The Clash of the Titans in Test and ODI cricket

Who looks outside, dreams; who looks inside, awakes.
Show me a sane man and I will cure him for you.

            Carl Jung 

 

We’re made of star stuff. We are a way for the cosmos to know itself.
If you want to make an apple pie from scratch, you must first create the universe.

            Carl Sagan

Introduction

The biggest nag in the collective psyche of cricketing fraternity these days, is whether Virat Kohli has surpassed Sachin Tendulkar. This question has been troubling cricket lovers the world over and particularly in India, for quite a while. This nagging question has only grown stronger with Kohli’s 41st ODI century and with Michael Vaughan bestowing the GOAT title to Virat Kohli for ODI cricket. Hence, I decided to do my bit in addressing this, by doing analysis of Kohli’s and Tendulkar’s performance in ODI cricket. I also wanted to address the the best among the cricketing idols of India in Test cricket, namely Sunil Gavaskar, Sachin Tendulkar and Virat Kohli. Hence this post has 2 parts

  1. Analysis of Tendulkar, Gavaskar and Kohli in Test cricket
  2. Analysis of Tendulkar and Kohli in ODIs

In this post, I analyze the performances of these titans in Test and ODI cricket using my R package cricketr. While some may feel that comparisons are not possible as these batsmen are from different eras. To some extent this is true. I would give some leeway to Gavaskar as he had to bat in a pre-helmet era. But with Tendulkar and Kohli a fair and objective comparison is possible. There were pre-eminient bowlers in the times of Tendulkar as there are now.

From the analysis below, it can be seen that Tendulkar is ahead  of everybody else in Test cricket. However it must be noted that Tendulkar’s performance deteriorated towards the end of his career. Such was not the case with Gavaskar. Kohli has some catching up to do and he still has a lot of Test cricket in him.

In ODI Kohli can be seen to pulling ahead of Tendulkar in several aspects.

My R package cricketr can be installed directly from CRAN and you can use it analyze cricketers.

This package uses the statistics info available in ESPN Cricinfo Statsguru. The current version of this package supports all formats of the game including Test, ODI and Twenty20 versions.

You should be able to install the package from GitHub and use the many functions available in the package. Please mindful of the ESPN Cricinfo Terms of Use

Take a look at my short video tutorial on my R package cricketr on Youtube – R package cricketr – A short tutorial

Do check out my interactive Shiny app implementation using the cricketr package – Sixer – R package cricketr’s new Shiny avatar

Note 1: If you would like to do a similar analysis for a different set of batsman and bowlers, you can clone/download my skeleton cricketr templatefrom Github (which is the R Markdown file I have used for the analysis below).

Note 2: I sprinkle the charts with my observations. Feel free to look at them more closely and come to your conclusions.

If you are passionate about cricket, and love analyzing cricket performances, then check out my racy book on cricket ‘Cricket analytics with cricketr and cricpy – Analytics harmony with R & Python’! This book discusses and shows how to use my R package ‘cricketr’ and my Python package ‘cricpy’ to analyze batsmen and bowlers in all formats of the game (Test, ODI and T20). The paperback is available on Amazon at $21.99 and  the kindle version at $9.99/Rs 449/-. A must read for any cricket lover! Check it out!!

Untitled

Important note: Do check out the python avatar of cricketr, ‘cricpy’ in my post Introducing cricpy:A python package to analyze performances of cricketers

1 Load the cricketr package

if (!require("cricketr")){
    install.packages("cricketr",lib = "c:/test")
}
library(cricketr)

A Test cricket  – Analysis of Gavaskar, Tendulkar and Kohli

2. Get player data

tendulkar <- getPlayerData(35320,dir=".",file="tendulkar.csv",type="batting")
kohli <- getPlayerData(253802,dir=".",file="kohli.csv",type="batting")
gavaskar <- getPlayerData(28794,dir=".",file="gavaskar.csv",type="batting")

3a. Basic analyses for Tendulkar

par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
batsmanRunsFreqPerf("./tendulkar.csv","Tendulkar")
batsmanMeanStrikeRate("./tendulkar.csv","Tendulkar")
batsmanRunsRanges("./tendulkar.csv","Tendulkar")
dev.off()

3b Basic analyses for Kohli

par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
batsmanRunsFreqPerf("./kohli.csv","Kohli")
batsmanMeanStrikeRate("./kohli.csv","Kohli")
batsmanRunsRanges("./kohli.csv","Kohli")
dev.off()

3c Basic analyses for Gavaskar

par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
batsmanRunsFreqPerf("./gavaskar.csv","Gavaskar")
batsmanMeanStrikeRate("./gavaskar.csv","Gavaskar")
batsmanRunsRanges("./gavaskar.csv","Gavaskar")
dev.off()

4a.More analyses for Tendulkar

It can be seen that Tendulkar and Gavaskar has been bowled more often than Kohli. Also Kohli does not have as many sixes in Test cricket as Tendulkar and Gavaskar

par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
batsman4s("./tendulkar.csv","Tendulkar")
batsman6s("./tendulkar.csv","Tendulkar")
batsmanDismissals("./tendulkar.csv","Tendulkar")
dev.off()

4b. More analyses for Kohli

par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
batsman4s("./kohli.csv","Kohli")
batsman6s("./kohli.csv","Kohli")
batsmanDismissals("./kohli.csv","Kohli")
dev.off()

4c More analyses for Gavaskar

par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
batsman4s("./gavaskar.csv","Gavaskar")
batsman6s("./gavaskar.csv","Gavaskar")
batsmanDismissals("./gavaskar.csv","Gavaskar")
dev.off()

5 Performance of batsmen on different grounds

par(mar=c(4,4,2,2))
batsmanAvgRunsGround("./tendulkar.csv","Tendulkar")
batsmanAvgRunsGround("./kohli.csv","Kohli")
batsmanAvgRunsGround("./gavaskar.csv","Gavaskar")

a

#dev.off()

6. Performance if batsmen against different Opposition

  1. Tendulkar averages 50 against the following countries – Australia, Bangladesh, England, Sri Lanka, West Indies and Zimbabwe
  2. Kohli average almost 50 against all the nations he has played – Australia, Bangladesh, England, New Zealand, Sri Lanka and West Indies
  3. Gavaskar averages 50 against Australia, Pakistan, West Indies, Sri Lanka
par(mar=c(4,4,2,2))
batsmanAvgRunsOpposition("./tendulkar.csv","Tendulkar")
batsmanAvgRunsOpposition("./kohli.csv","Kohli")
batsmanAvgRunsOpposition("./gavaskar.csv","Gavaskar")

7. Get player data special

This is required for the next 2 function calls

tendulkarsp <- getPlayerDataSp(35320,tdir=".",tfile="tendulkarsp.csv",ttype="batting")
kohlisp <- getPlayerDataSp(253802,tdir=".",tfile="kohlisp.csv",ttype="batting")
gavaskarsp <- getPlayerDataSp(28794,tdir=".",tfile="gavaskarsp.csv",ttype="batting")

#dev.off()

8 Get contribution of batsmen in matches won and lost

Kohli contribution has had an equal contribution in won and lost matches. Tendulkar’s runs seem to have not helped in winning as much as only 50% of matches he has played have been won

par(mfrow=c(2,2))
par(mar=c(4,4,2,2))

batsmanContributionWonLost("tendulkarsp.csv","Tendulkar")
batsmanContributionWonLost("./kohlisp.csv","Kohli")
batsmanContributionWonLost("./gavaskarsp.csv","Gavaskar")
  

a

9 Performance of batsmen at home and overseas

The boxplots show that Kohli performs better overseas than at home. The 3rd quartile is higher, though the median seems to lower overseas. For Tendulkar the performance is similar both ways. Gavaskar’s median runs scored overseas is higher.

par(mfrow=c(2,2))
par(mar=c(4,4,2,2))


batsmanPerfHomeAway("tendulkarsp.csv","Tendulkar")
batsmanPerfHomeAway("./kohlisp.csv","Kohli")
batsmanPerfHomeAway("./gavaskarsp.csv","Gavaskar")

10. Moving average of runs

Gavaskar’s moving average was very good at the time of his retirement. Kohli seems to be going very strong. Tendulkar’s performance shows signs of deterioration around the time of his retirement.

par(mfrow=c(2,2))
par(mar=c(4,4,2,2))

batsmanMovingAverage("./tendulkar.csv","Tendulkar")
batsmanMovingAverage("./kohli.csv","Kohli")
batsmanMovingAverage("./gavaskar.csv","Gavaskar")

#dev.off()

11 Boxplot and histogram of runs

Kohli has a marginally higher average (50.69) than Tendulkar (48.65) while Gavaskar 46. The median runs are same for Tendulkar and Kohli at 32

par(mfrow=c(2,2))
par(mar=c(4,4,2,2))
batsmanPerfBoxHist("./tendulkar.csv","Sachin Tendulkar")
batsmanPerfBoxHist("./kohli.csv","Kohli")
batsmanPerfBoxHist("./gavaskar.csv","Gavaskar")

12 Cumulative average Runs for batsmen

Looking at the cumulative average runs we can see a gradual drop in the cumulative average for Tendulkar while Kohli and Gavaskar’s performance seems to be getting better

par(mfrow=c(2,2))
par(mar=c(4,4,2,2))
batsmanCumulativeAverageRuns("./tendulkar.csv","Tendulkar")
batsmanCumulativeAverageRuns("./kohli.csv","Kohli")
batsmanCumulativeAverageRuns("./gavaskar.csv","Gavaskar")

13. Cumulative average strike rate of batsmen

Tendulkar’s strike rate is better than Kohli and Gavaskar

par(mfrow=c(2,2))
par(mar=c(4,4,2,2))
batsmanCumulativeStrikeRate("./tendulkar.csv","Tendulkar")
batsmanCumulativeStrikeRate("./kohli.csv","Kohli")
batsmanCumulativeStrikeRate("./gavaskar.csv","Gavaskar")

14 Performance forecast of batsmen

The forecasted performance for Kohli and Gavaskar is higher than that of Tendulkar

par(mfrow=c(2,2))
par(mar=c(4,4,2,2))
batsmanPerfForecast("./tendulkar.csv","Sachin Tendulkar")
batsmanPerfForecast("./kohli.csv","Kohli")
batsmanPerfForecast("./gavaskar.csv","Gavaskar")

#dev.off()

15. Relative strike rate of batsmen

par(mar=c(4,4,2,2))

frames <- list("./tendulkar.csv","./kohli.csv","gavaskar.csv")
names <- list("Tendulkar","Kohli","Gavaskar")
relativeBatsmanSR(frames,names)
#dev.off()

16. Relative Runs frequency of batsmen

par(mar=c(4,4,2,2))
frames <- list("./tendulkar.csv","./kohli.csv","gavaskar.csv")
names <- list("Tendulkar","Kohli","Gavaskar")
relativeRunsFreqPerf(frames,names)
#dev.off()

17. Relative cumulative average runs of batsmen

Tendulkar leads the way here, but it can be seem Kohli catching up.

par(mar=c(4,4,2,2))
frames <- list("./tendulkar.csv","./kohli.csv","gavaskar.csv")
names <- list("Tendulkar","Kohli","Gavaskar")
relativeBatsmanCumulativeAvgRuns(frames,names)
#dev.off()

18. Relative cumulative average strike rate

Tendulkar has better strike rate than the other two.

par(mar=c(4,4,2,2))
frames <- list("./tendulkar.csv","./kohli.csv","gavaskar.csv")
names <- list("Tendulkar","Kohli","Gavaskar")
relativeBatsmanCumulativeStrikeRate(frames,names)
#dev.off()

19. Check batsman in form

As in the moving average and performance forecast and cumulative average runs, Kohli and Gavaskar are in-form while Tendulkar was out-of-form towards the end.

checkBatsmanInForm("./tendulkar.csv","Sachin Tendulkar")
## [1] "**************************** Form status of Sachin Tendulkar ****************************
\n\n Population size: 294  Mean of population: 50.48 \n Sample size: 33  Mean of sample: 32.42 SD of 
sample: 29.8 \n\n Null hypothesis H0 : Sachin Tendulkar 's sample average is within 95% confidence interval 
of population average\n Alternative hypothesis Ha : Sachin Tendulkar 's sample average is below 
the 95% confidence interval of population average\n\n 
Sachin Tendulkar 's Form Status: Out-of-Form because the p value: 0.000713  is less than alpha=  0.05 \n *******************************************************************************************\n\n"
checkBatsmanInForm("./kohli.csv","Kohli")
## [1] "**************************** Form status of Kohli ****************************\n\n Population size: 117
  Mean of population: 50.35 \n Sample size: 13  Mean of sample: 53.77 SD of sample: 46.15 \n\n Null 
hypothesis H0 : Kohli 's sample average is within 95% confidence interval of population average\n 
Alternative hypothesis Ha : Kohli 's sample average is below the 95% confidence interval of population
 average\n\n Kohli 's Form Status: In-Form because the p value: 0.603244  is greater than alpha=  0.05 \n *******************************************************************************************\n\n"
checkBatsmanInForm("./gavaskar.csv","Gavaskar")
## [1] "**************************** Form status of Gavaskar ****************************\n\n 
Population size: 125  Mean of population: 44.67 \n Sample size: 14  Mean of sample: 57.86 SD of sample:
 58.55 \n\n Null hypothesis H0 : Gavaskar 's sample average is within 95% confidence interval of population
 average\n Alternative hypothesis Ha : Gavaskar 's sample average is below the 95% confidence interval of 
population average\n\n Gavaskar 's Form Status: In-Form because the p value: 0.793276  is greater 
than alpha=  0.05 \n *******************************************************************************************\n\n"
#dev.off()

20. Performance 3D

A 3D regression plane is fitted between the the Balls faced, Minutes at crease and Runs scored

par(mfrow=c(2,2))
par(mar=c(4,4,2,2))
battingPerf3d("./tendulkar.csv","Sachin Tendulkar")
battingPerf3d("./kohli.csv","Kohli")
battingPerf3d("./gavaskar.csv","Gavaskar")
#dev.off()

20. Runs likelihood

This functions computes the K-Means and determines the runs the batsmen are likely to score.

par(mar=c(4,4,2,2))
batsmanRunsLikelihood("./tendulkar.csv","Tendulkar")
## Summary of  Tendulkar 's runs scoring likelihood
## **************************************************
## 
## There is a 16.51 % likelihood that Tendulkar  will make  139 Runs in  251 balls over 353  Minutes 
## There is a 25.08 % likelihood that Tendulkar  will make  66 Runs in  122 balls over  167  Minutes 
## There is a 58.41 % likelihood that Tendulkar  will make  16 Runs in  31 balls over 44  Minutes
batsmanRunsLikelihood("./kohli.csv","Kohli")
## Summary of  Kohli 's runs scoring likelihood
## **************************************************
## 
## There is a 20 % likelihood that Kohli  will make  143 Runs in  232 balls over 330  Minutes 
## There is a 33.85 % likelihood that Kohli  will make  51 Runs in  92 balls over  127  Minutes 
## There is a 46.15 % likelihood that Kohli  will make  11 Runs in  24 balls over 31  Minutes
batsmanRunsLikelihood("./gavaskar.csv","Gavaskar")
## Summary of  Gavaskar 's runs scoring likelihood
## **************************************************
## 
## There is a 33.81 % likelihood that Gavaskar  will make  69 Runs in  159 balls over 214  Minutes 
## There is a 8.63 % likelihood that Gavaskar  will make  172 Runs in  364 balls over  506  Minutes 
## There is a 57.55 % likelihood that Gavaskar  will make  13 Runs in  35 balls over 48  Minutes

21. Predict runs for a random combination of Balls faced and runs scored

BF <- seq( 10, 400,length=15)
Mins <- seq(30,600,length=15)
newDF <- data.frame(BF,Mins)
tendulkar <- batsmanRunsPredict("./tendulkar.csv","Tendulkar",newdataframe=newDF)
kohli <- batsmanRunsPredict("./kohli.csv","Kohli",newdataframe=newDF)
gavaskar <- batsmanRunsPredict("./gavaskar.csv","Gavaskar",newdataframe=newDF)
batsmen <-cbind(round(tendulkar$Runs),round(kohli$Runs),round(gavaskar$Runs))
colnames(batsmen) <- c("Tendulkar","Kohli","Gavaskar")
newDF <- data.frame(round(newDF$BF),round(newDF$Mins))
colnames(newDF) <- c("BallsFaced","MinsAtCrease")
predictedRuns <- cbind(newDF,batsmen)
predictedRuns
##    BallsFaced MinsAtCrease Tendulkar Kohli Gavaskar
## 1          10           30         7     6        4
## 2          38           71        23    24       17
## 3          66          111        39    42       30
## 4          94          152        54    60       43
## 5         121          193        70    78       56
## 6         149          234        86    96       69
## 7         177          274       102   114       82
## 8         205          315       118   132       95
## 9         233          356       134   150      108
## 10        261          396       150   168      121
## 11        289          437       165   186      134
## 12        316          478       181   204      147
## 13        344          519       197   222      160
## 14        372          559       213   240      173
## 15        400          600       229   258      186
#dev.off()

Key findings

  1. Kohli has a marginally higher average than Tendulkar
  2. Tendulkar has the best strike rate of all the 3.
  3. The cumulative average runs and the performance forecast for Kohli and Gavaskar show an improving trend, while Tendulkar’s numbers deteriorate towards the end of his career
  4. Kohli is fast catching up Tendulkar on cumulative average runs vs innings in career.

B ODI Cricket – Analysis of Tendulkar and Kohli

The functions below get the ODI data for Tendulkar and Kohli as CSV files so that the analyses can be done

22 Get player data for ODIs

tendulkarOD <- getPlayerDataOD(35320,dir=".",file="tendulkarOD.csv",type="batting")
kohliOD <- getPlayerDataOD(253802,dir=".",file="kohliOD.csv",type="batting")

#dev.off()

23a Basic performance of Tendulkar in ODI

par(mfrow=c(3,2))
par(mar=c(4,4,2,2))
batsmanRunsFreqPerf("./tendulkarOD.csv","Tendulkar")
batsmanRunsRanges("./tendulkarOD.csv","Tendulkar")
batsman4s("./tendulkarOD.csv","Tendulkar")
batsman6s("./tendulkarOD.csv","Tendulkar")
batsmanScoringRateODTT("./tendulkarOD.csv","Tendulkar")
#dev.off()

23b. Basic performance of Kohli in ODI

par(mfrow=c(3,2))
par(mar=c(4,4,2,2))
batsmanRunsFreqPerf("./kohliOD.csv","Kohli")
batsmanRunsRanges("./kohliOD.csv","Kohli")
batsman4s("./kohliOD.csv","Kohli")
batsman6s("./kohliOD.csv","Kohli")
batsmanScoringRateODTT("./kohliOD.csv","Kohli")
#dev.off()

24. Performance forecast in ODIs

Kohli’s forecasted runs are much higher than Tendulkar’s in ODIs

par(mar=c(4,4,2,2))
batsmanPerfForecast("./tendulkarOD.csv","Tendulkar")
batsmanPerfForecast("./kohliOD.csv","Kohli")

25. Batting performance

A 3D regression plane is fitted between Balls faced, Minutes at crease and Runs scored.

par(mar=c(4,4,2,2))
battingPerf3d("./tendulkarOD.csv","Tendulkar")
battingPerf3d("./kohliOD.csv","Kohli")

26. Predicting runs scored for the ODI batsmen

Kohli will score runs than Tendulkar for the same minutes at crease and balls faced.

BF <- seq( 10, 200,length=10)
Mins <- seq(30,220,length=10)
newDF <- data.frame(BF,Mins)
tendulkarDF <- batsmanRunsPredict("./tendulkarOD.csv","Tendulkar",newdataframe=newDF)
kohliDF <- batsmanRunsPredict("./kohliOD.csv","Kohli",newdataframe=newDF)
batsmen <-cbind(round(tendulkarDF$Runs),round(kohliDF$Runs))
colnames(batsmen) <- c("Tendulkar","Kohli")
newDF <- data.frame(round(newDF$BF),round(newDF$Mins))
colnames(newDF) <- c("BallsFaced","MinsAtCrease")
predictedRuns <- cbind(newDF,batsmen)
predictedRuns
##    BallsFaced MinsAtCrease Tendulkar Kohli
## 1          10           30         7     8
## 2          31           51        26    28
## 3          52           72        45    48
## 4          73           93        64    68
## 5          94          114        83    88
## 6         116          136       102   108
## 7         137          157       121   128
## 8         158          178       140   149
## 9         179          199       159   169
## 10        200          220       178   189

27. Runs likelihood for the ODI batsmen

Tendulkar has clusters around 13, 53 and 111 runs while Kohli has clusters around 13, 63,116. So it more likely that Kohli will tend to score higher

par(mar=c(4,4,2,2))
batsmanRunsLikelihood("./tendulkarOD.csv","Tendulkar")
## Summary of  Tendulkar 's runs scoring likelihood
## **************************************************
## 
## There is a 18.09 % likelihood that Tendulkar  will make  111 Runs in  118 balls over 172  Minutes 
## There is a 28.39 % likelihood that Tendulkar  will make  53 Runs in  63 balls over  95  Minutes 
## There is a 53.52 % likelihood that Tendulkar  will make  13 Runs in  18 balls over 27  Minutes
batsmanRunsLikelihood("./kohliOD.csv","Kohli")
## Summary of  Kohli 's runs scoring likelihood
## **************************************************
## 
## There is a 31.41 % likelihood that Kohli  will make  63 Runs in  69 balls over 97  Minutes 
## There is a 49.74 % likelihood that Kohli  will make  13 Runs in  18 balls over  24  Minutes 
## There is a 18.85 % likelihood that Kohli  will make  116 Runs in  113 balls over 163  Minutes

28. Runs in different venues for the ODI batsmen

par(mar=c(4,4,2,2))
batsmanAvgRunsGround("./tendulkarOD.csv","Tendulkar")
batsmanAvgRunsGround("./kohliOD.csv","Kohli")

28. Runs against different opposition for the ODI batsmen

Tendulkar’s has 50+ average against Bermuda, Kenya and Namibia. While Kohli has a 50+ average against New Zealand, West Indies, South Africa, Zimbabwe and Bangladesh

par(mar=c(4,4,2,2))
batsmanAvgRunsOpposition("./tendulkarOD.csv","Tendulkar")
batsmanAvgRunsOpposition("./kohliOD.csv","Kohli")

29. Moving average of runs for the ODI batsmen

Tendulkar’s moving average shows an improvement (50+) towards the end of his career, but Kohli shows a marked increase 60+ currently

par(mar=c(4,4,2,2))
batsmanMovingAverage("./tendulkarOD.csv","Tendulkar")
batsmanMovingAverage("./kohliOD.csv","Kohli")

30. Cumulative average runs of ODI batsmen

Tendulkar plateaus at 40+ while Kohli’s cumulative average runs goes up and up!!!

par(mar=c(4,4,2,2))
batsmanCumulativeAverageRuns("./tendulkarOD.csv","Tendulkar")
batsmanCumulativeAverageRuns("./kohliOD.csv","Kohli")

31 Cumulative strike rate of ODI batsmen

par(mar=c(4,4,2,2))
batsmanCumulativeStrikeRate("./tendulkarOD.csv","Tendulkar")
batsmanCumulativeStrikeRate("./kohliOD.csv","Kohli")

32. Relative batsmen strike rate

par(mar=c(4,4,2,2))

frames <- list("./tendulkarOD.csv","./kohliOD.csv")
names <- list("Tendulkar","Kohli")
relativeBatsmanSRODTT(frames,names)
#dev.off()

33. Relative Run Frequency percentages

par(mar=c(4,4,2,2))

frames <- list("./tendulkarOD.csv","./kohliOD.csv")
names <- list("Tendulkar","Kohli")
relativeRunsFreqPerfODTT(frames,names)
#dev.off()

34. Relative cumulative average runs of ODI batsmen

Kohli breaks away from Tendulkar in cumulative average runs after 100 innings

par(mar=c(4,4,2,2))

frames <- list("./tendulkarOD.csv","./kohliOD.csv")
names <- list("Tendulkar","Kohli")
relativeBatsmanCumulativeAvgRuns(frames,names)
#dev.off()

35. Relative cumulative strike rate of ODI batsmen

This seems to be tussle with Kohli having an edge till about 40 innings and then from 40+ to 180 innings Tendulkar leads. Kohli just seems to be edging forward.

par(mar=c(4,4,2,2))

frames <- list("./tendulkarOD.csv","./kohliOD.csv")
names <- list("Tendulkar","Kohli")
relativeBatsmanCumulativeStrikeRate(frames,names)
#dev.off()

36. Batsmen 4s and 6s

par(mar=c(4,4,2,2))

frames <- list("./tendulkarOD.csv","./kohliOD.csv")
names <- list("Tendulkar","Kohli")
batsman4s6s(frames,names)
##                Tendulkar Kohli
## Runs(1s,2s,3s)     66.29 69.67
## 4s                 29.65 25.90
## 6s                  4.06  4.43
#dev.off()

37. Check ODI batsmen form

par(mar=c(4,4,2,2))

checkBatsmanInForm("./tendulkar.csv","Tendulkar")
## [1] "**************************** Form status of Tendulkar ********
********************\n\n Population size: 294  Mean of population: 50.48 \n
 Sample size: 33  Mean of sample: 32.42 SD of sample: 29.8 \n\n 
Null hypothesis H0 : Tendulkar 's sample average is within 95% confidence
 interval of population average\n Alternative hypothesis 
Ha : Tendulkar 's sample average is below the 95% confidence interval 
of population average\n\n Tendulkar 's Form Status: Out-of-Form because the p value: 0.000713  is less than alpha=  0.05 \n *******************************************************************************************\n\n"
checkBatsmanInForm("./kohli.csv","Kohli")
## [1] "**************************** Form status of Kohli ***********
*****************\n\n Population size: 117  Mean of population: 50.35 \n
 Sample size: 13  Mean of sample: 53.77 SD of sample: 46.15 \n\n 
Null hypothesis H0 : Kohli 's sample average is within 95% confidence 
interval of population average\n Alternative hypothesis 
Ha : Kohli 's sample average is below the 95% confidence interval 
of population average\n\n Kohli 's Form Status: In-Form because 
the p value: 0.603244  is greater than alpha=  0.05 \n *******************************************************************************************\n\n"
#dev.off()

Key Findings

  1. Kohli has a better performance against oppositions like West Indies, South Africa and New Zealand
  2. Kohli breaks away from Tendulkar in cumulative average runs
  3. Tendulkar has been leading the strike rate rate but Kohli in recent times seems to be breaking loose.

Check out some other players with my R package cricketr

Important note: Do check out my other posts using cricketr at cricketr-posts

Also see

  1. My book ‘Practical Machine Learning in R and Python: Third edition’ on Amazon
  2. A primer on Qubits, Quantum gates and Quantum Operations
  3. De-blurring revisited with Wiener filter using OpenCV
  4. Deep Learning from first principles in Python, R and Octave – Part 4
  5. The Many Faces of Latency
  6. Fun simulation of a Chain in Android
  7. Presentation on Wireless Technologies – Part 1
  8. yorkr crashes the IPL party ! – Part 1

To see all posts click Index of posts

My book ‘Practical Machine Learning in R and Python: Third edition’ on Amazon

Are you wondering whether to get into the ‘R’ bus or ‘Python’ bus?
My suggestion is to you is “Why not get into the ‘R and Python’ train?”

The third edition of my book ‘Practical Machine Learning with R and Python – Machine Learning in stereo’ is now available in both paperback ($12.99) and kindle ($8.99/Rs449) versions.  In the third edition all code sections have been re-formatted to use the fixed width font ‘Consolas’. This neatly organizes output which have columns like confusion matrix, dataframes etc to be columnar, making the code more readable.  There is a science to formatting too!! which improves the look and feel. It is little wonder that Steve Jobs had a keen passion for calligraphy! Additionally some typos have been fixed.

 

In this book I implement some of the most common, but important Machine Learning algorithms in R and equivalent Python code.
1. Practical machine with R and Python: Third Edition – Machine Learning in Stereo(Paperback-$12.99)
2. Practical machine with R and Python Third Edition – Machine Learning in Stereo(Kindle- $8.99/Rs449)

This book is ideal both for beginners and the experts in R and/or Python. Those starting their journey into datascience and ML will find the first 3 chapters useful, as they touch upon the most important programming constructs in R and Python and also deal with equivalent statements in R and Python. Those who are expert in either of the languages, R or Python, will find the equivalent code ideal for brushing up on the other language. And finally,those who are proficient in both languages, can use the R and Python implementations to internalize the ML algorithms better.

Here is a look at the topics covered

Table of Contents
Preface …………………………………………………………………………….4
Introduction ………………………………………………………………………6
1. Essential R ………………………………………………………………… 8
2. Essential Python for Datascience ……………………………………………57
3. R vs Python …………………………………………………………………81
4. Regression of a continuous variable ……………………………………….101
5. Classification and Cross Validation ………………………………………..121
6. Regression techniques and regularization ………………………………….146
7. SVMs, Decision Trees and Validation curves ………………………………191
8. Splines, GAMs, Random Forests and Boosting ……………………………222
9. PCA, K-Means and Hierarchical Clustering ………………………………258
References ……………………………………………………………………..269

Pick up your copy today!!
Hope you have a great time learning as I did while implementing these algorithms!

My book ‘Practical Machine Learning in R and Python: Second edition’ on Amazon

Note: The 3rd edition of this book is now available My book ‘Practical Machine Learning in R and Python: Third edition’ on Amazon

The third edition of my book ‘Practical Machine Learning with R and Python – Machine Learning in stereo’ is now available in both paperback ($12.99) and kindle ($9.99/Rs449) versions.  This second edition includes more content,  extensive comments and formatting for better readability.

In this book I implement some of the most common, but important Machine Learning algorithms in R and equivalent Python code.
1. Practical machine with R and Python: Third Edition – Machine Learning in Stereo(Paperback-$12.99)
2. Practical machine with R and Third Edition – Machine Learning in Stereo(Kindle- $9.99/Rs449)

This book is ideal both for beginners and the experts in R and/or Python. Those starting their journey into datascience and ML will find the first 3 chapters useful, as they touch upon the most important programming constructs in R and Python and also deal with equivalent statements in R and Python. Those who are expert in either of the languages, R or Python, will find the equivalent code ideal for brushing up on the other language. And finally,those who are proficient in both languages, can use the R and Python implementations to internalize the ML algorithms better.

Here is a look at the topics covered

Table of Contents
Preface …………………………………………………………………………….4
Introduction ………………………………………………………………………6
1. Essential R ………………………………………………………………… 8
2. Essential Python for Datascience ……………………………………………57
3. R vs Python …………………………………………………………………81
4. Regression of a continuous variable ……………………………………….101
5. Classification and Cross Validation ………………………………………..121
6. Regression techniques and regularization ………………………………….146
7. SVMs, Decision Trees and Validation curves ………………………………191
8. Splines, GAMs, Random Forests and Boosting ……………………………222
9. PCA, K-Means and Hierarchical Clustering ………………………………258
References ……………………………………………………………………..269

Pick up your copy today!!
Hope you have a great time learning as I did while implementing these algorithms!

My book ‘Practical Machine Learning with R and Python’ on Amazon

Note: The 3rd edition of this book is now available My book ‘Practical Machine Learning in R and Python: Third edition’ on Amazon

My book ‘Practical Machine Learning with R and Python: Second Edition – Machine Learning in stereo’ is now available in both paperback ($10.99) and kindle ($7.99/Rs449) versions. In this book I implement some of the most common, but important Machine Learning algorithms in R and equivalent Python code. This is almost like listening to parallel channels of music in stereo!
1. Practical machine with R and Python: Third Edition – Machine Learning in Stereo(Paperback-$12.99)
2. Practical machine with R and Python Third Edition – Machine Learning in Stereo(Kindle- $8.99/Rs449)
This book is ideal both for beginners and the experts in R and/or Python. Those starting their journey into datascience and ML will find the first 3 chapters useful, as they touch upon the most important programming constructs in R and Python and also deal with equivalent statements in R and Python. Those who are expert in either of the languages, R or Python, will find the equivalent code ideal for brushing up on the other language. And finally,those who are proficient in both languages, can use the R and Python implementations to internalize the ML algorithms better.

Here is a look at the topics covered

Table of Contents
Essential R …………………………………….. 7
Essential Python for Datascience ………………..   54
R vs Python ……………………………………. 77
Regression of a continuous variable ………………. 96
Classification and Cross Validation ……………….113
Regression techniques and regularization …………. 134
SVMs, Decision Trees and Validation curves …………175
Splines, GAMs, Random Forests and Boosting …………202
PCA, K-Means and Hierarchical Clustering …………. 234

Pick up your copy today!!
Hope you have a great time learning as I did while implementing these algorithms!

Inswinger: yorkr swings into International T20s

In this post I introduce ‘Inswinger’ an interactive Shiny app to analyze International T20 players, matches and teams. This app was a natural consequence to my earlier Shiny app ‘GooglyPlus’. Most of the structure for this app remained the same, I only had to work with a different dataset, so to speak.

The Googly Shiny app is based on my R package ‘yorkr’ which is now available in CRAN. The R package and hence this Shiny app is based on data from Cricsheet. Inswinger is based on the latest data dump from Cricsheet (Dec 2016) and includes all International T20 till then. There are a lot of new Internationation teams like Oman, Hong Kong, UAE, etc. In total there are 22 different International T20 teams in my Inswinger app.

The countries are a) Afghanistan b) Australia c) Bangladesh d) Bermuda e) Canada f) England g) Hong Kong h) India i) Ireland j) Kenya k) Nepal l) Netherlands m) New Zealand n) Oman o) Pakistan p) Papua New Guinea q) Scotland r) South Africa s) Sri Lanka t) United Arab Emirates u) West Indies v) Zimbabwe

If you are passionate about cricket, and love analyzing cricket performances, then check out my 2 racy books on cricket! In my books, I perform detailed yet compact analysis of performances of both batsmen, bowlers besides evaluating team & match performances in Tests , ODIs, T20s & IPL. You can buy my books on cricket from Amazon at $12.99 for the paperback and $4.99/$6.99 respectively for the kindle versions. The books can be accessed at Cricket analytics with cricketr  and Beaten by sheer pace-Cricket analytics with yorkr  A must read for any cricket lover! Check it out!!

1

 

My R package ‘yorkr’,  on which both these Shiny apps are based, has the ability to output either a dataframe or plot, depending on a parameter plot=TRUE or FALSE. Hence in the Inswinger Shiny app results can be displayed both as table or a plot depending on the choice of function.

Inswinger can do detailed analyses of a) Individual T20 batsman b) Individual T20 bowler c) Any T20 match d) Head to head confrontation between 2 T20 teams e) All matches of a T20 team against all other teams.

The Shiny app can be accessed at Inswinger

The code for Inswinger is available at Github. Feel free to clone/download/fork  the code from Inswinger

Based on the 5 detailed analysis domains there are 5 tabs
A) T20 Batsman: This tab can be used to perform analysis of all T20 batsman. If a batsman has played in more than 1 team, then the overall performance is considered. There are 10 functions for the T20 Batsman. They are shown below
– Batsman Runs vs. Deliveries
– Batsman’s Fours & Sixes
– Dismissals of batsman
– Batsman’s Runs vs Strike Rate
– Batsman’s Moving Average
– Batsman’s Cumulative Average Run
– Batsman’s Cumulative Strike Rate
– Batsman’s Runs against Opposition
– Batsman’s Runs at Venue
– Predict Runs of batsman

B) T20 Bowler: This tab can be used to analyze individual T20 bowlers. The functions handle T20 bowlers who have played in more than 1 T20 team.
– Mean Economy Rate of bowler
– Mean runs conceded by bowler
– Bowler’s Moving Average
– Bowler’s Cumulative Avg. Wickets
– Bowler’s Cumulative Avg. Economy Rate
– Bowler’s Wicket Plot
– Bowler’s Wickets against opposition
– Bowler’s Wickets at Venues
– Bowler’s wickets prediction

C) T20 match: This tab can be used for analyzing individual T20 matches. The available functions are
– Match Batting Scorecard – Table
– Batting Partnerships – Plot, Table
– Batsmen vs Bowlers – Plot, Table
– Match Bowling Scorecard   – Table
– Bowling Wicket Kind – Plot, Table
– Bowling Wicket Runs – Plot, Table
– Bowling Wicket Match – Plot, Table
– Bowler vs Batsmen – Plot, Table
– Match Worm Graph – Plot

D) Head to head: This tab can be used for analyzing head-to-head confrontations, between any 2 T20 teams for e.g. all matches between India vs Australia or West Indies vs Sri Lanka . The available functions are
-Team Batsmen Batting Partnerships All Matches – Plot, Table {Summary and Detailed}
-Team Batting Scorecard All Matches – Table
-Team Batsmen vs Bowlers all Matches – Plot, Table
-Team Wickets Opposition All Matches – Plot, Table
-Team Bowling Scorecard All Matches – Table
-Team Bowler vs Batsmen All Matches – Plot, Table
-Team Bowlers Wicket Kind All Matches – Plot, Table
-Team Bowler Wicket Runs All Matches – Plot, Table
– Win Loss All Matches – Plot

E) T20 team’s overall performance: this tab can be used analyze the overall performance of any T20 team. For this analysis all matches played by this team is considered. The available functions are
-Team Batsmen Partnerships Overall – Plot, Table {Summary and Detailed)}
-Team Batting Scorecard Overall –Table
-Team Batsmen vs Bowlers Overall – Plot, Table
-Team Bowler vs Batsmen Overall – Plot, Table
-Team Bowling Scorecard Overall – Table
-Team Bowler Wicket Kind Overall – Plot, Table

Below I include a random set of charts that are generated in each of the 5 tabs
A. IPL Batsman
a. Shakib-al-Hassan (Bangladesh) :  Runs vs Deliveries
untitled

b. Virat Kohli (India) – Cumulative Average
untitled

c.  AB Devilliers (South Africa) – Runs at venues
untitled

d. Glenn Maxwell (Australia)  – Predict runs vs deliveries faces
untitled

B. IPL Bowler
a. TG Southee (New Zealand) – Mean Economy Rate vs overs
untitled

b) DJ Bravo – Moving Average of wickets
untitled

c) AC Evans (Scotland) – Bowler Wickets Against Opposition
untitled

C.T20 Match
a. Match Score (Afghanistan vs Canada, 2012-03-18)
untitled

b)  Match batting partnerships (Plot) Hong Kong vs Oman (2015-11-21), Hong Kong
Hong Kong Partnerships
untitled

c) Match batting partnerships (Table) – Ireland vs Scotland(2012-03-18, Ireland)
Batting partnership can also be displayed as a table
untitled

d) Batsmen vs Bowlers (Plot) – India vs England (2012-12-22)
untitled

e) Match Worm Chart – Sri Lanka vs Pakistan (2015-08-01)
untitled

D.Head to head
a) Team Batsmen Partnership (Plot) – India vs Australia (all matches)
Virat Kohli has the highest total runs in partnerships against Australia
untitled

b)  Team Batsmen Partnership (Summary – Table) – Kenya vs Bangladesh
untitled

c) Team Bowling Scorecard (Table only) India vs South Africa all Matches
untitled

d) Wins- Losses New Zealand vs West Indies all Matches
untitled

C) Overall performances
a) Batting Scorecard All Matches  (Table only) – England’s overall batting performance
Eoin Morgan, Kevin Pieterson  & SJ Taylor have the best performance
untitled

b) Batsman vs Bowlers all Matches (Plot)
India’s best performing batsman (Rank=1) is Virat Kohli
untitled

c)  Batsman vs Bowlers all Matches (Table)
The plot above for Virat Kohli can also be displayed as a table. Kohli has score most runs DJ Bravo, SR Watson & Shahid Afridi
untitled

The Inswinger Shiny app can be accessed at Inswinger. Give it a swing!

The code for Inswinger is available at Github. Feel free to clone/download/fork  the code from Inswinger

Also see my other Shiny apps
1.GooglyPlus
2.What would Shakespeare say?
3.Sixer
4.Revisiting crimes against women in India

You may also like
1. Neural Networks: The mechanics of backpropagation
A primer on Qubits, Quantum gates and Quantum Operation
2. Re-working the Lucy Richardson algorithm in OpenCV
3.Design Principles of Scalable, Distributed Systems
4.Spicing up a IBM Bluemix cloud app with MongoDB and NodeExpress
5.Programming languages in layman’s language
7.Re-introducing cricketr! : An R package to analyze performances of cricketers

To see all posts take at a look at Index of Posts

yorkr pads up for the Twenty20s: Part 1- Analyzing team”s match performance

There are two ways of constructing a software design: One way is to make it so simple that there are obviously no deficiencies and the other way is to make it so complicated that there are no obvious deficiencies.

      C.A.R. Hoare, The 1980 ACM Turing Award LectureOne of my most productive days was throwing away 1000 lines of code.
      Ken Thompson

Debugging is twice as hard as writing the code in the first place. Therefore, if you write the code as cleverly as possible, you are, by definition, not smart enough to debug it.

      Brian W. Kernighan and P. J. Plauger in The Elements of Programming Style.
      

“If debugging is the process of removing software bugs, then programming must be the process of putting them in.”

      Edsger Dijkstra

Introduction

In this post I have added functions to my R package ‘yorkr’ that will allow for analysis of Twenty20 matches. yorkr is already available in CRAN and the Twenty20 functionality will be available with yorkr_0.0.4. This package is based on data from Cricsheet. I have now added functionality to perform analysis of T20 matches in addition the existing functionality for analysing ODI matches

The yorkr package provides functions to convert the yaml files to more easily R consumable entities, namely dataframes. In fact all ODI & T20 matches have already been converted and are available for use at yorkrData. However you will have to convert any new matches added to Cricsheet. Also note that there is a file called ’convertedFiles” which will give the details of the original match file and its corresponding converted file.

If you are passionate about cricket, and love analyzing cricket performances, then check out my 2 racy books on cricket! In my books, I perform detailed yet compact analysis of performances of both batsmen, bowlers besides evaluating team & match performances in Tests , ODIs, T20s & IPL. You can buy my books on cricket from Amazon at $12.99 for the paperback and $4.99/$6.99 respectively for the kindle versions. The books can be accessed at Cricket analytics with cricketr  and Beaten by sheer pace-Cricket analytics with yorkr  A must read for any cricket lover! Check it out!!

1

 

This post can be viewed at RPubs at yorkrT20-Part1 or can also be downloaded as a PDF document yorkrT20-1.pdf

Checkout my interactive Shiny apps GooglyPlus (plots & tables) and Googly (only plots) which can be used to analyze IPL players, teams and matches.

Note: To do similar analysis you can use my yorkrT20templates. See my post Analysis of International T20 matches with yorkr templates

Important note 1: Do check out all the posts on the python avatar of yorkr, namely ‘yorkpy’ in my post ‘Pitching yorkpy … short of good length to IPL – Part 1

2. Install the package from CRAN

library(yorkr)
rm(list=ls())

2a. New functionality for Twenty20

I had to create 2 new functions had to be created for converting Twenty20 yaml files to RData. They are

  1. convertYaml2RDataframeT20
  2. convertAllYaml2RDataframesT20

Note: Most of the existing functions created for ODI matches, also work with the converted T20 RData files, as can be seen below.

3. Convert and save T20 yaml file to dataframe

This function will convert a T20 yaml file in the format as specified in Cricsheet to dataframe. This will be saved as as RData file in the target directory. The name of the file wil have the following format team1-team2-date.RData. An example of how a yaml file can be converted to a dataframe and saved is shown below.

#Available in yorkr_0.0.4
convertYaml2RDataframeT20("211028.yaml",".",".") 
## [1] "./211028.yaml"
## [1] "first loop"
## [1] "second loop"

4. Convert and save all T20 yaml files to dataframes

This function will convert all T20 yaml files from a source directory to dataframes, and save it in the target directory, with the names as mentioned above. Since I have already done this, I will not be executing this again. You can download the zip of all the converted RData files from Github at T20-matches

#Available from yorkr_0.0.4
#convertAllYaml2RDataframesT20("./t20s","./data")

5. yorkrData – A Github repositiory

Cricsheet had a total of 458 Twenty20 matches. Out of which 5 files seemed to have problem. The remaining 453 T20 matches have been converted to RData.

All the converted RData files can be accessed from my Github link yorkrData under the folder T20-matches

You can download the the zip of the files and use it directly in the functions as follows

6. Load the match data as dataframes

For this post I will be using the Twenty20 match data from 5 random matches between 10 different opposing teams/countries. For this I will directly use the converted RData files rather than getting the data through the getMatchDetails() as shown below

With the RData we can load the data in 2 ways

A. With getMatchDetails()

  1. With getMatchDetails() using the 2 teams and the date on which the match occured
afg_ire <- getMatchDetails("Afghanistan","Ireland","2010-02-09",dir="../../data")
dim(afg_ire)
## [1] 245  25

or

B.Directly load RData into your code.

The match details will be loaded into a dataframe called ’overs’ which you can assign to a suitable name as below

The randomly selected matches are

  • Australia vs India – 2007-09-22
  • England vs New Zealand – 2012-09-29
  • Pakistan vs South Africa – 2010-10-26
  • Sri Lanka vs West Indioes -2012-10-07
  • Bangladesh vs Zimbabwe -2016-01-15
load("../../data/Australia-India-2007-09-22.RData")
aus_ind <- overs
load("../../data/England-New Zealand-2012-09-29.RData")
eng_nz <- overs
load("../../data/Pakistan-South Africa-2010-10-26.RData")
pak_sa <- overs
load("../../data/Sri Lanka-West Indies-2012-10-07.RData")
sl_wi<- overs
load("../../data/Bangladesh-Zimbabwe-2016-01-15.RData")
ban_zim <- overs

7. Team batting scorecard

Compute and display the batting scorecard of the teams in the T20 match. The top batsmen in are Yuvraj Singh(Ind), ML Hayden(Aus), JP Duminy(SA) and Jayawardene(SL)

teamBattingScorecardMatch(aus_ind,'India')
## Total= 181
## Source: local data frame [7 x 5]
## 
##        batsman ballsPlayed fours sixes  runs
##         (fctr)       (int) (dbl) (dbl) (dbl)
## 1    G Gambhir          25     4     0    24
## 2     V Sehwag          12     1     0     9
## 3   RV Uthappa          27     1     3    34
## 4 Yuvraj Singh          30     5     5    70
## 5     MS Dhoni          18     4     1    36
## 6    RG Sharma           5     0     1     8
## 7    IK Pathan          NA     0     0     0
teamBattingScorecardMatch(aus_ind,'Australia')
## Total= 165
## Source: local data frame [9 x 5]
## 
##        batsman ballsPlayed fours sixes  runs
##         (fctr)       (int) (dbl) (dbl) (dbl)
## 1 AC Gilchrist          13     2     2    22
## 2    ML Hayden          44     4     4    62
## 3     BJ Hodge          10     0     1    11
## 4    A Symonds          26     3     2    43
## 5   MEK Hussey          12     0     1    13
## 6    MJ Clarke           3     0     0     3
## 7    BJ Haddin           7     0     0     5
## 8        B Lee           2     0     0     2
## 9   MG Johnson           1     1     0     4
teamBattingScorecardMatch(pak_sa,'South Africa')
## Total= 115
## Source: local data frame [6 x 5]
## 
##          batsman ballsPlayed fours sixes  runs
##           (fctr)       (int) (dbl) (dbl) (dbl)
## 1       GC Smith          12     3     0    13
## 2      LE Bosman           4     0     0     2
## 3 AB de Villiers           3     0     0     0
## 4      JP Duminy          45     5     0    41
## 5      CA Ingram          38     4     2    46
## 6      DA Miller           5     3     0    13
teamBattingScorecardMatch(sl_wi,'Sri Lanka')
## Total= 98
## Source: local data frame [10 x 5]
## 
##             batsman ballsPlayed fours sixes  runs
##              (fctr)       (int) (dbl) (dbl) (dbl)
## 1  DPMD Jayawardene          36     2     0    33
## 2        TM Dilshan           2     0     0     0
## 3     KC Sangakkara          26     2     0    22
## 4        AD Mathews           5     0     0     1
## 5       BMAJ Mendis           3     0     0     3
## 6       NLTC Perera           5     0     0     3
## 7   HDRL Thirimanne           7     0     0     4
## 8   KMDN Kulasekara          12     3     1    26
## 9        SL Malinga          12     0     0     5
## 10       BAW Mendis           2     0     0     1

8. Plot the team batting partnerships

The functions below plot the team batting partnetship in the T20 match Note: Many of the plots include an additional parameters plot which is either TRUE or FALSE. The default value is plot=TRUE. When plot=TRUE the plot will be displayed. When plot=FALSE the data frame will be returned to the user. The user can use this to create an interactive chary using one of th epackages like rcharts, ggvis,googleVis or plotly.

teamBatsmenPartnershipMatch(pak_sa,"Pakistan","South Africa")

batsmenPartnership-1

teamBatsmenPartnershipMatch(eng_nz,"New Zealand","England",plot=TRUE)

batsmenPartnership-2

teamBatsmenPartnershipMatch(ban_zim,"Bangladesh","Zimbabwe",plot=FALSE)
##            batsman      nonStriker runs
## 1      Tamim Iqbal   Soumya Sarkar   19
## 2      Tamim Iqbal   Sabbir Rahman   10
## 3    Soumya Sarkar     Tamim Iqbal    7
## 4    Sabbir Rahman     Tamim Iqbal   15
## 5    Sabbir Rahman   Shuvagata Hom   10
## 6    Sabbir Rahman Mushfiqur Rahim   21
## 7    Shuvagata Hom   Sabbir Rahman    6
## 8  Mushfiqur Rahim   Sabbir Rahman   23
## 9  Mushfiqur Rahim Shakib Al Hasan    3
## 10 Shakib Al Hasan Mushfiqur Rahim    4
## 11 Shakib Al Hasan     Mahmudullah    5
## 12 Shakib Al Hasan     Nurul Hasan   11
## 13     Mahmudullah Shakib Al Hasan    7
## 14     Nurul Hasan Shakib Al Hasan    7
teamBatsmenPartnershipMatch(aus_ind,"India","Australia",plot=TRUE)

batsmenPartnership-3

9. Batsmen vs Bowler

The function below computes and plots the performances of the batsmen vs the bowlers. As before the plot parameter can be set to TRUE or FALSE. By default it is plot=TRUE

teamBatsmenVsBowlersMatch(pak_sa,'Pakistan',"South Africa",plot=TRUE)

batsmenVsBowler-1

teamBatsmenVsBowlersMatch(aus_ind,'Australia',"India",plot=TRUE)

batsmenVsBowler-2

teamBatsmenVsBowlersMatch(ban_zim,'Zimbabwe',"Bangladesh",plot=TRUE)

batsmenVsBowler-3

m <- teamBatsmenVsBowlersMatch(sl_wi,'West Indies',"Sri Lanka",plot=FALSE)
m
## Source: local data frame [25 x 3]
## Groups: batsman [?]
## 
##       batsman          bowler runsConceded
##        (fctr)          (fctr)        (dbl)
## 1   J Charles      AD Mathews            0
## 2  MN Samuels      AD Mathews            8
## 3  MN Samuels KMDN Kulasekara            5
## 4  MN Samuels      SL Malinga           39
## 5  MN Samuels      BAW Mendis            7
## 6  MN Samuels     A Dananjaya            4
## 7  MN Samuels     BMAJ Mendis           15
## 8    CH Gayle      AD Mathews            0
## 9    CH Gayle KMDN Kulasekara            1
## 10   CH Gayle      SL Malinga            2
## ..        ...             ...          ...

10. Bowling Scorecard

This function provides the bowling performance, the number of overs bowled, maidens, runs conceded and wickets taken for each match

teamBowlingScorecardMatch(eng_nz,'England')
## Source: local data frame [5 x 5]
## 
##       bowler overs maidens  runs wickets
##       (fctr) (int)   (int) (dbl)   (dbl)
## 1  DR Briggs     4       0    36       1
## 2    ST Finn     4       0    16       3
## 3 TT Bresnan     4       0    29       1
## 4   GP Swann     4       0    20       1
## 5  SCJ Broad     4       0    37       0
teamBowlingScorecardMatch(eng_nz,'New Zealand')
## Source: local data frame [7 x 5]
## 
##          bowler overs maidens  runs wickets
##          (fctr) (int)   (int) (dbl)   (dbl)
## 1      KD Mills     4       0    23       1
## 2    TG Southee     2       0    32       0
## 3    DL Vettori     4       0    20       1
## 4   NL McCullum     4       0    22       1
## 5      RJ Nicol     3       0    29       0
## 6  JEC Franklin     1       0    12       0
## 7 DAJ Bracewell     1       0     8       1
teamBowlingScorecardMatch(aus_ind,'Australia')
## Source: local data frame [6 x 5]
## 
##       bowler overs maidens  runs wickets
##       (fctr) (int)   (int) (dbl)   (dbl)
## 1      B Lee     4       0    25       0
## 2 NW Bracken     4       0    38       0
## 3   SR Clark     4       0    38       0
## 4 MG Johnson     4       0    31       4
## 5  A Symonds     3       0    37       0
## 6  MJ Clarke     1       0    13       1

11. Wicket Kind

The plots below provide the bowling kind of wicket taken by the bowler (caught, bowled, lbw etc.)

teamBowlingWicketKindMatch(aus_ind,"India","Australia")

bowlingWicketKind-1

teamBowlingWicketKindMatch(aus_ind,"Australia","India")

bowlingWicketKind-2

teamBowlingWicketKindMatch(pak_sa,"South Africa","Pakistan")

bowlingWicketKind-3

m <-teamBowlingWicketKindMatch(sl_wi,"Sri Lanka","West Indies",plot=FALSE)
m
##            bowler wicketKind wicketPlayerOut runs
## 1      AD Mathews     caught       J Charles   11
## 2      BAW Mendis        lbw        CH Gayle   12
## 3      BAW Mendis        lbw        DJ Bravo   12
## 4      BAW Mendis     caught      KA Pollard   12
## 5      BAW Mendis        lbw      AD Russell   12
## 6     A Dananjaya     caught      MN Samuels   16
## 7 KMDN Kulasekara   noWicket        noWicket   22
## 8      SL Malinga   noWicket        noWicket   54
## 9     BMAJ Mendis   noWicket        noWicket   20

12. Wicket vs Runs conceded

The plots below provide the wickets taken and the runs conceded by the bowler in the match

teamBowlingWicketRunsMatch(pak_sa,"Pakistan","South Africa")

wicketRuns-1

teamBowlingWicketRunsMatch(aus_ind,"Australia","India")

wicketRuns-2

m <-teamBowlingWicketRunsMatch(sl_wi,"West Indies","Sri Lanka",plot=FALSE)
m
## Source: local data frame [6 x 5]
## 
##       bowler overs maidens  runs wickets
##       (fctr) (int)   (int) (dbl)   (chr)
## 1   S Badree     4       0    24       1
## 2  R Rampaul     3       0    31       1
## 3 MN Samuels     4       0    15       2
## 4   CH Gayle     2       0    14       0
## 5  SP Narine     4       1     9       4
## 6  DJG Sammy     2       0     6       2

13. Wickets taken by bowler

The plots provide the wickets taken by the bowler

m <-teamBowlingWicketMatch(eng_nz,'England',"New Zealand",plot=FALSE)
m
##       bowler wicketKind wicketPlayerOut runs
## 1    ST Finn        lbw      MJ Guptill   16
## 2    ST Finn     caught     BB McCullum   16
## 3   GP Swann     caught        RJ Nicol   20
## 4  DR Briggs     caught   KS Williamson   36
## 5    ST Finn     caught     LRPL Taylor   16
## 6 TT Bresnan    run out    JEC Franklin   29
## 7  SCJ Broad   noWicket        noWicket   37
teamBowlingWicketMatch(sl_wi,"Sri Lanka","West Indies")

bowlingWickets-1

teamBowlingWicketMatch(eng_nz,"New Zealand","England")

bowlingWickets-2

14. Bowler Vs Batsmen

The functions compute and display how the different bowlers of the country performed against the batting opposition.

teamBowlersVsBatsmenMatch(ban_zim,"Bangladesh","Zimbabwe")

bowlerVsBatsmen-1

teamBowlersVsBatsmenMatch(aus_ind,"India","Australia")

bowlerVsBatsmen-2

teamBowlersVsBatsmenMatch(eng_nz,"England","New Zealand")

bowlerVsBatsmen-3

m <- teamBowlersVsBatsmenMatch(pak_sa,"Pakistan","South Africa",plot=FALSE)
m
## Source: local data frame [19 x 3]
## Groups: bowler [?]
## 
##             bowler        batsman runsConceded
##             (fctr)         (fctr)        (dbl)
## 1    Shoaib Akhtar       GC Smith            5
## 2    Shoaib Akhtar      LE Bosman            1
## 3    Shoaib Akhtar AB de Villiers            0
## 4    Shoaib Akhtar      JP Duminy            8
## 5    Shoaib Akhtar      CA Ingram           11
## 6    Shoaib Akhtar      DA Miller            4
## 7     Abdul Razzaq       GC Smith            8
## 8     Abdul Razzaq      LE Bosman            1
## 9     Abdul Razzaq      CA Ingram            1
## 10    Abdul Razzaq      DA Miller            9
## 11 Mohammad Hafeez       GC Smith            0
## 12 Mohammad Hafeez      JP Duminy            7
## 13 Mohammad Hafeez      CA Ingram            3
## 14        Umar Gul      JP Duminy            6
## 15        Umar Gul      CA Ingram           11
## 16     Saeed Ajmal      JP Duminy           10
## 17     Saeed Ajmal      CA Ingram            7
## 18   Shahid Afridi      JP Duminy           10
## 19   Shahid Afridi      CA Ingram           13

15. Match worm graph

The plots below provide the match worm graph for the Twenty 20 matches

matchWormGraph(aus_ind,'Australia',"India")

matchWorm-1

matchWormGraph(sl_wi,'Sri Lanka',"West Indies")

matchWorm-2

Conclusion

This post included all functions between 2 opposing countries from the package yorkr for Twenty20 matches.As mentioned above the yaml match files have been already converted to dataframes and are available for download from Github. Go ahead and give it a try

To be continued. Watch this space!

Important note: Do check out my other posts using yorkr at yorkr-posts

 

You may also like

  1. Introducing cricketr! : An R package to analyze performances of cricketers
  2. Cricket analytics with cricketr
  3. Introducing cricket package yorkr-Part1:Beaten by sheer pace!.
  4. What’s up Watson? Using IBM Watson’s QAAPI with Bluemix, NodeExpress
  5. Introducing cricket package yorkr: Part 3-Foxed by flight!
  6. Natural language processing: What would Shakespeare say?
  7. Experiment with deblurring using OpenCV
  8. Unravelling the mysteries of life
  9. Presentation on “Intelligent Networks, CAMEL protocol, services & applications”

Introducing cricket package yorkr:Part 4-In the block hole!

Introduction

“The nitrogen in our DNA, the calcium in our teeth, the iron in our blood, the carbon in our apple pies were made in the interiors of collapsing stars. We are made of starstuff.”

“If you wish to make an apple pie from scratch, you must first invent the universe.”

“We are like butterflies who flutter for a day and think it is forever.”

“The absence of evidence is not the evidence of absence.”

“We are star stuff which has taken its destiny into its own hands.”

                              Cosmos - Carl Sagan

This post is the 4th and possibly, the last part of my introduction, to my latest cricket package yorkr. This is the 4th part of the introduction, the 3 earlier ones were

  1. Introducing cricket package yorkr-Part1:Beaten by sheer pace!.
  2. Introducing cricket package yorkr: Part 2-Trapped leg before wicket!
  3. Introducing cricket package yorkr: Part 3-Foxed by flight!

The 1st part included functions dealing with a specific match, the 2nd part dealt with functions between 2 opposing teams. The 3rd part dealt with functions between a team and all matches with all oppositions. This 4th part includes individual batting and bowling performances in ODI matches and deals with Class 4 functions.

If you are passionate about cricket, and love analyzing cricket performances, then check out my 2 racy books on cricket! In my books, I perform detailed yet compact analysis of performances of both batsmen, bowlers besides evaluating team & match performances in Tests , ODIs, T20s & IPL. You can buy my books on cricket from Amazon at $12.99 for the paperback and $4.99/$6.99 respectively for the kindle versions. The books can be accessed at Cricket analytics with cricketr  and Beaten by sheer pace-Cricket analytics with yorkr  A must read for any cricket lover! Check it out!!

1

d $4.99/Rs 320 and $6.99/Rs448 respectively

 

This post has also been published at RPubs yorkr-Part4 and can also be downloaded as a PDF document from yorkr-Part4.pdf.

You can clone/fork the code for the package yorkr from Github at yorkr-package

Checkout my interactive Shiny apps GooglyPlus (plots & tables) and Googly (only plots) which can be used to analyze IPL players, teams and matches.

Important note 1: Do check out all the posts on the python avatar of yorkr, namely ‘yorkpy’ in my post ‘Pitching yorkpy … short of good length to IPL – Part 1

Batsman functions

  1. batsmanRunsVsDeliveries
  2. batsmanFoursSixes
  3. batsmanDismissals
  4. batsmanRunsVsStrikeRate
  5. batsmanMovingAverage
  6. batsmanCumulativeAverageRuns
  7. batsmanCumulativeStrikeRate
  8. batsmanRunsAgainstOpposition
  9. batsmanRunsVenue
  10. batsmanRunsPredict

Bowler functions

  1. bowlerMeanEconomyRate
  2. bowlerMeanRunsConceded
  3. bowlerMovingAverage
  4. bowlerCumulativeAvgWickets
  5. bowlerCumulativeAvgEconRate
  6. bowlerWicketPlot
  7. bowlerWicketsAgainstOpposition
  8. bowlerWicketsVenue
  9. bowlerWktsPredict

Note: The yorkr package in its current avatar only supports ODI, T20 and IPL T20 matches.

library(yorkr)
library(gridExtra)
library(rpart.plot)
library(dplyr)
library(ggplot2)
rm(list=ls())

A. Batsman functions

1. Get Team Batting details

The function below gets the overall team batting details based on the RData file available in ODI matches. This is currently also available in Github at (https://github.com/tvganesh/yorkrData/tree/master/ODI/ODI-matches).  However you may have to do this as future matches are added! The batting details of the team in each match is created and a huge data frame is created by rbinding the individual dataframes. This can be saved as a RData file

setwd("C:/software/cricket-package/york-test/yorkrData/ODI/ODI-matches")
india_details <- getTeamBattingDetails("India",dir=".", save=TRUE)
dim(india_details)
## [1] 11085    15
sa_details <- getTeamBattingDetails("South Africa",dir=".",save=TRUE)
dim(sa_details)
## [1] 6375   15
nz_details <- getTeamBattingDetails("New Zealand",dir=".",save=TRUE)
dim(nz_details)
## [1] 6262   15
eng_details <- getTeamBattingDetails("England",dir=".",save=TRUE)
dim(eng_details)
## [1] 9001   15

2. Get batsman details

This function is used to get the individual batting record for a the specified batsmen of the country as in the functions below. For analyzing the batting performances the following cricketers have been chosen

  1. Virat Kohli (Ind)
  2. M S Dhoni (Ind)
  3. AB De Villiers (SA)
  4. Q De Kock (SA)
  5. J Root (Eng)
  6. M J Guptill (NZ)
setwd("C:/software/cricket-package/york-test/yorkrData/ODI/ODI-matches")
kohli <- getBatsmanDetails(team="India",name="Kohli",dir=".")
## [1] "./India-BattingDetails.RData"
dhoni <- getBatsmanDetails(team="India",name="Dhoni")
## [1] "./India-BattingDetails.RData"
devilliers <-  getBatsmanDetails(team="South Africa",name="Villiers",dir=".")
## [1] "./South Africa-BattingDetails.RData"
deKock <-  getBatsmanDetails(team="South Africa",name="Kock",dir=".")
## [1] "./South Africa-BattingDetails.RData"
root <-  getBatsmanDetails(team="England",name="Root",dir=".")
## [1] "./England-BattingDetails.RData"
guptill <-  getBatsmanDetails(team="New Zealand",name="Guptill",dir=".")
## [1] "./New Zealand-BattingDetails.RData"

3. Runs versus deliveries

Kohli, De Villiers and Guptill have a good cluster of points that head towards 150 runs at 150 deliveries.

p1 <-batsmanRunsVsDeliveries(kohli,"Kohli")
p2 <- batsmanRunsVsDeliveries(dhoni, "Dhoni")
p3 <- batsmanRunsVsDeliveries(devilliers,"De Villiers")
p4 <- batsmanRunsVsDeliveries(deKock,"Q de Kock")
p5 <- batsmanRunsVsDeliveries(root,"JE Root")
p6 <- batsmanRunsVsDeliveries(guptill,"MJ Guptill")
grid.arrange(p1,p2,p3,p4,p5,p6, ncol=3)

runsVsDeliveries-1

4. Batsman Total runs, Fours and Sixes

The plots below show the total runs, fours and sixes by the batsmen

kohli46 <- select(kohli,batsman,ballsPlayed,fours,sixes,runs)
p1 <- batsmanFoursSixes(kohli46,"Kohli")
dhoni46 <- select(dhoni,batsman,ballsPlayed,fours,sixes,runs)
p2 <- batsmanFoursSixes(dhoni46,"Dhoni")
devilliers46 <- select(devilliers,batsman,ballsPlayed,fours,sixes,runs)
p3 <- batsmanFoursSixes(devilliers46, "De Villiers")
deKock46 <- select(deKock,batsman,ballsPlayed,fours,sixes,runs)
p4 <- batsmanFoursSixes(deKock46,"Q de Kock")
root46 <- select(root,batsman,ballsPlayed,fours,sixes,runs)
p5 <- batsmanFoursSixes(root46,"JE Root")
guptill46 <- select(guptill,batsman,ballsPlayed,fours,sixes,runs)
p6 <- batsmanFoursSixes(guptill46,"MJ Guptill")
grid.arrange(p1,p2,p3,p4,p5,p6, ncol=3)

foursSixes-1

5. Batsman dismissals

The type of dismissal for each batsman is shown below

p1 <-batsmanDismissals(kohli,"Kohli")
p2 <- batsmanDismissals(dhoni, "Dhoni")
p3 <- batsmanDismissals(devilliers, "De Villiers")
p4 <- batsmanDismissals(deKock,"Q de Kock")
p5 <- batsmanDismissals(root,"JE Root")
p6 <- batsmanDismissals(guptill,"MJ Guptill")
grid.arrange(p1,p2,p3,p4,p5,p6, ncol=3)

dismissal-1

6. Runs versus Strike Rate

De villiers has the best strike rate among all as there are more points to the right side of the plot for the same runs. Kohli and Dhoni do well too. Q De Kock and Joe Root also have a very good spread of points though they have fewer innings.

p1 <-batsmanRunsVsStrikeRate(kohli,"Kohli")
p2 <- batsmanRunsVsStrikeRate(dhoni, "Dhoni")
p3 <- batsmanRunsVsStrikeRate(devilliers, "De Villiers")
p4 <- batsmanRunsVsStrikeRate(deKock,"Q de Kock")
p5 <- batsmanRunsVsStrikeRate(root,"JE Root")
p6 <- batsmanRunsVsStrikeRate(guptill,"MJ Guptill")
grid.arrange(p1,p2,p3,p4,p5,p6, ncol=3)

runsSR-1

7. Batsman moving average

Kohli’s average is on a gentle increase from below 50 to around 60’s. Joe Root performance is impressive with his moving average of late tending towards the 70’s. Q De Kock seemed to have a slump around 2015 but his performance is on the increase. Devilliers consistently averages around 50. Dhoni also has been having a stable run in the last several years.

p1 <-batsmanMovingAverage(kohli,"Kohli")
p2 <- batsmanMovingAverage(dhoni, "Dhoni")
p3 <- batsmanMovingAverage(devilliers, "De Villiers")
p4 <- batsmanMovingAverage(deKock,"Q de Kock")
p5 <- batsmanMovingAverage(root,"JE Root")
p6 <- batsmanMovingAverage(guptill,"MJ Guptill")
grid.arrange(p1,p2,p3,p4,p5,p6, ncol=3)

ma-1

8. Batsman cumulative average

The functions below provide the cumulative average of runs scored. As can be seen Kohli and Devilliers have a cumulative runs rate that averages around 48-50. Q De Kock seems to have had a rocky career with several highs and lows as the cumulative average oscillates between 45-40. Root steadily improves to a cumulative average of around 42-43 from his 50th innings

p1 <-batsmanCumulativeAverageRuns(kohli,"Kohli")
p2 <- batsmanCumulativeAverageRuns(dhoni, "Dhoni")
p3 <- batsmanCumulativeAverageRuns(devilliers, "De Villiers")
p4 <- batsmanCumulativeAverageRuns(deKock,"Q de Kock")
p5 <- batsmanCumulativeAverageRuns(root,"JE Root")
p6 <- batsmanCumulativeAverageRuns(guptill,"MJ Guptill")
grid.arrange(p1,p2,p3,p4,p5,p6, ncol=3)

cAvg-1

9. Cumulative Average Strike Rate

The plots below show the cumulative average strike rate of the batsmen. Dhoni and Devilliers have the best cumulative average strike rate of 90%. The rest average around 80% strike rate. Guptill shows a slump towards the latter part of his career.

p1 <-batsmanCumulativeStrikeRate(kohli,"Kohli")
p2 <- batsmanCumulativeStrikeRate(dhoni, "Dhoni")
p3 <- batsmanCumulativeStrikeRate(devilliers, "De Villiers")
p4 <- batsmanCumulativeStrikeRate(deKock,"Q de Kock")
p5 <- batsmanCumulativeStrikeRate(root,"JE Root")
p6 <- batsmanCumulativeStrikeRate(guptill,"MJ Guptill")
grid.arrange(p1,p2,p3,p4,p5,p6, ncol=3)

cSR-1

10. Batsman runs against opposition

Kohli’s best performances are against Australia, West Indies and Sri Lanka

batsmanRunsAgainstOpposition(kohli,"Kohli")

runsOppn1-1

batsmanRunsAgainstOpposition(dhoni, "Dhoni")

runsOppn2-1

Kohli’s best performances are against Australia, Pakistan and West Indies

batsmanRunsAgainstOpposition(devilliers, "De Villiers")

runsOppn3-1

Quentin de Kock average almost 100 runs against India and 75 runs against England

batsmanRunsAgainstOpposition(deKock, "Q de Kock")

runsOppn4-1

Root’s best performances are against South Africa, Sri Lanka and West Indies

batsmanRunsAgainstOpposition(root, "JE Root")

runsOppn5-1

batsmanRunsAgainstOpposition(guptill, "MJ Guptill")

runsOppn6-1

11. Runs at different venues

The plots below give the performances of the batsmen at different grounds.

batsmanRunsVenue(kohli,"Kohli")

runsVenue1-1

batsmanRunsVenue(dhoni, "Dhoni")

runsVenue2-1

batsmanRunsVenue(devilliers, "De Villiers")

runsVenue3-1

batsmanRunsVenue(deKock, "Q de Kock")

runsVenue4-1

batsmanRunsVenue(root, "JE Root")

runsVenue5-1

batsmanRunsVenue(guptill, "MJ Guptill")

runsVenue6-1

12. Predict number of runs to deliveries

The plots below use rpart classification tree to predict the number of deliveries required to score the runs in the leaf node. For e.g. Kohli takes 66 deliveries to score 64 runs and for higher number of deliveries scores around 115 runs. Devilliers needs

par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
batsmanRunsPredict(kohli,"Kohli")
batsmanRunsPredict(dhoni, "Dhoni")
batsmanRunsPredict(devilliers, "De Villiers")

runsPredict1,runsVenue1-1

par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
batsmanRunsPredict(deKock,"Q de Kock")
batsmanRunsPredict(root,"JE Root")
batsmanRunsPredict(guptill,"MJ Guptill")

runsPredict2,runsVenue1-1

B. Bowler functions

13. Get bowling details

The function below gets the overall team bowling details based on the RData file available in ODI matches. This is currently also available in Github at (https://github.com/tvganesh/yorkrData/tree/master/ODI/ODI-matches). The bowling details of the team in each match is created and a huge data frame is created by rbinding the individual dataframes. This can be saved as a RData file

setwd("C:/software/cricket-package/york-test/yorkrData/ODI/ODI-matches")
ind_bowling <- getTeamBowlingDetails("India",dir=".",save=TRUE)
dim(ind_bowling)
## [1] 7816   12
aus_bowling <- getTeamBowlingDetails("Australia",dir=".",save=TRUE)
dim(aus_bowling)
## [1] 9191   12
ban_bowling <- getTeamBowlingDetails("Bangladesh",dir=".",save=TRUE)
dim(ban_bowling)
## [1] 5665   12
sa_bowling <- getTeamBowlingDetails("South Africa",dir=".",save=TRUE)
dim(sa_bowling)
## [1] 3806   12
sl_bowling <- getTeamBowlingDetails("Sri Lanka",dir=".",save=TRUE)
dim(sl_bowling)
## [1] 3964   12

14. Get bowling details of the individual bowlers

This function is used to get the individual bowling record for a specified bowler of the country as in the functions below. For analyzing the bowling performances the following cricketers have been chosen

  1. R A Jadeja (Ind)
  2. Ravichander Ashwin (Ind)
  3. Mitchell Starc (Aus)
  4. Shakib Al Hasan (Ban)
  5. Ajantha Mendis (SL)
  6. Dale Steyn (SA)
jadeja <- getBowlerWicketDetails(team="India",name="Jadeja",dir=".")
ashwin <- getBowlerWicketDetails(team="India",name="Ashwin",dir=".")
starc <-  getBowlerWicketDetails(team="Australia",name="Starc",dir=".")
shakib <-  getBowlerWicketDetails(team="Bangladesh",name="Shakib",dir=".")
mendis <-  getBowlerWicketDetails(team="Sri Lanka",name="Mendis",dir=".")
steyn <-  getBowlerWicketDetails(team="South Africa",name="Steyn",dir=".")

15. Bowler Mean Economy Rate

Shakib Al Hassan is expensive in the 1st 3 overs after which he is very economical with a economy rate of 3-4. Starc, Steyn average around a ER of 4.0

p1<-bowlerMeanEconomyRate(jadeja,"RA Jadeja")
p2<-bowlerMeanEconomyRate(ashwin, "R Ashwin")
p3<-bowlerMeanEconomyRate(starc, "MA Starc")
p4<-bowlerMeanEconomyRate(shakib, "Shakib Al Hasan")
p5<-bowlerMeanEconomyRate(mendis, "A Mendis")
p6<-bowlerMeanEconomyRate(steyn, "D Steyn")
grid.arrange(p1,p2,p3,p4,p5,p6, ncol=3)

meanER-1

16. Bowler Mean Runs conceded

Ashwin is expensive around 6 & 7 overs

p1<-bowlerMeanRunsConceded(jadeja,"RA Jadeja")
p2<-bowlerMeanRunsConceded(ashwin, "R Ashwin")
p3<-bowlerMeanRunsConceded(starc, "M A Starc")
p4<-bowlerMeanRunsConceded(shakib, "Shakib Al Hasan")
p5<-bowlerMeanRunsConceded(mendis, "A Mendis")
p6<-bowlerMeanRunsConceded(steyn, "D Steyn")
grid.arrange(p1,p2,p3,p4,p5,p6, ncol=3)

meanRunsConceded-1

17. Bowler Moving average

RA jadeja and Mendis’ performance has dipped considerably, while Ashwin and Shakib have improving performances. Starc average around 4 wickets

p1<-bowlerMovingAverage(jadeja,"RA Jadeja")
p2<-bowlerMovingAverage(ashwin, "Ashwin")
p3<-bowlerMovingAverage(starc, "M A Starc")
p4<-bowlerMovingAverage(shakib, "Shakib Al Hasan")
p5<-bowlerMovingAverage(mendis, "Ajantha Mendis")
p6<-bowlerMovingAverage(steyn, "Dale Steyn")
grid.arrange(p1,p2,p3,p4,p5,p6, ncol=3)

bowlerMA-1

17. Bowler cumulative average wickets

Starc is clearly the most consistent performer with 3 wickets on an average over his career, while Jadeja averages around 2.0. Ashwin seems to have dropped from 2.4-2.0 wickets, while Mendis drops from high 3.5 to 2.2 wickets. The fractional wickets only show a tendency to take another wicket.

p1<-bowlerCumulativeAvgWickets(jadeja,"RA Jadeja")
p2<-bowlerCumulativeAvgWickets(ashwin, "Ashwin")
p3<-bowlerCumulativeAvgWickets(starc, "M A Starc")
p4<-bowlerCumulativeAvgWickets(shakib, "Shakib Al Hasan")
p5<-bowlerCumulativeAvgWickets(mendis, "Ajantha Mendis")
p6<-bowlerCumulativeAvgWickets(steyn, "Dale Steyn")
grid.arrange(p1,p2,p3,p4,p5,p6, ncol=3)

cumWkts-1

18. Bowler cumulative Economy Rate (ER)

The plots below are interesting. All of the bowlers seem to average around 4.5 runs/over. RA Jadeja’s ER improves and heads to 4.5, Mendis is seen to getting more expensive as his career progresses. From a ER of 3.0 he increases towards 4.5

p1<-bowlerCumulativeAvgEconRate(jadeja,"RA Jadeja")
p2<-bowlerCumulativeAvgEconRate(ashwin, "Ashwin")
p3<-bowlerCumulativeAvgEconRate(starc, "M A Starc")
p4<-bowlerCumulativeAvgEconRate(shakib, "Shakib Al Hasan")
p5<-bowlerCumulativeAvgEconRate(mendis, "Ajantha Mendis")
p6<-bowlerCumulativeAvgEconRate(steyn, "Dale Steyn")
grid.arrange(p1,p2,p3,p4,p5,p6, ncol=3)

cumER-1

19. Bowler wicket plot

The plot below gives the average wickets versus number of overs

p1<-bowlerWicketPlot(jadeja,"RA Jadeja")
p2<-bowlerWicketPlot(ashwin, "Ashwin")
p3<-bowlerWicketPlot(starc, "M A Starc")
p4<-bowlerWicketPlot(shakib, "Shakib Al Hasan")
p5<-bowlerWicketPlot(mendis, "Ajantha Mendis")
p6<-bowlerWicketPlot(steyn, "Dale Steyn")
grid.arrange(p1,p2,p3,p4,p5,p6, ncol=3)

wktPlot-1

20. Bowler wicket against opposition

#Jadeja's' best pertformance are against England, Pakistan and West Indies
bowlerWicketsAgainstOpposition(jadeja,"RA Jadeja")

wktsOppn1-1

#Ashwin's bets pertformance are against England, Pakistan and South Africa
bowlerWicketsAgainstOpposition(ashwin, "Ashwin")

wktsOppn2-1

#Starc has good performances against India, New Zealand, Pakistan, West Indies
bowlerWicketsAgainstOpposition(starc, "M A Starc")

wktsOppn3-1

bowlerWicketsAgainstOpposition(shakib,"Shakib Al Hasan")

wktsOppn4-1

bowlerWicketsAgainstOpposition(mendis, "Ajantha Mendis")

wktsOppn5-1

#Steyn has good performances against India, Sri Lanka, Pakistan, West Indies
bowlerWicketsAgainstOpposition(steyn, "Dale Steyn")

wktsOppn6-1

21. Bowler wicket at cricket grounds

bowlerWicketsVenue(jadeja,"RA Jadeja")

wktsAve1-1

bowlerWicketsVenue(ashwin, "Ashwin")

wktsAve2-1

bowlerWicketsVenue(starc, "M A Starc")
## Warning: Removed 2 rows containing missing values (geom_bar).

wktsAve3-1

bowlerWicketsVenue(shakib,"Shakib Al Hasan")

wktsAve4-1

bowlerWicketsVenue(mendis, "Ajantha Mendis")

wktsAve5-1

bowlerWicketsVenue(steyn, "Dale Steyn")

wktsAve6-1

22. Get Delivery wickets for bowlers

Thsi function creates a dataframe of deliveries and the wickets taken

setwd("C:/software/cricket-package/york-test/yorkrData/ODI/ODI-matches")
jadeja1 <- getDeliveryWickets(team="India",dir=".",name="Jadeja",save=FALSE)
ashwin1 <- getDeliveryWickets(team="India",dir=".",name="Ashwin",save=FALSE)
starc1 <- getDeliveryWickets(team="Australia",dir=".",name="MA Starc",save=FALSE)
shakib1 <- getDeliveryWickets(team="Bangladesh",dir=".",name="Shakib",save=FALSE)
mendis1 <- getDeliveryWickets(team="Sri Lanka",dir=".",name="Mendis",save=FALSE)
steyn1 <- getDeliveryWickets(team="South Africa",dir=".",name="Steyn",save=FALSE)

23. Predict number of deliveries to wickets

#Jadeja and Ashwin need around 22 to 28 deliveries to make a break through
par(mfrow=c(1,2))
par(mar=c(4,4,2,2))
bowlerWktsPredict(jadeja1,"RA Jadeja")
bowlerWktsPredict(ashwin1,"RAshwin")

wktsPred1-1

#Starc and Shakib provide an early breakthrough producing a wicket in around 16 balls. Starc's 2nd wicket comed around the 30th delivery
par(mfrow=c(1,2))
par(mar=c(4,4,2,2))
bowlerWktsPredict(starc1,"MA Starc")
bowlerWktsPredict(shakib1,"Shakib Al Hasan")

wktsPred2-1

#Steyn and Mendis take 20 deliveries to get their 1st wicket
par(mfrow=c(1,2))
par(mar=c(4,4,2,2))
bowlerWktsPredict(mendis1,"A Mendis")
bowlerWktsPredict(steyn1,"DSteyn")

wktsPred3-1

Conclusion

This concludes the 4 part introduction to my new R cricket package yorkr for ODIs. I will be enhancing the package to handle Twenty20 and IPL matches soon. You can fork/clone the code from Github at yorkr.

The yaml data from Cricsheet have already beeen converted into R consumable dataframes. The converted data can be downloaded from Github at yorkrData. There are 3 folders – ODI matches, ODI matches between 2 teams (oppnAllMatches), ODI matches between a team and the rest of the world (all matches,all oppositions).

As I have already mentioned I have around 67 functions for analysis, however I am certain that the data has a lot more secrets waiting to be tapped. So please do go ahead and run any machine learning or statistical learning algorithms on them. If you do come up with interesting insights, I would appreciate if attribute the source to Cricsheet(http://cricsheet.org), and my package yorkr and my blog Giga thoughts*, besides dropping me a note.

Hope you have a great time with my yorkr package!

Important note: Do check out my other posts using yorkr at yorkr-posts

Also see

  1. Introducing cricketr! : An R package to analyze performances of cricketers
  2. Cricket analytics with cricketr in paperback and Kindle versions
  3. My TEDx talk on the “Internet of Things”
  4. Bend it like Bluemix,MongoDB with autoscaling – Part 1
  5. The mind of a programmer
  6. Fun simulation of a chain in Android
  7. Taking cricketr for a spin-Part 1
  8. Latency,throughput implications for the cloud
  9. Hand detection through haar-training: A hands-on approach
  10. Cricket analytics with cricketr