tendulkar.csv","Tendulkar")
batsmanMovingAverage("./kohli.csv","Kohli")
batsmanMovingAverage("./gavaskar.csv","Gavaskar")

#dev.off()

11 Boxplot and histogram of runs

Kohli has a marginally higher average (50.69) than Tendulkar (48.65) while Gavaskar 46. The median runs are same for Tendulkar and Kohli at 32

par(mfrow=c(2,2))
par(mar=c(4,4,2,2))
batsmanPerfBoxHist("./tendulkar.csv","Sachin Tendulkar")
batsmanPerfBoxHist("./kohli.csv","Kohli")
batsmanPerfBoxHist("./gavaskar.csv","Gavaskar")

12 Cumulative average Runs for batsmen

Looking at the cumulative average runs we can see a gradual drop in the cumulative average for Tendulkar while Kohli and Gavaskar’s performance seems to be getting better

par(mfrow=c(2,2))
par(mar=c(4,4,2,2))
batsmanCumulativeAverageRuns("./tendulkar.csv","Tendulkar")
batsmanCumulativeAverageRuns("./kohli.csv","Kohli")
batsmanCumulativeAverageRuns("./gavaskar.csv","Gavaskar")

13. Cumulative average strike rate of batsmen

Tendulkar’s strike rate is better than Kohli and Gavaskar

par(mfrow=c(2,2))
par(mar=c(4,4,2,2))
batsmanCumulativeStrikeRate("./tendulkar.csv","Tendulkar")
batsmanCumulativeStrikeRate("./kohli.csv","Kohli")
batsmanCumulativeStrikeRate("./gavaskar.csv","Gavaskar")

14 Performance forecast of batsmen

The forecasted performance for Kohli and Gavaskar is higher than that of Tendulkar

par(mfrow=c(2,2))
par(mar=c(4,4,2,2))
batsmanPerfForecast("./tendulkar.csv","Sachin Tendulkar")
batsmanPerfForecast("./kohli.csv","Kohli")
batsmanPerfForecast("./gavaskar.csv","Gavaskar")

#dev.off()

15. Relative strike rate of batsmen

par(mar=c(4,4,2,2))

frames <- list("./tendulkar.csv","./kohli.csv","gavaskar.csv")
names <- list("Tendulkar","Kohli","Gavaskar")
relativeBatsmanSR(frames,names)
#dev.off()

16. Relative Runs frequency of batsmen

par(mar=c(4,4,2,2))
frames <- list("./tendulkar.csv","./kohli.csv","gavaskar.csv")
names <- list("Tendulkar","Kohli","Gavaskar")
relativeRunsFreqPerf(frames,names)
#dev.off()

17. Relative cumulative average runs of batsmen

Tendulkar leads the way here, but it can be seem Kohli catching up.

par(mar=c(4,4,2,2))
frames <- list("./tendulkar.csv","./kohli.csv","gavaskar.csv")
names <- list("Tendulkar","Kohli","Gavaskar")
relativeBatsmanCumulativeAvgRuns(frames,names)
#dev.off()

18. Relative cumulative average strike rate

Tendulkar has better strike rate than the other two.

par(mar=c(4,4,2,2))
frames <- list("./tendulkar.csv","./kohli.csv","gavaskar.csv")
names <- list("Tendulkar","Kohli","Gavaskar")
relativeBatsmanCumulativeStrikeRate(frames,names)
#dev.off()

19. Check batsman in form

As in the moving average and performance forecast and cumulative average runs, Kohli and Gavaskar are in-form while Tendulkar was out-of-form towards the end.

checkBatsmanInForm("./tendulkar.csv","Sachin Tendulkar")
## [1] "**************************** Form status of Sachin Tendulkar ****************************
\n\n Population size: 294  Mean of population: 50.48 \n Sample size: 33  Mean of sample: 32.42 SD of 
sample: 29.8 \n\n Null hypothesis H0 : Sachin Tendulkar 's sample average is within 95% confidence interval 
of population average\n Alternative hypothesis Ha : Sachin Tendulkar 's sample average is below 
the 95% confidence interval of population average\n\n 
Sachin Tendulkar 's Form Status: Out-of-Form because the p value: 0.000713  is less than alpha=  0.05 \n *******************************************************************************************\n\n"
checkBatsmanInForm("./kohli.csv","Kohli")
## [1] "**************************** Form status of Kohli ****************************\n\n Population size: 117
  Mean of population: 50.35 \n Sample size: 13  Mean of sample: 53.77 SD of sample: 46.15 \n\n Null 
hypothesis H0 : Kohli 's sample average is within 95% confidence interval of population average\n 
Alternative hypothesis Ha : Kohli 's sample average is below the 95% confidence interval of population
 average\n\n Kohli 's Form Status: In-Form because the p value: 0.603244  is greater than alpha=  0.05 \n *******************************************************************************************\n\n"
checkBatsmanInForm("./gavaskar.csv","Gavaskar")
## [1] "**************************** Form status of Gavaskar ****************************\n\n 
Population size: 125  Mean of population: 44.67 \n Sample size: 14  Mean of sample: 57.86 SD of sample:
 58.55 \n\n Null hypothesis H0 : Gavaskar 's sample average is within 95% confidence interval of population
 average\n Alternative hypothesis Ha : Gavaskar 's sample average is below the 95% confidence interval of 
population average\n\n Gavaskar 's Form Status: In-Form because the p value: 0.793276  is greater 
than alpha=  0.05 \n *******************************************************************************************\n\n"
#dev.off()

20. Performance 3D

A 3D regression plane is fitted between the the Balls faced, Minutes at crease and Runs scored

par(mfrow=c(2,2))
par(mar=c(4,4,2,2))
battingPerf3d("./tendulkar.csv","Sachin Tendulkar")
battingPerf3d("./kohli.csv","Kohli")
battingPerf3d("./gavaskar.csv","Gavaskar")
#dev.off()

20. Runs likelihood

This functions computes the K-Means and determines the runs the batsmen are likely to score.

par(mar=c(4,4,2,2))
batsmanRunsLikelihood("./tendulkar.csv","Tendulkar")
## Summary of  Tendulkar 's runs scoring likelihood
## **************************************************
## 
## There is a 16.51 % likelihood that Tendulkar  will make  139 Runs in  251 balls over 353  Minutes 
## There is a 25.08 % likelihood that Tendulkar  will make  66 Runs in  122 balls over  167  Minutes 
## There is a 58.41 % likelihood that Tendulkar  will make  16 Runs in  31 balls over 44  Minutes
batsmanRunsLikelihood("./kohli.csv","Kohli")
## Summary of  Kohli 's runs scoring likelihood
## **************************************************
## 
## There is a 20 % likelihood that Kohli  will make  143 Runs in  232 balls over 330  Minutes 
## There is a 33.85 % likelihood that Kohli  will make  51 Runs in  92 balls over  127  Minutes 
## There is a 46.15 % likelihood that Kohli  will make  11 Runs in  24 balls over 31  Minutes
batsmanRunsLikelihood("./gavaskar.csv","Gavaskar")
## Summary of  Gavaskar 's runs scoring likelihood
## **************************************************
## 
## There is a 33.81 % likelihood that Gavaskar  will make  69 Runs in  159 balls over 214  Minutes 
## There is a 8.63 % likelihood that Gavaskar  will make  172 Runs in  364 balls over  506  Minutes 
## There is a 57.55 % likelihood that Gavaskar  will make  13 Runs in  35 balls over 48  Minutes

21. Predict runs for a random combination of Balls faced and runs scored

BF <- seq( 10, 400,length=15)
Mins <- seq(30,600,length=15)
newDF <- data.frame(BF,Mins)
tendulkar <- batsmanRunsPredict("./tendulkar.csv","Tendulkar",newdataframe=newDF)
kohli <- batsmanRunsPredict("./kohli.csv","Kohli",newdataframe=newDF)
gavaskar <- batsmanRunsPredict("./gavaskar.csv","Gavaskar",newdataframe=newDF)
batsmen <-cbind(round(tendulkar$Runs),round(kohli$Runs),round(gavaskar$Runs))
colnames(batsmen) <- c("Tendulkar","Kohli","Gavaskar")
newDF <- data.frame(round(newDF$BF),round(newDF$Mins))
colnames(newDF) <- c("BallsFaced","MinsAtCrease")
predictedRuns <- cbind(newDF,batsmen)
predictedRuns
##    BallsFaced MinsAtCrease Tendulkar Kohli Gavaskar
## 1          10           30         7     6        4
## 2          38           71        23    24       17
## 3          66          111        39    42       30
## 4          94          152        54    60       43
## 5         121          193        70    78       56
## 6         149          234        86    96       69
## 7         177          274       102   114       82
## 8         205          315       118   132       95
## 9         233          356       134   150      108
## 10        261          396       150   168      121
## 11        289          437       165   186      134
## 12        316          478       181   204      147
## 13        344          519       197   222      160
## 14        372          559       213   240      173
## 15        400          600       229   258      186
#dev.off()

Key findings

  1. Kohli has a marginally higher average than Tendulkar
  2. Tendulkar has the best strike rate of all the 3.
  3. The cumulative average runs and the performance forecast for Kohli and Gavaskar show an improving trend, while Tendulkar’s numbers deteriorate towards the end of his career
  4. Kohli is fast catching up Tendulkar on cumulative average runs vs innings in career.

B ODI Cricket – Analysis of Tendulkar and Kohli

The functions below get the ODI data for Tendulkar and Kohli as CSV files so that the analyses can be done

22 Get player data for ODIs

tendulkarOD <- getPlayerDataOD(35320,dir=".",file="tendulkarOD.csv",type="batting")
kohliOD <- getPlayerDataOD(253802,dir=".",file="kohliOD.csv",type="batting")

#dev.off()

23a Basic performance of Tendulkar in ODI

par(mfrow=c(3,2))
par(mar=c(4,4,2,2))
batsmanRunsFreqPerf("./tendulkarOD.csv","Tendulkar")
batsmanRunsRanges("./tendulkarOD.csv","Tendulkar")
batsman4s("./tendulkarOD.csv","Tendulkar")
batsman6s("./tendulkarOD.csv","Tendulkar")
batsmanScoringRateODTT("./tendulkarOD.csv","Tendulkar")
#dev.off()

23b. Basic performance of Kohli in ODI

par(mfrow=c(3,2))
par(mar=c(4,4,2,2))
batsmanRunsFreqPerf("./kohliOD.csv","Kohli")
batsmanRunsRanges("./kohliOD.csv","Kohli")
batsman4s("./kohliOD.csv","Kohli")
batsman6s("./kohliOD.csv","Kohli")
batsmanScoringRateODTT("./kohliOD.csv","Kohli")
#dev.off()

24. Performance forecast in ODIs

Kohli’s forecasted runs are much higher than Tendulkar’s in ODIs

par(mar=c(4,4,2,2))
batsmanPerfForecast("./tendulkarOD.csv","Tendulkar")
batsmanPerfForecast("./kohliOD.csv","Kohli")

25. Batting performance

A 3D regression plane is fitted between Balls faced, Minutes at crease and Runs scored.

par(mar=c(4,4,2,2))
battingPerf3d("./tendulkarOD.csv","Tendulkar")
battingPerf3d("./kohliOD.csv","Kohli")

26. Predicting runs scored for the ODI batsmen

Kohli will score runs than Tendulkar for the same minutes at crease and balls faced.

BF <- seq( 10, 200,length=10)
Mins <- seq(30,220,length=10)
newDF <- data.frame(BF,Mins)
tendulkarDF <- batsmanRunsPredict("./tendulkarOD.csv","Tendulkar",newdataframe=newDF)
kohliDF <- batsmanRunsPredict("./kohliOD.csv","Kohli",newdataframe=newDF)
batsmen <-cbind(round(tendulkarDF$Runs),round(kohliDF$Runs))
colnames(batsmen) <- c("Tendulkar","Kohli")
newDF <- data.frame(round(newDF$BF),round(newDF$Mins))
colnames(newDF) <- c("BallsFaced","MinsAtCrease")
predictedRuns <- cbind(newDF,batsmen)
predictedRuns
##    BallsFaced MinsAtCrease Tendulkar Kohli
## 1          10           30         7     8
## 2          31           51        26    28
## 3          52           72        45    48
## 4          73           93        64    68
## 5          94          114        83    88
## 6         116          136       102   108
## 7         137          157       121   128
## 8         158          178       140   149
## 9         179          199       159   169
## 10        200          220       178   189

27. Runs likelihood for the ODI batsmen

Tendulkar has clusters around 13, 53 and 111 runs while Kohli has clusters around 13, 63,116. So it more likely that Kohli will tend to score higher

par(mar=c(4,4,2,2))
batsmanRunsLikelihood("./tendulkarOD.csv","Tendulkar")
## Summary of  Tendulkar 's runs scoring likelihood
## **************************************************
## 
## There is a 18.09 % likelihood that Tendulkar  will make  111 Runs in  118 balls over 172  Minutes 
## There is a 28.39 % likelihood that Tendulkar  will make  53 Runs in  63 balls over  95  Minutes 
## There is a 53.52 % likelihood that Tendulkar  will make  13 Runs in  18 balls over 27  Minutes
batsmanRunsLikelihood("./kohliOD.csv","Kohli")
## Summary of  Kohli 's runs scoring likelihood
## **************************************************
## 
## There is a 31.41 % likelihood that Kohli  will make  63 Runs in  69 balls over 97  Minutes 
## There is a 49.74 % likelihood that Kohli  will make  13 Runs in  18 balls over  24  Minutes 
## There is a 18.85 % likelihood that Kohli  will make  116 Runs in  113 balls over 163  Minutes

28. Runs in different venues for the ODI batsmen

par(mar=c(4,4,2,2))
batsmanAvgRunsGround("./tendulkarOD.csv","Tendulkar")
batsmanAvgRunsGround("./kohliOD.csv","Kohli")

28. Runs against different opposition for the ODI batsmen

Tendulkar’s has 50+ average against Bermuda, Kenya and Namibia. While Kohli has a 50+ average against New Zealand, West Indies, South Africa, Zimbabwe and Bangladesh

par(mar=c(4,4,2,2))
batsmanAvgRunsOpposition("./tendulkarOD.csv","Tendulkar")
batsmanAvgRunsOpposition("./kohliOD.csv","Kohli")

29. Moving average of runs for the ODI batsmen

Tendulkar’s moving average shows an improvement (50+) towards the end of his career, but Kohli shows a marked increase 60+ currently

par(mar=c(4,4,2,2))
batsmanMovingAverage("./tendulkarOD.csv","Tendulkar")
batsmanMovingAverage("./kohliOD.csv","Kohli")

30. Cumulative average runs of ODI batsmen

Tendulkar plateaus at 40+ while Kohli’s cumulative average runs goes up and up!!!

par(mar=c(4,4,2,2))
batsmanCumulativeAverageRuns("./tendulkarOD.csv","Tendulkar")
batsmanCumulativeAverageRuns("./kohliOD.csv","Kohli")

31 Cumulative strike rate of ODI batsmen

par(mar=c(4,4,2,2))
batsmanCumulativeStrikeRate("./tendulkarOD.csv","Tendulkar")
batsmanCumulativeStrikeRate("./kohliOD.csv","Kohli")

32. Relative batsmen strike rate

par(mar=c(4,4,2,2))

frames <- list("./tendulkarOD.csv","./kohliOD.csv")
names <- list("Tendulkar","Kohli")
relativeBatsmanSRODTT(frames,names)
#dev.off()

33. Relative Run Frequency percentages

par(mar=c(4,4,2,2))

frames <- list("./tendulkarOD.csv","./kohliOD.csv")
names <- list("Tendulkar","Kohli")
relativeRunsFreqPerfODTT(frames,names)
#dev.off()

34. Relative cumulative average runs of ODI batsmen

Kohli breaks away from Tendulkar in cumulative average runs after 100 innings

par(mar=c(4,4,2,2))

frames <- list("./tendulkarOD.csv","./kohliOD.csv")
names <- list("Tendulkar","Kohli")
relativeBatsmanCumulativeAvgRuns(frames,names)
#dev.off()

35. Relative cumulative strike rate of ODI batsmen

This seems to be tussle with Kohli having an edge till about 40 innings and then from 40+ to 180 innings Tendulkar leads. Kohli just seems to be edging forward.

par(mar=c(4,4,2,2))

frames <- list("./tendulkarOD.csv","./kohliOD.csv")
names <- list("Tendulkar","Kohli")
relativeBatsmanCumulativeStrikeRate(frames,names)
#dev.off()

36. Batsmen 4s and 6s

par(mar=c(4,4,2,2))

frames <- list("./tendulkarOD.csv","./kohliOD.csv")
names <- list("Tendulkar","Kohli")
batsman4s6s(frames,names)
##                Tendulkar Kohli
## Runs(1s,2s,3s)     66.29 69.67
## 4s                 29.65 25.90
## 6s                  4.06  4.43
#dev.off()

37. Check ODI batsmen form

par(mar=c(4,4,2,2))

checkBatsmanInForm("./tendulkar.csv","Tendulkar")
## [1] "**************************** Form status of Tendulkar ********
********************\n\n Population size: 294  Mean of population: 50.48 \n
 Sample size: 33  Mean of sample: 32.42 SD of sample: 29.8 \n\n 
Null hypothesis H0 : Tendulkar 's sample average is within 95% confidence
 interval of population average\n Alternative hypothesis 
Ha : Tendulkar 's sample average is below the 95% confidence interval 
of population average\n\n Tendulkar 's Form Status: Out-of-Form because the p value: 0.000713  is less than alpha=  0.05 \n *******************************************************************************************\n\n"
checkBatsmanInForm("./kohli.csv","Kohli")
## [1] "**************************** Form status of Kohli ***********
*****************\n\n Population size: 117  Mean of population: 50.35 \n
 Sample size: 13  Mean of sample: 53.77 SD of sample: 46.15 \n\n 
Null hypothesis H0 : Kohli 's sample average is within 95% confidence 
interval of population average\n Alternative hypothesis 
Ha : Kohli 's sample average is below the 95% confidence interval 
of population average\n\n Kohli 's Form Status: In-Form because 
the p value: 0.603244  is greater than alpha=  0.05 \n *******************************************************************************************\n\n"
#dev.off()

Key Findings

  1. Kohli has a better performance against oppositions like West Indies, South Africa and New Zealand
  2. Kohli breaks away from Tendulkar in cumulative average runs
  3. Tendulkar has been leading the strike rate rate but Kohli in recent times seems to be breaking loose.

Check out some other players with my R package cricketr

Important note: Do check out my other posts using cricketr at cricketr-posts

Also see

  1. My book ‘Practical Machine Learning in R and Python: Third edition’ on Amazon
  2. A primer on Qubits, Quantum gates and Quantum Operations
  3. De-blurring revisited with Wiener filter using OpenCV
  4. Deep Learning from first principles in Python, R and Octave – Part 4
  5. The Many Faces of Latency
  6. Fun simulation of a Chain in Android
  7. Presentation on Wireless Technologies – Part 1
  8. yorkr crashes the IPL party ! – Part 1

To see all posts click Index of posts

Analyzing batsmen and bowlers with cricpy template

Introduction

This post shows how you can analyze batsmen and bowlers of Test, ODI and T20s using cricpy templates, using data from ESPN Cricinfo.

The cricpy package

The data for a particular player can be obtained with the getPlayerData() function. To do you will need to go to ESPN CricInfo Player and type in the name of the player for e.g Rahul Dravid, Virat Kohli  etc. This will bring up a page which have the profile number for the player e.g. for Rahul Dravid this would be http://www.espncricinfo.com/india/content/player/28114.html. Hence, Dravid’s profile is 28114. This can be used to get the data for Rahul Dravid as shown below

1. For Test players use batting and bowling.
2. For ODI use batting and bowling
3. For T20 use T20 Batting T20 Bowling

Please mindful of the  ESPN Cricinfo Terms of Use

My posts on Cripy were
a. Introducing cricpy:A python package to analyze performances of cricketers
b. Cricpy takes a swing at the ODIs
c. Cricpy takes guard for the Twenty20s

You can clone/download this cricpy template for your own analysis of players. This can be done using RStudio or IPython notebooks from Github at cricpy-template. You can uncomment the functions and use them.

Cricpy can now analyze performances of teams in Test, ODI and T20 cricket see Cricpy adds team analytics to its arsenal!!

This post is also hosted on Rpubs at Int

The cricpy package is now available with pip install cricpy!!!

If you are passionate about cricket, and love analyzing cricket performances, then check out my racy book on cricket ‘Cricket analytics with cricketr and cricpy – Analytics harmony with R & Python’! This book discusses and shows how to use my R package ‘cricketr’ and my Python package ‘cricpy’ to analyze batsmen and bowlers in all formats of the game (Test, ODI and T20). The paperback is available on Amazon at $21.99 and  the kindle version at $9.99/Rs 449/-. A must read for any cricket lover! Check it out!!

Untitled

1 Importing cricpy – Python

# Install the package
# Do a pip install cricpy
# Import cricpy
import cricpy.analytics as ca 
## C:\Users\Ganesh\ANACON~1\lib\site-packages\statsmodels\compat\pandas.py:56: FutureWarning: The pandas.core.datetools module is deprecated and will be removed in a future version. Please use the pandas.tseries module instead.
##   from pandas.core import datetools

2. Invoking functions with Python package cricpy

import cricpy.analytics as ca 
#ca.batsman4s("aplayer.csv","A Player")

3. Getting help from cricpy – Python

import cricpy.analytics as ca
#help(ca.getPlayerData)

The details below will introduce the different functions that are available in cricpy.

4. Get the player data for a player using the function getPlayerData()

Important Note This needs to be done only once for a player. This function stores the player’s data in the specified CSV file (for e.g. dravid.csv as above) which can then be reused for all other functions). Once we have the data for the players many analyses can be done. This post will use the stored CSV file obtained with a prior getPlayerData for all subsequent analyses

4a. For Test players

import cricpy.analytics as ca
#player1 =ca.getPlayerData(profileNo1,dir="..",file="player1.csv",type="batting",homeOrAway=[1,2], result=[1,2,4])
#player1 =ca.getPlayerData(profileNo2,dir="..",file="player2.csv",type="batting",homeOrAway=[1,2], result=[1,2,4])

4b. For ODI players

import cricpy.analytics as ca
#player1 =ca.getPlayerDataOD(profileNo1,dir="..",file="player1.csv",type="batting")
#player1 =ca.getPlayerDataOD(profileNo2,dir="..",file="player2.csv",type="batting"")

4c For T20 players

import cricpy.analytics as ca
#player1 =ca.getPlayerDataTT(profileNo1,dir="..",file="player1.csv",type="batting")
#player1 =ca.getPlayerDataTT(profileNo2,dir="..",file="player2.csv",type="batting"")

5 A Player’s performance – Basic Analyses

The 3 plots below provide the following for Rahul Dravid

  1. Frequency percentage of runs in each run range over the whole career
  2. Mean Strike Rate for runs scored in the given range
  3. A histogram of runs frequency percentages in runs ranges
import cricpy.analytics as ca
import matplotlib.pyplot as plt
#ca.batsmanRunsFreqPerf("aplayer.csv","A Player")
#ca.batsmanMeanStrikeRate("aplayer.csv","A Player")
#ca.batsmanRunsRanges("aplayer.csv","A Player") 

6. More analyses

This gives details on the batsmen’s 4s, 6s and dismissals

import cricpy.analytics as ca
#ca.batsman4s("aplayer.csv","A Player")
#ca.batsman6s("aplayer.csv","A Player") 
#ca.batsmanDismissals("aplayer.csv","A Player")
# The below function is for ODI and T20 only
#ca.batsmanScoringRateODTT("./kohli.csv","Virat Kohli")  

7. 3D scatter plot and prediction plane

The plots below show the 3D scatter plot of Runs versus Balls Faced and Minutes at crease. A linear regression plane is then fitted between Runs and Balls Faced + Minutes at crease

import cricpy.analytics as ca
#ca.battingPerf3d("aplayer.csv","A Player")

8. Average runs at different venues

The plot below gives the average runs scored at different grounds. The plot also the number of innings at each ground as a label at x-axis.

import cricpy.analytics as ca
#ca.batsmanAvgRunsGround("aplayer.csv","A Player")

9. Average runs against different opposing teams

This plot computes the average runs scored against different countries.

import cricpy.analytics as ca
#ca.batsmanAvgRunsOpposition("aplayer.csv","A Player")

10. Highest Runs Likelihood

The plot below shows the Runs Likelihood for a batsman.

import cricpy.analytics as ca
#ca.batsmanRunsLikelihood("aplayer.csv","A Player")

11. A look at the Top 4 batsman

Choose any number of players

1.Player1 2.Player2 3.Player3 …

The following plots take a closer at their performances. The box plots show the median the 1st and 3rd quartile of the runs

12. Box Histogram Plot

This plot shows a combined boxplot of the Runs ranges and a histogram of the Runs Frequency

import cricpy.analytics as ca
#ca.batsmanPerfBoxHist("aplayer001.csv","A Player001")
#ca.batsmanPerfBoxHist("aplayer002.csv","A Player002")
#ca.batsmanPerfBoxHist("aplayer003.csv","A Player003")
#ca.batsmanPerfBoxHist("aplayer004.csv","A Player004")

13. Get Player Data special

import cricpy.analytics as ca
#player1sp = ca.getPlayerDataSp(profile1,tdir=".",tfile="player1sp.csv",ttype="batting")
#player2sp = ca.getPlayerDataSp(profile2,tdir=".",tfile="player2sp.csv",ttype="batting")
#player3sp = ca.getPlayerDataSp(profile3,tdir=".",tfile="player3sp.csv",ttype="batting")
#player4sp = ca.getPlayerDataSp(profile4,tdir=".",tfile="player4sp.csv",ttype="batting")

14. Contribution to won and lost matches

Note:This can only be used for Test matches

import cricpy.analytics as ca
#ca.batsmanContributionWonLost("player1sp.csv","A Player001")
#ca.batsmanContributionWonLost("player2sp.csv","A Player002")
#ca.batsmanContributionWonLost("player3sp.csv","A Player003")
#ca.batsmanContributionWonLost("player4sp.csv","A Player004")

15. Performance at home and overseas

Note:This can only be used for Test matches This function also requires the use of getPlayerDataSp() as shown above

import cricpy.analytics as ca
#ca.batsmanPerfHomeAway("player1sp.csv","A Player001")
#ca.batsmanPerfHomeAway("player2sp.csv","A Player002")
#ca.batsmanPerfHomeAway("player3sp.csv","A Player003")
#ca.batsmanPerfHomeAway("player4sp.csv","A Player004")

16 Moving Average of runs in career

import cricpy.analytics as ca
#ca.batsmanMovingAverage("aplayer001.csv","A Player001")
#ca.batsmanMovingAverage("aplayer002.csv","A Player002")
#ca.batsmanMovingAverage("aplayer003.csv","A Player003")
#ca.batsmanMovingAverage("aplayer004.csv","A Player004")

17 Cumulative Average runs of batsman in career

This function provides the cumulative average runs of the batsman over the career.

import cricpy.analytics as ca
#ca.batsmanCumulativeAverageRuns("aplayer001.csv","A Player001")
#ca.batsmanCumulativeAverageRuns("aplayer002.csv","A Player002")
#ca.batsmanCumulativeAverageRuns("aplayer003.csv","A Player003")
#ca.batsmanCumulativeAverageRuns("aplayer004.csv","A Player004")

18 Cumulative Average strike rate of batsman in career

.

import cricpy.analytics as ca
#ca.batsmanCumulativeStrikeRate("aplayer001.csv","A Player001")
#ca.batsmanCumulativeStrikeRate("aplayer002.csv","A Player002")
#ca.batsmanCumulativeStrikeRate("aplayer003.csv","A Player003")
#ca.batsmanCumulativeStrikeRate("aplayer004.csv","A Player004")

19 Future Runs forecast

import cricpy.analytics as ca
#ca.batsmanPerfForecast("aplayer001.csv","A Player001")

20 Relative Batsman Cumulative Average Runs

The plot below compares the Relative cumulative average runs of the batsman for each of the runs ranges of 10 and plots them.

import cricpy.analytics as ca
frames = ["aplayer1.csv","aplayer2.csv","aplayer3.csv","aplayer4.csv"]
names = ["A Player1","A Player2","A Player3","A Player4"]
#ca.relativeBatsmanCumulativeAvgRuns(frames,names)

21 Plot of 4s and 6s

import cricpy.analytics as ca
frames = ["aplayer1.csv","aplayer2.csv","aplayer3.csv","aplayer4.csv"]
names = ["A Player1","A Player2","A Player3","A Player4"]
#ca.batsman4s6s(frames,names)

22. Relative Batsman Strike Rate

The plot below gives the relative Runs Frequency Percetages for each 10 run bucket. The plot below show

import cricpy.analytics as ca
frames = ["aplayer1.csv","aplayer2.csv","aplayer3.csv","aplayer4.csv"]
names = ["A Player1","A Player2","A Player3","A Player4"]
#ca.relativeBatsmanCumulativeStrikeRate(frames,names)

23. 3D plot of Runs vs Balls Faced and Minutes at Crease

The plot is a scatter plot of Runs vs Balls faced and Minutes at Crease. A prediction plane is fitted

import cricpy.analytics as ca
#ca.battingPerf3d("aplayer001.csv","A Player001")
#ca.battingPerf3d("aplayer002.csv","A Player002")
#ca.battingPerf3d("aplayer003.csv","A Player003")
#ca.battingPerf3d("aplayer004.csv","A Player004")

24. Predicting Runs given Balls Faced and Minutes at Crease

A multi-variate regression plane is fitted between Runs and Balls faced +Minutes at crease.

import cricpy.analytics as ca
import numpy as np
import pandas as pd
BF = np.linspace( 10, 400,15)
Mins = np.linspace( 30,600,15)
newDF= pd.DataFrame({'BF':BF,'Mins':Mins})
#aplayer = ca.batsmanRunsPredict("aplayer.csv",newDF,"A Player")
#print(aplayer)

The fitted model is then used to predict the runs that the batsmen will score for a given Balls faced and Minutes at crease.

25 Analysis of Top 3 wicket takers

Take any number of bowlers from either Test, ODI or T20

  1. Bowler1
  2. Bowler2
  3. Bowler3 …

26. Get the bowler’s data (Test)

This plot below computes the percentage frequency of number of wickets taken for e.g 1 wicket x%, 2 wickets y% etc and plots them as a continuous line

import cricpy.analytics as ca
#abowler1 =ca.getPlayerData(profileNo1,dir=".",file="abowler1.csv",type="bowling",homeOrAway=[1,2], result=[1,2,4])
#abowler2 =ca.getPlayerData(profileNo2,dir=".",file="abowler2.csv",type="bowling",homeOrAway=[1,2], result=[1,2,4])
#abowler3 =ca.getPlayerData(profile3,dir=".",file="abowler3.csv",type="bowling",homeOrAway=[1,2], result=[1,2,4])

26b For ODI bowlers

import cricpy.analytics as ca
#abowler1 =ca.getPlayerDataOD(profileNo1,dir=".",file="abowler1.csv",type="bowling")
#abowler2 =ca.getPlayerDataOD(profileNo2,dir=".",file="abowler2.csv",type="bowling")
#abowler3 =ca.getPlayerDataOD(profile3,dir=".",file="abowler3.csv",type="bowling")

26c For T20 bowlers

import cricpy.analytics as ca
#abowler1 =ca.getPlayerDataTT(profileNo1,dir=".",file="abowler1.csv",type="bowling")
#abowler2 =ca.getPlayerDataTT(profileNo2,dir=".",file="abowler2.csv",type="bowling")
#abowler3 =ca.getPlayerDataTT(profile3,dir=".",file="abowler3.csv",type="bowling")

27. Wicket Frequency Plot

This plot below plots the frequency of wickets taken for each of the bowlers

import cricpy.analytics as ca
#ca.bowlerWktsFreqPercent("abowler1.csv","A Bowler1")
#ca.bowlerWktsFreqPercent("abowler2.csv","A Bowler2")
#ca.bowlerWktsFreqPercent("abowler3.csv","A Bowler3")

28. Wickets Runs plot

The plot below create a box plot showing the 1st and 3rd quartile of runs conceded versus the number of wickets taken

import cricpy.analytics as ca
#ca.bowlerWktsRunsPlot("abowler1.csv","A Bowler1")
#ca.bowlerWktsRunsPlot("abowler2.csv","A Bowler2")
#ca.bowlerWktsRunsPlot("abowler3.csv","A Bowler3")

29 Average wickets at different venues

The plot gives the average wickets taken bat different venues.

import cricpy.analytics as ca
#ca.bowlerAvgWktsGround("abowler1.csv","A Bowler1")
#ca.bowlerAvgWktsGround("abowler2.csv","A Bowler2")
#ca.bowlerAvgWktsGround("abowler3.csv","A Bowler3")

30 Average wickets against different opposition

The plot gives the average wickets taken against different countries.

import cricpy.analytics as ca
#ca.bowlerAvgWktsOpposition("abowler1.csv","A Bowler1")
#ca.bowlerAvgWktsOpposition("abowler2.csv","A Bowler2")
#ca.bowlerAvgWktsOpposition("abowler3.csv","A Bowler3")

31 Wickets taken moving average

import cricpy.analytics as ca
#ca.bowlerMovingAverage("abowler1.csv","A Bowler1")
#ca.bowlerMovingAverage("abowler2.csv","A Bowler2")
#ca.bowlerMovingAverage("abowler3.csv","A Bowler3")

32 Cumulative average wickets taken

The plots below give the cumulative average wickets taken by the bowlers.

import cricpy.analytics as ca
#ca.bowlerCumulativeAvgWickets("abowler1.csv","A Bowler1")
#ca.bowlerCumulativeAvgWickets("abowler2.csv","A Bowler2")
#ca.bowlerCumulativeAvgWickets("abowler3.csv","A Bowler3")

33 Cumulative average economy rate

The plots below give the cumulative average economy rate of the bowlers.

import cricpy.analytics as ca
#ca.bowlerCumulativeAvgEconRate("abowler1.csv","A Bowler1")
#ca.bowlerCumulativeAvgEconRate("abowler2.csv","A Bowler2")
#ca.bowlerCumulativeAvgEconRate("abowler3.csv","A Bowler3")

34 Future Wickets forecast

import cricpy.analytics as ca
#ca.bowlerPerfForecast("abowler1.csv","A bowler1")

35 Get player data special

import cricpy.analytics as ca
#abowler1sp =ca.getPlayerDataSp(profile1,tdir=".",tfile="abowler1sp.csv",ttype="bowling")
#abowler2sp =ca.getPlayerDataSp(profile2,tdir=".",tfile="abowler2sp.csv",ttype="bowling")
#abowler3sp =ca.getPlayerDataSp(profile3,tdir=".",tfile="abowler3sp.csv",ttype="bowling")

36 Contribution to matches won and lost

Note:This can be done only for Test cricketers

import cricpy.analytics as ca
#ca.bowlerContributionWonLost("abowler1sp.csv","A Bowler1")
#ca.bowlerContributionWonLost("abowler2sp.csv","A Bowler2")
#ca.bowlerContributionWonLost("abowler3sp.csv","A Bowler3")

37 Performance home and overseas

Note:This can be done only for Test cricketers

import cricpy.analytics as ca
#ca.bowlerPerfHomeAway("abowler1sp.csv","A Bowler1")
#ca.bowlerPerfHomeAway("abowler2sp.csv","A Bowler2")
#ca.bowlerPerfHomeAway("abowler3sp.csv","A Bowler3")

38 Relative cumulative average economy rate of bowlers

import cricpy.analytics as ca
frames = ["abowler1.csv","abowler2.csv","abowler3.csv"]
names = ["A Bowler1","A Bowler2","A Bowler3"]
#ca.relativeBowlerCumulativeAvgEconRate(frames,names)

39 Relative Economy Rate against wickets taken

import cricpy.analytics as ca
frames = ["abowler1.csv","abowler2.csv","abowler3.csv"]
names = ["A Bowler1","A Bowler2","A Bowler3"]
#ca.relativeBowlingER(frames,names)

40 Relative cumulative average wickets of bowlers in career

import cricpy.analytics as ca
frames = ["abowler1.csv","abowler2.csv","abowler3.csv"]
names = ["A Bowler1","A Bowler2","A Bowler3"]
#ca.relativeBowlerCumulativeAvgWickets(frames,names)

Clone/download this cricpy template for your own analysis of players. This can be done using RStudio or IPython notebooks from Github at cricpy-template

Important note: Do check out my other posts using cricpy at cricpy-posts

Key Findings

Analysis of Top 4 batsman

Analysis of Top 3 bowlers

You may also like
1. My book ‘Deep Learning from first principles:Second Edition’ now on Amazon
2. Presentation on ‘Evolution to LTE’
3. Stacks of protocol stacks – A primer
4. Taking baby steps in Lisp
5. Introducing cricket package yorkr: Part 1- Beaten by sheer pace!

To see all posts click Index of posts

Cricpy takes a swing at the ODIs

No computer has ever been designed that is ever aware of what it’s doing; but most of the time, we aren’t either.” Marvin Minksy

“The competent programmer is fully aware of the limited size of his own skull. He therefore approaches his task with full humility, and avoids clever tricks like the plague” Edgser Djikstra

Introduction

In this post, cricpy, the Python avatar of my R package cricketr, learns some new tricks to be able to handle ODI matches. To know more about my R package cricketr see Re-introducing cricketr! : An R package to analyze performances of cricketers

Cricpy uses the statistics info available in ESPN Cricinfo Statsguru. The current version of this package supports only Test cricket

You should be able to install the package using pip install cricpy and use the many functions available in the package. Please mindful of the ESPN Cricinfo Terms of Use

Cricpy can now analyze performances of teams in Test, ODI and T20 cricket see Cricpy adds team analytics to its arsenal!!

This post is also hosted on Rpubs at Int

To know how to use cricpy see Introducing cricpy:A python package to analyze performances of cricketers. To the original version of cricpy, I have added 3 new functions for ODI. The earlier functions work for Test and ODI.

This post is also hosted on Rpubs at Cricpy takes a swing at the ODIs. You can also down the pdf version of this post at cricpy-odi.pdf

You can fork/clone the package at Github cricpy

Note: If you would like to do a similar analysis for a different set of batsman and bowlers, you can clone/download my skeleton cricpy-template from Github (which is the R Markdown file I have used for the analysis below). You will only need to make appropriate changes for the players you are interested in. The functions can be executed in RStudio or in a IPython notebook.

If you are passionate about cricket, and love analyzing cricket performances, then check out my racy book on cricket ‘Cricket analytics with cricketr and cricpy – Analytics harmony with R & Python’! This book discusses and shows how to use my R package ‘cricketr’ and my Python package ‘cricpy’ to analyze batsmen and bowlers in all formats of the game (Test, ODI and T20). The paperback is available on Amazon at $21.99 and  the kindle version at $9.99/Rs 449/-. A must read for any cricket lover! Check it out!!

Untitled

The cricpy package

The data for a particular player in ODI can be obtained with the getPlayerDataOD() function. To do you will need to go to ESPN CricInfo Player and type in the name of the player for e.g Virat Kohli, Virendar Sehwag, Chris Gayle etc. This will bring up a page which have the profile number for the player e.g. for Virat Kohli this would be http://www.espncricinfo.com/india/content/player/253802.html. Hence, Kohli’s profile is 253802. This can be used to get the data for Virat Kohlis shown below

The cricpy package is a clone of my R package cricketr. The signature of all the python functions are identical with that of its clone ‘cricketr’, with only the necessary variations between Python and R. It may be useful to look at my post R vs Python: Different similarities and similar differences. In fact if you are familar with one of the lanuguages you can look up the package in the other and you will notice the parallel constructs.

You can fork/clone the package at Github cricpy

Note: The charts are self-explanatory and I have not added much of my owy interpretation to it. Do look at the plots closely and check out the performances for yourself.

1 Importing cricpy – Python

# Install the package
# Do a pip install cricpy
# Import cricpy
import cricpy.analytics as ca 

2. Invoking functions with Python package crlcpy

import cricpy.analytics as ca 
ca.batsman4s("./kohli.csv","Virat Kohli")

3. Getting help from cricpy – Python

import cricpy.analytics as ca 
help(ca.getPlayerDataOD)
## Help on function getPlayerDataOD in module cricpy.analytics:
## 
## getPlayerDataOD(profile, opposition='', host='', dir='./data', file='player001.csv', type='batting', homeOrAway=[1, 2, 3], result=[1, 2, 3, 5], create=True)
##     Get the One day player data from ESPN Cricinfo based on specific inputs and store in a file in a given directory
##     
##     Description
##     
##     Get the player data given the profile of the batsman. The allowed inputs are home,away or both and won,lost or draw of matches. The data is stored in a .csv file in a directory specified. This function also returns a data frame of the player
##     
##     Usage
##     
##     getPlayerDataOD(profile, opposition="",host="",dir = "../", file = "player001.csv", 
##     type = "batting", homeOrAway = c(1, 2, 3), result = c(1, 2, 3,5))
##     Arguments
##     
##     profile     
##     This is the profile number of the player to get data. This can be obtained from http://www.espncricinfo.com/ci/content/player/index.html. Type the name of the player and click search. This will display the details of the player. Make a note of the profile ID. For e.g For Virender Sehwag this turns out to be http://www.espncricinfo.com/india/content/player/35263.html. Hence the profile for Sehwag is 35263
##     opposition      The numerical value of the opposition country e.g.Australia,India, England etc. The values are Australia:2,Bangladesh:25,Bermuda:12, England:1,Hong Kong:19,India:6,Ireland:29, Netherlands:15,New Zealand:5,Pakistan:7,Scotland:30,South Africa:3,Sri Lanka:8,United Arab Emirates:27, West Indies:4, Zimbabwe:9; Africa XI:405 Note: If no value is entered for opposition then all teams are considered
##     host            The numerical value of the host country e.g.Australia,India, England etc. The values are Australia:2,Bangladesh:25,England:1,India:6,Ireland:29,Malaysia:16,New Zealand:5,Pakistan:7, Scotland:30,South Africa:3,Sri Lanka:8,United Arab Emirates:27,West Indies:4, Zimbabwe:9 Note: If no value is entered for host then all host countries are considered
##     dir 
##     Name of the directory to store the player data into. If not specified the data is stored in a default directory "../data". Default="../data"
##     file        
##     Name of the file to store the data into for e.g. tendulkar.csv. This can be used for subsequent functions. Default="player001.csv"
##     type        
##     type of data required. This can be "batting" or "bowling"
##     homeOrAway  
##     This is vector with either or all 1,2, 3. 1 is for home 2 is for away, 3 is for neutral venue
##     result      
##     This is a vector that can take values 1,2,3,5. 1 - won match 2- lost match 3-tied 5- no result
##     Details
##     
##     More details can be found in my short video tutorial in Youtube https://www.youtube.com/watch?v=q9uMPFVsXsI
##     
##     Value
##     
##     Returns the player's dataframe
##     
##     Note
##     
##     Maintainer: Tinniam V Ganesh <tvganesh.85@gmail.com>
##     
##     Author(s)
##     
##     Tinniam V Ganesh
##     
##     References
##     
##     http://www.espncricinfo.com/ci/content/stats/index.html
##     https://gigadom.wordpress.com/
##     
##     See Also
##     
##     getPlayerDataSp getPlayerData
##     
##     Examples
##     
##     
##     ## Not run: 
##     # Both home and away. Result = won,lost and drawn
##     sehwag =getPlayerDataOD(35263,dir="../cricketr/data", file="sehwag1.csv",
##     type="batting", homeOrAway=[1,2],result=[1,2,3,4])
##     
##     # Only away. Get data only for won and lost innings
##     sehwag = getPlayerDataOD(35263,dir="../cricketr/data", file="sehwag2.csv",
##     type="batting",homeOrAway=[2],result=[1,2])
##     
##     # Get bowling data and store in file for future
##     malinga = getPlayerData(49758,dir="../cricketr/data",file="malinga1.csv",
##     type="bowling")
##     
##     # Get Dhoni's ODI record in Australia against Australua
##     dhoni = getPlayerDataOD(28081,opposition = 2,host=2,dir=".",
##     file="dhoniVsAusinAusOD",type="batting")
##     
##     ## End(Not run)

The details below will introduce the different functions that are available in cricpy.

4. Get the ODI player data for a player using the function getPlayerDataOD()

Important Note This needs to be done only once for a player. This function stores the player’s data in the specified CSV file (for e.g. kohli.csv as above) which can then be reused for all other functions). Once we have the data for the players many analyses can be done. This post will use the stored CSV file obtained with a prior getPlayerDataOD for all subsequent analyses

import cricpy.analytics as ca
#sehwag=ca.getPlayerDataOD(35263,dir=".",file="sehwag.csv",type="batting")
#kohli=ca.getPlayerDataOD(253802,dir=".",file="kohli.csv",type="batting")
#jayasuriya=ca.getPlayerDataOD(49209,dir=".",file="jayasuriya.csv",type="batting")
#gayle=ca.getPlayerDataOD(51880,dir=".",file="gayle.csv",type="batting")

Included below are some of the functions that can be used for ODI batsmen and bowlers. For this I have chosen, Virat Kohli, ‘the run machine’ who is on-track for breaking many of the Test & ODI records

5 Virat Kohli’s performance – Basic Analyses

The 3 plots below provide the following for Virat Kohli

  1. Frequency percentage of runs in each run range over the whole career
  2. Mean Strike Rate for runs scored in the given range
  3. A histogram of runs frequency percentages in runs ranges
import cricpy.analytics as ca
import matplotlib.pyplot as plt
ca.batsmanRunsFreqPerf("./kohli.csv","Virat Kohli")

ca.batsmanMeanStrikeRate("./kohli.csv","Virat Kohli")

ca.batsmanRunsRanges("./kohli.csv","Virat Kohli")

6. More analyses

import cricpy.analytics as ca
ca.batsman4s("./kohli.csv","Virat Kohli")

ca.batsman6s("./kohli.csv","Virat Kohli")

ca.batsmanDismissals("./kohli.csv","Virat Kohli")

ca.batsmanScoringRateODTT("./kohli.csv","Virat Kohli")


7. 3D scatter plot and prediction plane

The plots below show the 3D scatter plot of Kohli’s Runs versus Balls Faced and Minutes at crease. A linear regression plane is then fitted between Runs and Balls Faced + Minutes at crease

import cricpy.analytics as ca
ca.battingPerf3d("./kohli.csv","Virat Kohli")

Average runs at different venues

The plot below gives the average runs scored by Kohli at different grounds. The plot also the number of innings at each ground as a label at x-axis.

import cricpy.analytics as ca
ca.batsmanAvgRunsGround("./kohli.csv","Virat Kohli")

9. Average runs against different opposing teams

This plot computes the average runs scored by Kohli against different countries.

import cricpy.analytics as ca
ca.batsmanAvgRunsOpposition("./kohli.csv","Virat Kohli")

10 . Highest Runs Likelihood

The plot below shows the Runs Likelihood for a batsman. For this the performance of Kohli is plotted as a 3D scatter plot with Runs versus Balls Faced + Minutes at crease. K-Means. The centroids of 3 clusters are computed and plotted. In this plot Kohli’s highest tendencies are computed and plotted using K-Means

import cricpy.analytics as ca
ca.batsmanRunsLikelihood("./kohli.csv","Virat Kohli")

A look at the Top 4 batsman – Kohli, Jayasuriya, Sehwag and Gayle

The following batsmen have been very prolific in ODI cricket and will be used for the analyses

  1. Virat Kohli: Runs – 10232, Average:59.83 ,Strike rate-92.88
  2. Sanath Jayasuriya : Runs – 13430, Average:32.36 ,Strike rate-91.2
  3. Virendar Sehwag :Runs – 8273, Average:35.05 ,Strike rate-104.33
  4. Chris Gayle : Runs – 9727, Average:37.12 ,Strike rate-85.82

The following plots take a closer at their performances. The box plots show the median the 1st and 3rd quartile of the runs

12. Box Histogram Plot

This plot shows a combined boxplot of the Runs ranges and a histogram of the Runs Frequency

import cricpy.analytics as ca
ca.batsmanPerfBoxHist("./kohli.csv","Virat Kohli")

ca.batsmanPerfBoxHist("./jayasuriya.csv","Sanath jayasuriya")

ca.batsmanPerfBoxHist("./gayle.csv","Chris Gayle")

ca.batsmanPerfBoxHist("./sehwag.csv","Virendar Sehwag")

13 Moving Average of runs in career

Take a look at the Moving Average across the career of the Top 4 (ignore the dip at the end of all plots. Need to check why this is so!). Kohli’s performance has been steadily improving over the years, so has Sehwag. Gayle seems to be on the way down

import cricpy.analytics as ca
ca.batsmanMovingAverage("./kohli.csv","Virat Kohli")

ca.batsmanMovingAverage("./jayasuriya.csv","Sanath jayasuriya")

ca.batsmanMovingAverage("./gayle.csv","Chris Gayle")

ca.batsmanMovingAverage("./sehwag.csv","Virendar Sehwag")

14 Cumulative Average runs of batsman in career

This function provides the cumulative average runs of the batsman over the career. Kohli seems to be getting better with time and reaches a cumulative average of 45+. Sehwag improves with time and reaches around 35+. Chris Gayle drops from 42 to 35

import cricpy.analytics as ca
ca.batsmanCumulativeAverageRuns("./kohli.csv","Virat Kohli")

ca.batsmanCumulativeAverageRuns("./jayasuriya.csv","Sanath jayasuriya")

ca.batsmanCumulativeAverageRuns("./gayle.csv","Chris Gayle")

ca.batsmanCumulativeAverageRuns("./sehwag.csv","Virendar Sehwag")

15 Cumulative Average strike rate of batsman in career

Sehwag has the best strike rate of almost 90. Kohli and Jayasuriya have a cumulative strike rate of 75.

import cricpy.analytics as ca
ca.batsmanCumulativeStrikeRate("./kohli.csv","Virat Kohli")

ca.batsmanCumulativeStrikeRate("./jayasuriya.csv","Sanath jayasuriya")

ca.batsmanCumulativeStrikeRate("./gayle.csv","Chris Gayle")

ca.batsmanCumulativeStrikeRate("./sehwag.csv","Virendar Sehwag")

16 Relative Batsman Cumulative Average Runs

The plot below compares the Relative cumulative average runs of the batsman . It can be seen that Virat Kohli towers above all others in the runs. He is followed by Chris Gayle and then Sehwag

import cricpy.analytics as ca
frames = ["./sehwag.csv","./gayle.csv","./jayasuriya.csv","./kohli.csv"]
names = ["Sehwag","Gayle","Jayasuriya","Kohli"]
ca.relativeBatsmanCumulativeAvgRuns(frames,names)

Relative Batsman Strike Rate

The plot below gives the relative Runs Frequency Percentages for each 10 run bucket. The plot below show Sehwag has the best strike rate, followed by Jayasuriya

import cricpy.analytics as ca
frames = ["./sehwag.csv","./gayle.csv","./jayasuriya.csv","./kohli.csv"]
names = ["Sehwag","Gayle","Jayasuriya","Kohli"]
ca.relativeBatsmanCumulativeStrikeRate(frames,names)

18. 3D plot of Runs vs Balls Faced and Minutes at Crease

The plot is a scatter plot of Runs vs Balls faced and Minutes at Crease. A 3D prediction plane is fitted

import cricpy.analytics as ca
ca.battingPerf3d("./kohli.csv","Virat Kohli")

ca.battingPerf3d("./jayasuriya.csv","Sanath jayasuriya")

ca.battingPerf3d("./gayle.csv","Chris Gayle")

ca.battingPerf3d("./sehwag.csv","Virendar Sehwag")

3D plot of Runs vs Balls Faced and Minutes at Crease

From the plot below it can be seen that Sehwag has more runs by way of 4s than 1’s,2’s or 3s. Gayle and Jayasuriya have large number of 6s

import cricpy.analytics as ca
frames = ["./sehwag.csv","./kohli.csv","./gayle.csv","./jayasuriya.csv"]
names = ["Sehwag","Kohli","Gayle","Jayasuriya"]
ca.batsman4s6s(frames,names)

20. Predicting Runs given Balls Faced and Minutes at Crease

A multi-variate regression plane is fitted between Runs and Balls faced +Minutes at crease.

import cricpy.analytics as ca
import numpy as np
import pandas as pd
BF = np.linspace( 10, 400,15)
Mins = np.linspace( 30,600,15)
newDF= pd.DataFrame({'BF':BF,'Mins':Mins})
kohli= ca.batsmanRunsPredict("./kohli.csv",newDF,"Kohli")
print(kohli)
##             BF        Mins        Runs
## 0    10.000000   30.000000    6.807407
## 1    37.857143   70.714286   36.034833
## 2    65.714286  111.428571   65.262259
## 3    93.571429  152.142857   94.489686
## 4   121.428571  192.857143  123.717112
## 5   149.285714  233.571429  152.944538
## 6   177.142857  274.285714  182.171965
## 7   205.000000  315.000000  211.399391
## 8   232.857143  355.714286  240.626817
## 9   260.714286  396.428571  269.854244
## 10  288.571429  437.142857  299.081670
## 11  316.428571  477.857143  328.309096
## 12  344.285714  518.571429  357.536523
## 13  372.142857  559.285714  386.763949
## 14  400.000000  600.000000  415.991375

The fitted model is then used to predict the runs that the batsmen will score for a given Balls faced and Minutes at crease.

21 Analysis of Top Bowlers

The following 4 bowlers have had an excellent career and will be used for the analysis

  1. Muthiah Muralitharan:Wickets: 534, Average = 23.08, Economy Rate – 3.93
  2. Wasim Akram : Wickets: 502, Average = 23.52, Economy Rate – 3.89
  3. Shaun Pollock: Wickets: 393, Average = 24.50, Economy Rate – 3.67
  4. Javagal Srinath : Wickets:315, Average – 28.08, Economy Rate – 4.44

How do Muralitharan, Akram, Pollock and Srinath compare with one another with respect to wickets taken and the Economy Rate. The next set of plots compute and plot precisely these analyses.

22. Get the bowler’s data

This plot below computes the percentage frequency of number of wickets taken for e.g 1 wicket x%, 2 wickets y% etc and plots them as a continuous line

import cricpy.analytics as ca
#akram=ca.getPlayerDataOD(43547,dir=".",file="akram.csv",type="bowling")
#murali=ca.getPlayerDataOD(49636,dir=".",file="murali.csv",type="bowling")
#pollock=ca.getPlayerDataOD(46774,dir=".",file="pollock.csv",type="bowling")
#srinath=ca.getPlayerDataOD(34105,dir=".",file="srinath.csv",type="bowling")

23. Wicket Frequency Plot

This plot below plots the frequency of wickets taken for each of the bowlers

import cricpy.analytics as ca
ca.bowlerWktsFreqPercent("./murali.csv","M Muralitharan")

ca.bowlerWktsFreqPercent("./akram.csv","Wasim Akram")

ca.bowlerWktsFreqPercent("./pollock.csv","Shaun Pollock")

ca.bowlerWktsFreqPercent("./srinath.csv","J Srinath")

24. Wickets Runs plot

The plot below create a box plot showing the 1st and 3rd quartile of runs conceded versus the number of wickets taken. Murali’s median runs for wickets ia around 40 while Akram, Pollock and Srinath it is around 32+ runs. The spread around the median is larger for these 3 bowlers in comparison to Murali

import cricpy.analytics as ca
ca.bowlerWktsRunsPlot("./murali.csv","M Muralitharan")

ca.bowlerWktsRunsPlot("./akram.csv","Wasim Akram")

ca.bowlerWktsRunsPlot("./pollock.csv","Shaun Pollock")

ca.bowlerWktsRunsPlot("./srinath.csv","J Srinath")

25 Average wickets at different venues

The plot gives the average wickets taken by Muralitharan at different venues. McGrath best performances are at Centurion, Lord’s and Port of Spain averaging about 4 wickets. Kapil Dev’s does good at Kingston and Wellington. Anderson averages 4 wickets at Dunedin and Nagpur

import cricpy.analytics as ca
ca.bowlerAvgWktsGround("./murali.csv","M Muralitharan")

ca.bowlerAvgWktsGround("./akram.csv","Wasim Akram")

ca.bowlerAvgWktsGround("./pollock.csv","Shaun Pollock")

ca.bowlerAvgWktsGround("./srinath.csv","J Srinath")

26 Average wickets against different opposition

The plot gives the average wickets taken by Muralitharan against different countries. The x-axis also includes the number of innings against each team

import cricpy.analytics as ca
ca.bowlerAvgWktsOpposition("./murali.csv","M Muralitharan")

ca.bowlerAvgWktsOpposition("./akram.csv","Wasim Akram")

ca.bowlerAvgWktsOpposition("./pollock.csv","Shaun Pollock")

ca.bowlerAvgWktsOpposition("./srinath.csv","J Srinath")

27 Wickets taken moving average

From the plot below it can be see James Anderson has had a solid performance over the years averaging about wickets

import cricpy.analytics as ca
ca.bowlerMovingAverage("./murali.csv","M Muralitharan")

ca.bowlerMovingAverage("./akram.csv","Wasim Akram")

ca.bowlerMovingAverage("./pollock.csv","Shaun Pollock")

ca.bowlerMovingAverage("./srinath.csv","J Srinath")

28 Cumulative average wickets taken

The plots below give the cumulative average wickets taken by the bowlers. Muralitharan has consistently taken wickets at an average of 1.6 wickets per game. Shaun Pollock has an average of 1.5

import cricpy.analytics as ca
ca.bowlerCumulativeAvgWickets("./murali.csv","M Muralitharan")

ca.bowlerCumulativeAvgWickets("./akram.csv","Wasim Akram")

ca.bowlerCumulativeAvgWickets("./pollock.csv","Shaun Pollock")

ca.bowlerCumulativeAvgWickets("./srinath.csv","J Srinath")

29 Cumulative average economy rate

The plots below give the cumulative average economy rate of the bowlers. Pollock is the most economical, followed by Akram and then Murali

import cricpy.analytics as ca
ca.bowlerCumulativeAvgEconRate("./murali.csv","M Muralitharan")

ca.bowlerCumulativeAvgEconRate("./akram.csv","Wasim Akram")

ca.bowlerCumulativeAvgEconRate("./pollock.csv","Shaun Pollock")

ca.bowlerCumulativeAvgEconRate("./srinath.csv","J Srinath")

30 Relative cumulative average economy rate of bowlers

The Relative cumulative economy rate shows that Pollock is the most economical of the 4 bowlers. He is followed by Akram and then Murali

import cricpy.analytics as ca
frames = ["./srinath.csv","./akram.csv","./murali.csv","pollock.csv"]
names = ["J Srinath","Wasim Akram","M Muralitharan", "S Pollock"]
ca.relativeBowlerCumulativeAvgEconRate(frames,names)

31 Relative Economy Rate against wickets taken

Pollock is most economical vs number of wickets taken. Murali has the best figures for 4 wickets taken.

import cricpy.analytics as ca
frames = ["./srinath.csv","./akram.csv","./murali.csv","pollock.csv"]
names = ["J Srinath","Wasim Akram","M Muralitharan", "S Pollock"]
ca.relativeBowlingER(frames,names)

32 Relative cumulative average wickets of bowlers in career

The plot below shows that McGrath has the best overall cumulative average wickets. While the bowlers are neck to neck around 130 innings, you can see Muralitharan is most consistent and leads the pack after 150 innings in the number of wickets taken.

import cricpy.analytics as ca
frames = ["./srinath.csv","./akram.csv","./murali.csv","pollock.csv"]
names = ["J Srinath","Wasim Akram","M Muralitharan", "S Pollock"]
ca.relativeBowlerCumulativeAvgWickets(frames,names)

33. Key Findings

The plots above capture some of the capabilities and features of my cricpy package. Feel free to install the package and try it out. Please do keep in mind ESPN Cricinfo’s Terms of Use.

Here are the main findings from the analysis above

Analysis of Top 4 batsman

The analysis of the Top 4 test batsman Tendulkar, Kallis, Ponting and Sangakkara show the folliwing

  1. Kohli is a mean run machine and has been consistently piling on runs. Clearly records will lay shattered in days to come for Kohli
  2. Virendar Sehwag has the best strike rate of the 4, followed by Jayasuriya and then Kohli
  3. Shaun Pollock is the most economical of the bowlers followed by Wasim Akram
  4. Muralitharan is the most consistent wicket of the lot.

Important note: Do check out my other posts using cricpy at cricpy-posts

Also see
1. Architecting a cloud based IP Multimedia System (IMS)
2. Exploring Quantum Gate operations with QCSimulator
3. Dabbling with Wiener filter using OpenCV
4. Deep Learning from first principles in Python, R and Octave – Part 5
5. Big Data-2: Move into the big league:Graduate from R to SparkR
6. Singularity
7. Practical Machine Learning with R and Python – Part 4
8. Literacy in India – A deepR dive
9. Modeling a Car in Android

To see all posts click Index of Posts

 

yorkr is generic!

The features and functionality in my yorkr package is now complete. My R package yorkr, is totally generic, which means that the R package  can be used for all ODI, T20 matches. Hence yorkr can be used for professional or amateur ODI and T20 matches. The R package can be used for both men and women ODI, T20 international or domestic matches. The main requirement is, that the match data  be created as a Yaml file in the format Cricsheet (Required yaml format for the match data).

If you are passionate about cricket, and love analyzing cricket performances, then check out my 2 racy books on cricket! In my books, I perform detailed yet compact analysis of performances of both batsmen, bowlers besides evaluating team & match performances in Tests , ODIs, T20s & IPL. You can buy my books on cricket from Amazon at $12.99 for the paperback and $4.99/$6.99 respectively for the kindle versions. The books can be accessed at Cricket analytics with cricketr  and Beaten by sheer pace-Cricket analytics with yorkr  A must read for any cricket lover! Check it out!!

1

$4.99/Rs 320 and $6.99/Rs448 respectively

 

I have successfully used my R functions for the Indian Premier League (IPL) matches with changes only to the convertAllYamlFiles2RDataFramesXX (please see posts below)

The convertAllYamlFiles2RDataframes &convertAllYamlFiles2RDataFramesT20 will have to be customized for the names of the teams playing in the domestic professional or amateur matches. All other classes of functions namely Class1, Class2, Class 3 and Class 4 as discussed in my post Introducing cricket package yorkr-Part 1: Beaten by sheer pace can be used as is without any changes.

There are numerous professional & amateur T20 matches that are played around the world. Here are a list of domestic T20 tournaments that are played around the world (from Wikipedia). The yorkr package can be used for any of these matches once the match data is saved as yaml as mentioned above.

So do go ahead and have fun, analyzing cricket performances with yorkr!

Please take a look at my posts on how to use yorkr for ODI, Twenty20 matches.

  1. Introducing cricket package yorkr:Part 1- Beaten by sheer pace!
    2. Introducing cricket package yorkr:Part 2- Trapped leg before wicket!
    3.  Introducing cricket package yorkr:Part 3- foxed by flight!
    4. Introducing cricket package yorkr:Part 4-In the block hole!
    5. yorkr pads up for the Twenty20s: Part 1- Analyzing team”s match performance
    6. yorkr pads up for the Twenty20s: Part 2-Head to head confrontation between teams
    7. yorkr pads up for the Twenty20s:Part 3:Overall team performance against all oppositions!
    8. yorkr pads up for Twenty20s:Part 4- Individual batting and bowling performances!
    9. yorkr crashes the IPL party ! – Part 1
    10. yorkr crashes the IPL party! – Part 2
    11. yorkr crashes the IPL party! – Part 3
    12. yorkr crashes the IPL party! – Part 4
    13. yorkr ranks IPL batsmen and bowlers
    14. yorkr ranks T20 batsmen and bowlers
    15. yorkr ranks ODI batsmen and bowlers

yorkr ranks ODI batsmen and bowlers

This is the last and final post in which yorkr ranks ODI batsmen and bowlers. These are based on match data from Cricsheet. The ranking is done on

  1. average runs and average strike rate for batsmen and
  2. average wickets and average economy rate for bowlers.

If you are passionate about cricket, and love analyzing cricket performances, then check out my 2 racy books on cricket! In my books, I perform detailed yet compact analysis of performances of both batsmen, bowlers besides evaluating team & match performances in Tests , ODIs, T20s & IPL. You can buy my books on cricket from Amazon at $12.99 for the paperback and $4.99/$6.99 respectively for the kindle versions. The books can be accessed at Cricket analytics with cricketr  and Beaten by sheer pace-Cricket analytics with yorkr  A must read for any cricket lover! Check it out!!

1

nd $4.99/Rs 320 and $6.99/Rs448 respectively

 

This post has also been published in RPubs RankODIPlayers. You can download this as a pdf file at RankODIPlayers.pdf.

Checkout my interactive Shiny apps GooglyPlus (plots & tables) and Googly (only plots) which can be used to analyze IPL players, teams and matches.

You can take a look at the code at rankODIPlayers (available in yorkr_0.0.5)

rm(list=ls())
library(yorkr)
library(dplyr)
source("rankODIBatsmen.R")
source("rankODIBowlers.R")

Rank ODI batsmen

The top 3 ODI batsmen are hashim Amla (SA), Matther Hayden(Aus) & Virat Kohli (Ind) . Note: For ODI a a cutoff of at least 50 matches played was chosen.

ODIBatsmanRank <- rankODIBatsmen()
as.data.frame(ODIBatsmanRank[1:30,])
##            batsman matches meanRuns    meanSR
## 1          HM Amla     185 51.96216  84.15508
## 2        ML Hayden      79 50.08861  81.20646
## 3          V Kohli     279 48.51971  78.55197
## 4   AB de Villiers     253 47.93676  95.05561
## 5     SR Tendulkar     151 45.82119  79.62311
## 6         S Dhawan     116 45.03448  81.54043
## 7         V Sehwag     167 44.49102 106.27563
## 8          JE Root     111 43.64865  81.66054
## 9        Q de Kock      85 43.61176  82.55235
## 10       IJL Trott     113 43.36283  70.69761
## 11   KC Sangakkara     293 42.81911  75.10420
## 12      TM Dilshan     283 41.76678  89.70360
## 13   KS Williamson     146 41.24658  73.49267
## 14   S Chanderpaul      93 40.07527  70.59613
## 15        HH Gibbs      75 40.00000  79.03813
## 16     Salman Butt      57 39.85965  59.29807
## 17    Anamul Haque      58 39.72414  56.45224
## 18      RT Ponting     238 38.88235  71.94294
## 19       JH Kallis     136 38.77941  67.17794
## 20        MS Dhoni     328 38.57927  90.30555
## 21      MJ Guptill     199 38.54774  73.88090
## 22       DA Warner     138 38.52174  87.24978
## 23 Mohammad Yousuf      94 38.44681  72.69851
## 24        JD Ryder      66 38.40909  91.29667
## 25       GJ Bailey     133 38.38346  75.74519
## 26       G Gambhir     209 37.83254  75.15483
## 27      AJ Strauss     122 37.80328  71.54844
## 28       MJ Clarke     301 37.67442  69.78415
## 29       SR Watson     274 37.08029  83.46489
## 30        AJ Finch     103 36.36893  79.49845

Rank ODI bowlers

The top 3 ODI bowlers are R J Harris (Aus), MJ Henry(NZ) and MA Starc(Aus). Mohammed Shami is 4th and Amit Mishra is 8th A cutoff of 20 matches was considered for bowlers

ODIBowlersRank <- rankODIBowlers()
## [1] 35072     3
## [1] "C:/software/cricket-package/york-test/yorkrData/ODI/ODI-matches"
as.data.frame(ODIBowlersRank[1:30,])
##               bowler matches meanWickets   meanER
## 1  Mustafizur Rahman      56    4.000000 4.293214
## 2           JH Davey      53    3.528302 4.455094
## 3          RJ Harris      94    3.276596 4.361489
## 4           MA Starc     208    3.144231 4.425865
## 5           MJ Henry      88    3.125000 4.961250
## 6         A Flintoff     139    2.956835 4.283022
## 7           A Mishra     106    2.886792 4.365849
## 8     Mohammed Shami     144    2.777778 5.609306
## 9     MJ McClenaghan     165    2.751515 5.640424
## 10          CJ McKay     230    2.704348       NA
## 11       MF Maharoof     114    2.701754 4.427018
## 12       Imran Tahir     156    2.660256 4.461923
## 13        BAW Mendis     234    2.641026 4.532308
## 14     RK Kleinveldt      54    2.629630 4.306667
## 15      Arafat Sunny      62    2.612903 4.103226
## 16         JE Taylor     156    2.602564 5.115192
## 17           AJ Hall      55    2.600000 3.879091
## 18        WD Parnell     129    2.596899 5.477597
## 19         CR Woakes     129    2.596899 5.340620
## 20      DE Bollinger     152    2.592105 4.282763
## 21        Wahab Riaz     206    2.567961 5.431748
## 22        PJ Cummins     148    2.567568 5.715405
## 23         R Rampaul     173    2.549133 4.726590
## 24      Taskin Ahmed      56    2.535714 5.325357
## 25          DW Steyn     292    2.534247 4.534007
## 26      JR Hazlewood      64    2.531250 4.392500
## 27        Abdur Rauf      84    2.523810 4.786667
## 28           SW Tait     141    2.517730 5.173191
## 29      Hamid Hassan     106    2.509434 4.686038
## 30        SL Malinga     419    2.498807 4.968974

Hope you have fun with my yorkr package.!

Important note: Do check out my other posts using yorkr at yorkr-posts

Introducing cricket package yorkr: Part 2-Trapped leg before wicket!

“It was a puzzling thing. The truth knocks on the door and you say ‘Go away, I ’m looking for the truth,’ and so it goes away. Puzzling.”

“But even though Quality cannot be defined, you know what Quality is!”

“The Buddha, the Godhead, resides quite comfortably in the circuits of a digital computer or the gears of a cycle transmission as he does at the top of a mountain or in the petals of the flower. To think otherwise is to demean the Buddha – which is to demean oneself.”

                Zen and the Art of Motorcycle maintenance - Robert M Pirsig

Introduction

If we were to to extend the last quote from Zen and the Art of Motorcycle Maintenance, by Robert M Pirsig, I think it would be fair to say that the Buddha also comfortably resides in the exquisite backhand cross-court return of Bjorn Borg, to the the graceful arc of the football in a Lionel Messi’s free kick to the smashing cover drive of Sunil Gavaskar.

In this post I continue to introduce my latest cricket package yorkr. This post is a continuation of my earlier post – Introducing cricket package yorkr-Part1:Beaten by sheer pace!. This post deals with Class 2 functions namely the performances of a team in all matches against a single opposition for e.g all matches of India-Australia, Pakistan-West Indies etc. You can clone/fork the code for my package yorkr from Github at yorkr

If you are passionate about cricket, and love analyzing cricket performances, then check out my 2 racy books on cricket! In my books, I perform detailed yet compact analysis of performances of both batsmen, bowlers besides evaluating team & match performances in Tests , ODIs, T20s & IPL. You can buy my books on cricket from Amazon at $12.99 for the paperback and $4.99/$6.99 respectively for the kindle versions. The books can be accessed at Cricket analytics with cricketr  and Beaten by sheer pace-Cricket analytics with yorkr  A must read for any cricket lover! Check it out!!

1

 

Note 1: The package currently only supports ODI, T20s and IPL T20 matches.

This post has also been published at RPubs yorkr-Part2 and can also be downloaded as a PDF document from yorkr-Part2.pdf

Checkout my interactive Shiny apps GooglyPlus (plots & tables) and Googly (only plots) which can be used to analyze IPL players, teams and matches.

Important note 1: Do check out all the posts on the python avatar of yorkr, namely ‘yorkpy’ in my post ‘Pitching yorkpy … short of good length to IPL – Part 1

The list of function in Class 2 are

  1. teamBatsmenPartnershiOppnAllMatches()
  2. teamBatsmenPartnershipOppnAllMatchesChart()
  3. teamBatsmenVsBowlersOppnAllMatches()
  4. teamBattingScorecardOppnAllMatches()
  5. teamBowlingPerfOppnAllMatches()
  6. teamBowlersWicketsOppnAllMatches()
  7. teamBowlersVsBatsmenOppnAllMatches()
  8. teamBowlersWicketKindOppnAllMatches()
  9. teamBowlersWicketRunsOppnAllMatches()
  10. plotWinLossBetweenTeams()

1. Install the package from CRAN

if (!require("yorkr")) {
  install.packages("yorkr") 
  library("yorkr")
}
library(plotly) 
rm(list=ls())

2. Get data for all matches between 2 teams

We can get all matches between any 2 teams using the function below. The dir parameter should point to the folder which RData files of the individual matches. This function creates a data frame of all the matches and also saves the dataframe as RData

setwd("C:/software/cricket-package/york-test/yorkrData/ODI/ODI-matches")
matches <- getAllMatchesBetweenTeams("Australia","India",dir=".")
dim(matches)
## [1] 67428    25

I have however already saved the matches for all possible combination of opposing countries. The data for these matches for the individual teams/countries can be obtained from Github at in the folder ODI-allmatches-between-two-teams

Note: The dataframe for the different head-to-head matches can be loaded directly into your code. The datframes are 15000+ rows x 25 columns. While I have 10 functions to process the details between teams, feel free to let loose any statistical or machine learning algorithms on the dataframe. So go ahead with any insights that can be gleaned from random forests, ridge regression,SVM classifiers and so on. If you do come up with something interesting, I would appreciate if you could drop me a note. Also please do attribute source to Cricsheet (http://cricsheet.org), the package york and my blog Giga thoughts

3. Save data for all matches between all combination of 2 teams

This can be done locally using the function below. You could use this function to combine all matches between any 2 teams into a single dataframe and save it in the current folder. The current implementation expectes that the the RData files of individual matches are in ../data folder. Since I already have converted this I will not be running this again

#saveAllMatchesBetweenTeams()

4. Load data directly for all matches between 2 teams

As in my earlier post I pick all matches between 2 random teams. I load the data directly from the stored RData files. When we load the Rdata file a “matches” object will be created. This object can be stored for the apporpriate teams as below

setwd("C:/software/cricket-package/york-test/yorkrData/ODI/ODI-allmatches-between-two-teams")
load("India-Australia-allMatches.RData")
aus_ind_matches <- matches
dim(aus_ind_matches)
## [1] 21909    25
load("England-New Zealand-allMatches.RData")
eng_nz_matches <- matches
dim(eng_nz_matches)
## [1] 15343    25
load("Pakistan-South Africa-allMatches.RData")
pak_sa_matches <- matches
dim(pak_sa_matches)
## [1] 17083    25
load("Sri Lanka-West Indies-allMatches.RData")
sl_wi_matches <- matches
dim(sl_wi_matches)
## [1] 4869   25
load("Bangladesh-Ireland-allMatches.RData")
ban_ire_matches <-matches
dim(ban_ire_matches)
## [1] 1668   25
load("Kenya-Bermuda-allMatches.RData")
ken_ber_matches <- matches
dim(ken_ber_matches)
## [1] 1518   25
load("Scotland-Canada-allMatches.RData")
sco_can_matches <-matches
dim(sco_can_matches)
## [1] 1061   25
load("Netherlands-Afghanistan-allMatches.RData")
nl_afg_matches <- matches
dim(nl_afg_matches)
## [1] 402  25

5. Team Batsmen partnership (all matches with opposition)

This function will create a report of the batting partnerships in the teams. The report can be brief or detailed depending on the parameter ‘report’. The top batsmen in India-Australia clashes are Ricky Ponting from Australia and Mahendra Singh Dhoni of India.

m<- teamBatsmenPartnershiOppnAllMatches(aus_ind_matches,'Australia',report="summary")
m
## Source: local data frame [47 x 2]
## 
##       batsman totalRuns
##        (fctr)     (dbl)
## 1  RT Ponting       876
## 2  MEK Hussey       753
## 3   GJ Bailey       614
## 4   SR Watson       609
## 5   MJ Clarke       607
## 6   ML Hayden       573
## 7   A Symonds       536
## 8    AJ Finch       525
## 9   SPD Smith       467
## 10  DA Warner       391
## ..        ...       ...
m <-teamBatsmenPartnershiOppnAllMatches(aus_ind_matches,'India',report="summary")
m
## Source: local data frame [44 x 2]
## 
##         batsman totalRuns
##          (fctr)     (dbl)
## 1      MS Dhoni      1156
## 2     RG Sharma       918
## 3  SR Tendulkar       910
## 4       V Kohli       902
## 5     G Gambhir       536
## 6  Yuvraj Singh       524
## 7      SK Raina       509
## 8      S Dhawan       471
## 9      V Sehwag       289
## 10   RV Uthappa       283
## ..          ...       ...
m <-teamBatsmenPartnershiOppnAllMatches(aus_ind_matches,'Australia',report="detailed")
m <-teamBatsmenPartnershiOppnAllMatches(pak_sa_matches,'Pakistan',report="summary")
m
## Source: local data frame [40 x 2]
## 
##            batsman totalRuns
##             (fctr)     (dbl)
## 1    Misbah-ul-Haq       727
## 2      Younis Khan       657
## 3    Shahid Afridi       558
## 4  Mohammad Yousuf       539
## 5  Mohammad Hafeez       477
## 6     Shoaib Malik       452
## 7    Ahmed Shehzad       348
## 8     Abdul Razzaq       246
## 9     Kamran Akmal       241
## 10      Umar Akmal       215
## ..             ...       ...
m <-teamBatsmenPartnershiOppnAllMatches(eng_nz_matches,'England',report="summary")
m
## Source: local data frame [47 x 2]
## 
##           batsman totalRuns
##            (fctr)     (dbl)
## 1         IR Bell       654
## 2         JE Root       612
## 3  PD Collingwood       514
## 4      EJG Morgan       479
## 5         AN Cook       464
## 6       IJL Trott       362
## 7    KP Pietersen       358
## 8      JC Buttler       287
## 9         OA Shah       274
## 10      RS Bopara       222
## ..            ...       ...
m <-teamBatsmenPartnershiOppnAllMatches(sl_wi_matches,'Sri Lanka',report="summary")
m[1:50,]
## Source: local data frame [50 x 2]
## 
##             batsman totalRuns
##              (fctr)     (dbl)
## 1  DPMD Jayawardene       288
## 2     KC Sangakkara       238
## 3        TM Dilshan       224
## 4       WU Tharanga       220
## 5        AD Mathews       161
## 6     ST Jayasuriya       160
## 7       ML Udawatte        87
## 8   HDRL Thirimanne        67
## 9       MDKJ Perera        64
## 10    CK Kapugedera        57
## ..              ...       ...
m <- teamBatsmenPartnershiOppnAllMatches(ban_ire_matches,"Ireland",report="summary")
m
## Source: local data frame [16 x 2]
## 
##             batsman totalRuns
##              (fctr)     (dbl)
## 1   WTS Porterfield       111
## 2        KJ O'Brien        99
## 3        NJ O'Brien        75
## 4         GC Wilson        60
## 5          AR White        38
## 6       DT Johnston        36
## 7           JP Bray        31
## 8         JF Mooney        28
## 9          AC Botha        23
## 10         EC Joyce        16
## 11      PR Stirling        15
## 12      GH Dockrell         9
## 13        WB Rankin         9
## 14 D Langford-Smith         6
## 15       EJG Morgan         5
## 16        AR Cusack         0

6. Team batsmen partnership (all matches with opposition)

This is plotted graphically in the charts below

teamBatsmenPartnershipOppnAllMatchesChart(aus_ind_matches,"India","Australia")

teamBatsmenPartnership-1

teamBatsmenPartnershipOppnAllMatchesChart(pak_sa_matches,main="South Africa",opposition="Pakistan")

teamBatsmenPartnership-2

m<- teamBatsmenPartnershipOppnAllMatchesChart(eng_nz_matches,"New Zealand",opposition="England",plot=FALSE)
m[1:30,]
##          batsman    nonStriker runs
## 1  KS Williamson   LRPL Taylor  354
## 2    BB McCullum    MJ Guptill  275
## 3    LRPL Taylor KS Williamson  273
## 4     MJ Guptill   BB McCullum  227
## 5    BB McCullum      JD Ryder  212
## 6     MJ Guptill KS Williamson  196
## 7  KS Williamson    MJ Guptill  179
## 8       JD Ryder   BB McCullum  175
## 9       JDP Oram     SB Styris  153
## 10   LRPL Taylor    GD Elliott  147
## 11    GD Elliott   LRPL Taylor  143
## 12   LRPL Taylor    MJ Guptill  140
## 13        JM How   BB McCullum  128
## 14    MJ Guptill   LRPL Taylor  125
## 15   BB McCullum        JM How  117
## 16   BB McCullum   LRPL Taylor  116
## 17     SB Styris      JDP Oram  100
## 18   LRPL Taylor        JM How   98
## 19        JM How   LRPL Taylor   98
## 20      JDP Oram   BB McCullum   84
## 21   LRPL Taylor     L Vincent   71
## 22      JDP Oram    DL Vettori   70
## 23   LRPL Taylor   BB McCullum   61
## 24     SB Styris        JM How   55
## 25      DR Flynn     SB Styris   54
## 26    DL Vettori      JDP Oram   53
## 27     L Vincent   LRPL Taylor   53
## 28    MJ Santner   LRPL Taylor   53
## 29    SP Fleming     L Vincent   52
## 30        JM How     SB Styris   50
teamBatsmenPartnershipOppnAllMatchesChart(sl_wi_matches,"Sri Lanka","West Indies")

teamBatsmenPartnership-3

teamBatsmenPartnershipOppnAllMatchesChart(ban_ire_matches,"Bangladesh","Ireland")

teamBatsmenPartnership-4

7. Team batsmen versus bowler (all matches with opposition)

The plots below provide information on how each of the top batsmen fared against the opposition bowlers

teamBatsmenVsBowlersOppnAllMatches(aus_ind_matches,"India","Australia")

batsmenvsBowler-1

teamBatsmenVsBowlersOppnAllMatches(pak_sa_matches,"South Africa","Pakistan",top=3)

batsmenvsBowler-2

m <- teamBatsmenVsBowlersOppnAllMatches(eng_nz_matches,"England","New Zealnd",top=10,plot=FALSE)
m
## Source: local data frame [157 x 3]
## Groups: batsman [1]
## 
##    batsman       bowler  runs
##     (fctr)       (fctr) (dbl)
## 1  IR Bell JEC Franklin    63
## 2  IR Bell      SE Bond    13
## 3  IR Bell MR Gillespie    33
## 4  IR Bell     NJ Astle     0
## 5  IR Bell     JS Patel    20
## 6  IR Bell   DL Vettori    28
## 7  IR Bell     JDP Oram    48
## 8  IR Bell    SB Styris    12
## 9  IR Bell     KD Mills   124
## 10 IR Bell   TG Southee    84
## ..     ...          ...   ...
teamBatsmenVsBowlersOppnAllMatches(sl_wi_matches,"Sri Lanka","West Indies")

batsmenvsBowler-3

teamBatsmenVsBowlersOppnAllMatches(ban_ire_matches,"Bangladesh","Ireland")

batsmenvsBowler-4

8. Team batsmen versus bowler (all matches with opposition)

The following tables gives the overall performances of the country’s batsmen against the opposition. For India-Australia matches Dhoni, Rohit Sharma and Tendulkar lead the way. For Australia it is Ricky Ponting, M Hussey and GJ Bailey. In South Africa- Pakistan matches it is AB Devilliers, Hashim Amla etc.

a <-teamBattingScorecardOppnAllMatches(aus_ind_matches,main="India",opposition="Australia")
## Total= 8331
a
## Source: local data frame [44 x 5]
## 
##         batsman ballsPlayed fours sixes  runs
##          (fctr)       (int) (int) (int) (dbl)
## 1      MS Dhoni        1406    78    22  1156
## 2     RG Sharma        1015    73    24   918
## 3  SR Tendulkar        1157   103     6   910
## 4       V Kohli         961    87     6   902
## 5     G Gambhir         677    44     2   536
## 6  Yuvraj Singh         664    52    11   524
## 7      SK Raina         536    43    11   509
## 8      S Dhawan         470    55     6   471
## 9      V Sehwag         305    42     4   289
## 10   RV Uthappa         295    29     7   283
## ..          ...         ...   ...   ...   ...
teamBattingScorecardOppnAllMatches(aus_ind_matches,"Australia","India")
## Total= 9995
## Source: local data frame [47 x 5]
## 
##       batsman ballsPlayed fours sixes  runs
##        (fctr)       (int) (int) (int) (dbl)
## 1  RT Ponting        1107    86     8   876
## 2  MEK Hussey         816    56     5   753
## 3   GJ Bailey         578    51    13   614
## 4   SR Watson         653    81    10   609
## 5   MJ Clarke         786    45     5   607
## 6   ML Hayden         660    72     8   573
## 7   A Symonds         543    43    15   536
## 8    AJ Finch         617    52     9   525
## 9   SPD Smith         431    44     7   467
## 10  DA Warner         385    40     6   391
## ..        ...         ...   ...   ...   ...
teamBattingScorecardOppnAllMatches(pak_sa_matches,"South Africa","Pakistan")
## Total= 6657
## Source: local data frame [36 x 5]
## 
##           batsman ballsPlayed fours sixes  runs
##            (fctr)       (int) (int) (int) (dbl)
## 1  AB de Villiers        1533   128    23  1423
## 2         HM Amla         864    88     3   815
## 3        GC Smith         726    68     3   597
## 4       JH Kallis         710    40     8   543
## 5       JP Duminy         620    35     3   481
## 6       CA Ingram         388    32     1   305
## 7    F du Plessis         363    30     4   278
## 8       Q de Kock         336    28     2   270
## 9       DA Miller         329    20     2   250
## 10       HH Gibbs         252    33     2   228
## ..            ...         ...   ...   ...   ...
teamBattingScorecardOppnAllMatches(sl_wi_matches,"West Indies","Sri Lanka")
## Total= 1800
## Source: local data frame [36 x 5]
## 
##          batsman ballsPlayed fours sixes  runs
##           (fctr)       (int) (int) (int) (dbl)
## 1       DM Bravo         353    20     6   265
## 2      RR Sarwan         315    11     3   205
## 3     MN Samuels         209    19     5   188
## 4       CH Gayle         198    18     8   176
## 5  S Chanderpaul         181     6     7   152
## 6      AB Barath         162     9     2   125
## 7       DJ Bravo         139     7     2   102
## 8       CS Baugh         102     5    NA    78
## 9    LMP Simmons          78     5     4    67
## 10     JO Holder          33     5     3    55
## ..           ...         ...   ...   ...   ...
teamBattingScorecardOppnAllMatches(eng_nz_matches,"England","New Zealand")
## Total= 6472
## Source: local data frame [47 x 5]
## 
##           batsman ballsPlayed fours sixes  runs
##            (fctr)       (int) (int) (int) (dbl)
## 1         IR Bell         871    74     7   654
## 2         JE Root         651    54     5   612
## 3  PD Collingwood         619    34    15   514
## 4      EJG Morgan         445    35    22   479
## 5         AN Cook         616    49     3   464
## 6       IJL Trott         421    26     1   362
## 7    KP Pietersen         481    30     6   358
## 8      JC Buttler         199    28    11   287
## 9         OA Shah         323    17     6   274
## 10      RS Bopara         350    21    NA   222
## ..            ...         ...   ...   ...   ...
teamBatsmenPartnershiOppnAllMatches(sco_can_matches,"Scotland","Canada")
## Source: local data frame [20 x 2]
## 
##          batsman totalRuns
##           (fctr)     (dbl)
## 1     CS MacLeod       177
## 2      MW Machan        68
## 3      CJO Smith        43
## 4    FRJ Coleman        40
## 5      RR Watson        14
## 6     JH Stander        12
## 7       MA Leask        12
## 8     RML Taylor        10
## 9     KJ Coetzer         8
## 10   GM Hamilton         7
## 11        RM Haq         7
## 12    PL Mommsen         6
## 13     CM Wright         5
## 14        JD Nel         5
## 15      MH Cross         4
## 16     SM Sharif         4
## 17     JAR Blain         2
## 18  NFI McCallum         1
## 19 RD Berrington         1
## 20     NS Poonia         0

9. Team performances of bowlers (all matches with opposition)

Like the function above the following tables provide the top bowlers of the countries in the matches against the oppoition. In India-Australia matches Ishant Sharma leads, in Pakistan-South Africa matches Shahid Afridi tops and so on.

teamBowlingPerfOppnAllMatches(aus_ind_matches,"India","Australia")
## Source: local data frame [36 x 5]
## 
##             bowler overs maidens  runs wickets
##             (fctr) (int)   (int) (dbl)   (dbl)
## 1         I Sharma    44       1   739      20
## 2  Harbhajan Singh    40       0   926      15
## 3        RA Jadeja    39       0   867      14
## 4        IK Pathan    42       1   702      11
## 5         UT Yadav    37       2   606      10
## 6          P Kumar    27       0   501      10
## 7           Z Khan    33       1   500      10
## 8      S Sreesanth    34       0   454      10
## 9         R Ashwin    43       0   684       9
## 10   R Vinay Kumar    31       1   380       9
## ..             ...   ...     ...   ...     ...
teamBowlingPerfOppnAllMatches(pak_sa_matches,main="Pakistan",opposition="South Africa")
## Source: local data frame [24 x 5]
## 
##             bowler overs maidens  runs wickets
##             (fctr) (int)   (int) (dbl)   (dbl)
## 1    Shahid Afridi    38       0  1053      17
## 2      Saeed Ajmal    39       0   658      14
## 3  Mohammad Hafeez    38       0   774      13
## 4   Mohammad Irfan    29       0   467      13
## 5   Iftikhar Anjum    29       1   257      12
## 6       Wahab Riaz    31       0   534      11
## 7      Junaid Khan    32       0   429      10
## 8    Sohail Tanvir    26       1   409       9
## 9    Shoaib Akhtar    22       1   313       9
## 10        Umar Gul    25       2   365       7
## ..             ...   ...     ...   ...     ...
teamBowlingPerfOppnAllMatches(eng_nz_matches,"New Zealand","England")
## Source: local data frame [33 x 5]
## 
##            bowler overs maidens  runs wickets
##            (fctr) (int)   (int) (dbl)   (dbl)
## 1      TG Southee    40       0   684      19
## 2        KD Mills    36       1   742      17
## 3      DL Vettori    35       0   561      16
## 4  MJ McClenaghan    34       0   515      14
## 5         SE Bond    17       1   205      11
## 6      GD Elliott    20       0   194      10
## 7    JEC Franklin    24       0   418       7
## 8   KS Williamson    21       1   225       7
## 9        TA Boult    18       2   195       7
## 10    NL McCullum    30       0   425       6
## ..            ...   ...     ...   ...     ...
teamBowlingPerfOppnAllMatches(sl_wi_matches,"Sri Lanka","West Indies")
## Source: local data frame [24 x 5]
## 
##             bowler overs maidens  runs wickets
##             (fctr) (int)   (int) (dbl)   (dbl)
## 1       SL Malinga    28       1   280      11
## 2       BAW Mendis    15       0   267       8
## 3  KMDN Kulasekara    13       1   185       7
## 4       AD Mathews    14       0   191       6
## 5   M Muralitharan    20       1   157       6
## 6      MF Maharoof     9       2    14       6
## 7       WPUJC Vaas     7       2    82       5
## 8       RAS Lakmal     7       0    55       4
## 9    ST Jayasuriya     1       0    38       4
## 10    HMRKB Herath    10       1   124       3
## ..             ...   ...     ...   ...     ...
teamBowlingPerfOppnAllMatches(ken_ber_matches,"Kenya","Bermuda")
## Source: local data frame [9 x 5]
## 
##        bowler overs maidens  runs wickets
##        (fctr) (int)   (int) (dbl)   (dbl)
## 1  JK Kamande    16       0   122       5
## 2  HA Varaiya    13       1    64       5
## 3   AS Luseno     6       0    32       4
## 4  PJ Ongondo     7       0    39       3
## 5    TM Odoyo     7       0    36       3
## 6  LN Onyango     7       0    37       2
## 7   SO Tikolo    18       0    81       1
## 8 NN Odhiambo    14       1    76       1
## 9    CO Obuya     4       0    20       0

10. Team bowler’s wickets (all matches with opposition)

This provided a graphical plot of the tables above

teamBowlersWicketsOppnAllMatches(aus_ind_matches,"India","Australia")

bowlerWicketsOppn-1

teamBowlersWicketsOppnAllMatches(aus_ind_matches,"Australia","India")

bowlerWicketsOppn-2

teamBowlersWicketsOppnAllMatches(pak_sa_matches,"South Africa","Pakistan",top=10)

bowlerWicketsOppn-3

m <-teamBowlersWicketsOppnAllMatches(eng_nz_matches,"England","Zealand",plot=FALSE)
m
## Source: local data frame [20 x 2]
## 
##            bowler wickets
##            (fctr)   (int)
## 1     JM Anderson      20
## 2       SCJ Broad      13
## 3         ST Finn      12
## 4  PD Collingwood      11
## 5        GP Swann      10
## 6   RJ Sidebottom       8
## 7       CR Woakes       8
## 8      A Flintoff       7
## 9     LE Plunkett       6
## 10      AU Rashid       6
## 11      BA Stokes       6
## 12     MS Panesar       5
## 13      LJ Wright       4
## 14     TT Bresnan       4
## 15      DJ Willey       4
## 16    JC Tredwell       3
## 17    CT Tremlett       2
## 18      RS Bopara       2
## 19      CJ Jordan       2
## 20        J Lewis       1
teamBowlersWicketsOppnAllMatches(ban_ire_matches,"Bangladesh","Ireland",top=7)

bowlerWicketsOppn-4

11. Team bowler vs batsmen (all matches with opposition)

These plots show how the bowlers fared against the batsmen. It shows which of the opposing teams batsmen were able to score the most runs

teamBowlersVsBatsmenOppnAllMatches(aus_ind_matches,'India',"Australia",top=5)

bowlerVsBatsmen-1

teamBowlersVsBatsmenOppnAllMatches(pak_sa_matches,"Pakistan","South Africa",top=3)

bowlerVsBatsmen-2

teamBowlersVsBatsmenOppnAllMatches(eng_nz_matches,"England","New Zealand")

bowlerVsBatsmen-3

teamBowlersVsBatsmenOppnAllMatches(eng_nz_matches,"New Zealand","England")

bowlerVsBatsmen-4

12. Team bowler’s wicket kind (caught,bowled,etc) (all matches with opposition)

The charts below show the wicket kind taken by the bowler (caught, bowled, lbw etc)

teamBowlersWicketKindOppnAllMatches(aus_ind_matches,"India","Australia",plot=TRUE)

bowlerWickets-1

m <- teamBowlersWicketKindOppnAllMatches(aus_ind_matches,"Australia","India",plot=FALSE)
m[1:30,]
##        bowler        wicketKind wicketPlayerOut runs
## 1  GD McGrath            caught    SR Tendulkar   69
## 2   SR Watson            caught        D Mongia  532
## 3  MG Johnson               lbw        V Sehwag 1020
## 4       B Lee            caught        R Dravid  671
## 5       B Lee            bowled          M Kaif  671
## 6  NW Bracken            caught        SK Raina  429
## 7  GD McGrath            caught       IK Pathan   69
## 8  NW Bracken               lbw        MS Dhoni  429
## 9  MG Johnson               lbw    SR Tendulkar 1020
## 10 MG Johnson            bowled       G Gambhir 1020
## 11   SR Clark            caught    SR Tendulkar  254
## 12   JR Hopes            caught    Yuvraj Singh  346
## 13   SR Clark               lbw      RV Uthappa  254
## 14    GB Hogg            caught        R Dravid  427
## 15  MJ Clarke           run out       IK Pathan  212
## 16  MJ Clarke           stumped Harbhajan Singh  212
## 17  MJ Clarke            bowled        RR Powar  212
## 18    GB Hogg            caught          Z Khan  427
## 19    GB Hogg            caught        MS Dhoni  427
## 20      B Lee               lbw       G Gambhir  671
## 21 MG Johnson               lbw      RV Uthappa 1020
## 22      B Lee            caught        R Dravid  671
## 23    GB Hogg            bowled    SR Tendulkar  427
## 24      B Lee            caught        MS Dhoni  671
## 25   JR Hopes            caught       RG Sharma  346
## 26    GB Hogg               lbw       IK Pathan  427
## 27 MG Johnson            bowled    Yuvraj Singh 1020
## 28    GB Hogg caught and bowled          Z Khan  427
## 29   SR Clark            bowled     S Sreesanth  254
## 30   JR Hopes            caught      SC Ganguly  346
teamBowlersWicketKindOppnAllMatches(sl_wi_matches,"Sri Lanka",'West Indies',plot=TRUE)

bowlerWickets-2

13. Team bowler’s wicket taken and runs conceded (all matches with opposition)

teamBowlersWicketRunsOppnAllMatches(aus_ind_matches,"India","Australia")

wicketRuns-1

m <-teamBowlersWicketRunsOppnAllMatches(pak_sa_matches,"Pakistan","South Africa",plot=FALSE)
m[1:30,]
## Source: local data frame [30 x 5]
## 
##             bowler overs maidens  runs wickets
##             (fctr) (int)   (int) (dbl)   (dbl)
## 1         Umar Gul    25       2   365       7
## 2   Iftikhar Anjum    29       1   257      12
## 3     Yasir Arafat     5       0    33       1
## 4     Abdul Razzaq    16       0   290       4
## 5  Mohammad Hafeez    38       0   774      13
## 6    Shahid Afridi    38       0  1053      17
## 7     Shoaib Malik    18       0   219       4
## 8    Sohail Tanvir    26       1   409       9
## 9     Abdur Rehman    25       0   301       4
## 10   Mohammad Asif    10       1   204       2
## ..             ...   ...     ...   ...     ...

14. Plot of wins vs losses between teams.

setwd("C:/software/cricket-package/york-test/yorkrData/ODI/ODI-matches")
plotWinLossBetweenTeams("India","Sri Lanka")

winsLosses-1

plotWinLossBetweenTeams('Pakistan',"South Africa",".")

winsLosses-2

plotWinLossBetweenTeams('England',"New Zealand",".")

winsLosses-3

plotWinLossBetweenTeams("Australia","West Indies",".")

winsLosses-4

plotWinLossBetweenTeams('Bangladesh',"Zimbabwe",".")

winsLosses-5

plotWinLossBetweenTeams('Scotland',"Ireland",".")

winsLosses-6

Conclusion

This post included all functions for all matches between any 2 opposing countries. As before the data frames are already available. You can load the data and begin to use them. If more insights from the dataframe are possible do go ahead. But please do attribute the source to Cricheet (http://cricsheet.org), my package yorkr and my blog. Do give the functions a spin for yourself.

There are 2 more posts required for the introduction of MY yorkr package.So, Hasta la vista, baby! I’ll be back!

Important note: Do check out my other posts using yorkr at yorkr-posts

Also see

You may also like

  1. Introducing cricketr! : An R package to analyze performances of cricketers
  2. Cricket analytics with cricketr
  3. cricketr adapts to the Twenty20 International!
  4. The making of Total Control Android game
  5. De-blurring revisited with Wiener filter using OpenCV
  6. Rock N’ Roll with Bluemix, Cloudant & NodeExpress