My book ‘Practical Machine Learning in R and Python: Third edition’ on Amazon


Are you wondering whether to get into the ‘R’ bus or ‘Python’ bus?
My suggestion is to you is “Why not get into the ‘R and Python’ train?”

The third edition of my book ‘Practical Machine Learning with R and Python – Machine Learning in stereo’ is now available in both paperback ($12.99) and kindle ($8.99/Rs449) versions.  In the third edition all code sections have been re-formatted to use the fixed width font ‘Consolas’. This neatly organizes output which have columns like confusion matrix, dataframes etc to be columnar, making the code more readable.  There is a science to formatting too!! which improves the look and feel. It is little wonder that Steve Jobs had a keen passion for calligraphy! Additionally some typos have been fixed.

 

In this book I implement some of the most common, but important Machine Learning algorithms in R and equivalent Python code.
1. Practical machine with R and Python: Third Edition – Machine Learning in Stereo(Paperback-$12.99)
2. Practical machine with R and Python Third Edition – Machine Learning in Stereo(Kindle- $8.99/Rs449)

This book is ideal both for beginners and the experts in R and/or Python. Those starting their journey into datascience and ML will find the first 3 chapters useful, as they touch upon the most important programming constructs in R and Python and also deal with equivalent statements in R and Python. Those who are expert in either of the languages, R or Python, will find the equivalent code ideal for brushing up on the other language. And finally,those who are proficient in both languages, can use the R and Python implementations to internalize the ML algorithms better.

Here is a look at the topics covered

Table of Contents
Preface …………………………………………………………………………….4
Introduction ………………………………………………………………………6
1. Essential R ………………………………………………………………… 8
2. Essential Python for Datascience ……………………………………………57
3. R vs Python …………………………………………………………………81
4. Regression of a continuous variable ……………………………………….101
5. Classification and Cross Validation ………………………………………..121
6. Regression techniques and regularization ………………………………….146
7. SVMs, Decision Trees and Validation curves ………………………………191
8. Splines, GAMs, Random Forests and Boosting ……………………………222
9. PCA, K-Means and Hierarchical Clustering ………………………………258
References ……………………………………………………………………..269

Pick up your copy today!!
Hope you have a great time learning as I did while implementing these algorithms!

My book ‘Practical Machine Learning in R and Python: Second edition’ on Amazon


Note: The 3rd edition of this book is now available My book ‘Practical Machine Learning in R and Python: Third edition’ on Amazon

The third edition of my book ‘Practical Machine Learning with R and Python – Machine Learning in stereo’ is now available in both paperback ($12.99) and kindle ($9.99/Rs449) versions.  This second edition includes more content,  extensive comments and formatting for better readability.

In this book I implement some of the most common, but important Machine Learning algorithms in R and equivalent Python code.
1. Practical machine with R and Python: Third Edition – Machine Learning in Stereo(Paperback-$12.99)
2. Practical machine with R and Third Edition – Machine Learning in Stereo(Kindle- $9.99/Rs449)

This book is ideal both for beginners and the experts in R and/or Python. Those starting their journey into datascience and ML will find the first 3 chapters useful, as they touch upon the most important programming constructs in R and Python and also deal with equivalent statements in R and Python. Those who are expert in either of the languages, R or Python, will find the equivalent code ideal for brushing up on the other language. And finally,those who are proficient in both languages, can use the R and Python implementations to internalize the ML algorithms better.

Here is a look at the topics covered

Table of Contents
Preface …………………………………………………………………………….4
Introduction ………………………………………………………………………6
1. Essential R ………………………………………………………………… 8
2. Essential Python for Datascience ……………………………………………57
3. R vs Python …………………………………………………………………81
4. Regression of a continuous variable ……………………………………….101
5. Classification and Cross Validation ………………………………………..121
6. Regression techniques and regularization ………………………………….146
7. SVMs, Decision Trees and Validation curves ………………………………191
8. Splines, GAMs, Random Forests and Boosting ……………………………222
9. PCA, K-Means and Hierarchical Clustering ………………………………258
References ……………………………………………………………………..269

Pick up your copy today!!
Hope you have a great time learning as I did while implementing these algorithms!

My book ‘Practical Machine Learning with R and Python’ on Amazon


Note: The 3rd edition of this book is now available My book ‘Practical Machine Learning in R and Python: Third edition’ on Amazon

My book ‘Practical Machine Learning with R and Python: Second Edition – Machine Learning in stereo’ is now available in both paperback ($10.99) and kindle ($7.99/Rs449) versions. In this book I implement some of the most common, but important Machine Learning algorithms in R and equivalent Python code. This is almost like listening to parallel channels of music in stereo!
1. Practical machine with R and Python: Third Edition – Machine Learning in Stereo(Paperback-$12.99)
2. Practical machine with R and Python Third Edition – Machine Learning in Stereo(Kindle- $8.99/Rs449)
This book is ideal both for beginners and the experts in R and/or Python. Those starting their journey into datascience and ML will find the first 3 chapters useful, as they touch upon the most important programming constructs in R and Python and also deal with equivalent statements in R and Python. Those who are expert in either of the languages, R or Python, will find the equivalent code ideal for brushing up on the other language. And finally,those who are proficient in both languages, can use the R and Python implementations to internalize the ML algorithms better.

Here is a look at the topics covered

Table of Contents
Essential R …………………………………….. 7
Essential Python for Datascience ………………..   54
R vs Python ……………………………………. 77
Regression of a continuous variable ………………. 96
Classification and Cross Validation ……………….113
Regression techniques and regularization …………. 134
SVMs, Decision Trees and Validation curves …………175
Splines, GAMs, Random Forests and Boosting …………202
PCA, K-Means and Hierarchical Clustering …………. 234

Pick up your copy today!!
Hope you have a great time learning as I did while implementing these algorithms!

Inswinger: yorkr swings into International T20s


In this post I introduce ‘Inswinger’ an interactive Shiny app to analyze International T20 players, matches and teams. This app was a natural consequence to my earlier Shiny app ‘GooglyPlus’. Most of the structure for this app remained the same, I only had to work with a different dataset, so to speak.

The Googly Shiny app is based on my R package ‘yorkr’ which is now available in CRAN. The R package and hence this Shiny app is based on data from Cricsheet. Inswinger is based on the latest data dump from Cricsheet (Dec 2016) and includes all International T20 till then. There are a lot of new Internationation teams like Oman, Hong Kong, UAE, etc. In total there are 22 different International T20 teams in my Inswinger app.

The countries are a) Afghanistan b) Australia c) Bangladesh d) Bermuda e) Canada f) England g) Hong Kong h) India i) Ireland j) Kenya k) Nepal l) Netherlands m) New Zealand n) Oman o) Pakistan p) Papua New Guinea q) Scotland r) South Africa s) Sri Lanka t) United Arab Emirates u) West Indies v) Zimbabwe

If you are passionate about cricket, and love analyzing cricket performances, then check out my 2 racy books on cricket! In my books, I perform detailed yet compact analysis of performances of both batsmen, bowlers besides evaluating team & match performances in Tests , ODIs, T20s & IPL. You can buy my books on cricket from Amazon at $12.99 for the paperback and $4.99/$6.99 respectively for the kindle versions. The books can be accessed at Cricket analytics with cricketr  and Beaten by sheer pace-Cricket analytics with yorkr  A must read for any cricket lover! Check it out!!

1

 

My R package ‘yorkr’,  on which both these Shiny apps are based, has the ability to output either a dataframe or plot, depending on a parameter plot=TRUE or FALSE. Hence in the Inswinger Shiny app results can be displayed both as table or a plot depending on the choice of function.

Inswinger can do detailed analyses of a) Individual T20 batsman b) Individual T20 bowler c) Any T20 match d) Head to head confrontation between 2 T20 teams e) All matches of a T20 team against all other teams.

The Shiny app can be accessed at Inswinger

The code for Inswinger is available at Github. Feel free to clone/download/fork  the code from Inswinger

Based on the 5 detailed analysis domains there are 5 tabs
A) T20 Batsman: This tab can be used to perform analysis of all T20 batsman. If a batsman has played in more than 1 team, then the overall performance is considered. There are 10 functions for the T20 Batsman. They are shown below
– Batsman Runs vs. Deliveries
– Batsman’s Fours & Sixes
– Dismissals of batsman
– Batsman’s Runs vs Strike Rate
– Batsman’s Moving Average
– Batsman’s Cumulative Average Run
– Batsman’s Cumulative Strike Rate
– Batsman’s Runs against Opposition
– Batsman’s Runs at Venue
– Predict Runs of batsman

B) T20 Bowler: This tab can be used to analyze individual T20 bowlers. The functions handle T20 bowlers who have played in more than 1 T20 team.
– Mean Economy Rate of bowler
– Mean runs conceded by bowler
– Bowler’s Moving Average
– Bowler’s Cumulative Avg. Wickets
– Bowler’s Cumulative Avg. Economy Rate
– Bowler’s Wicket Plot
– Bowler’s Wickets against opposition
– Bowler’s Wickets at Venues
– Bowler’s wickets prediction

C) T20 match: This tab can be used for analyzing individual T20 matches. The available functions are
– Match Batting Scorecard – Table
– Batting Partnerships – Plot, Table
– Batsmen vs Bowlers – Plot, Table
– Match Bowling Scorecard   – Table
– Bowling Wicket Kind – Plot, Table
– Bowling Wicket Runs – Plot, Table
– Bowling Wicket Match – Plot, Table
– Bowler vs Batsmen – Plot, Table
– Match Worm Graph – Plot

D) Head to head: This tab can be used for analyzing head-to-head confrontations, between any 2 T20 teams for e.g. all matches between India vs Australia or West Indies vs Sri Lanka . The available functions are
-Team Batsmen Batting Partnerships All Matches – Plot, Table {Summary and Detailed}
-Team Batting Scorecard All Matches – Table
-Team Batsmen vs Bowlers all Matches – Plot, Table
-Team Wickets Opposition All Matches – Plot, Table
-Team Bowling Scorecard All Matches – Table
-Team Bowler vs Batsmen All Matches – Plot, Table
-Team Bowlers Wicket Kind All Matches – Plot, Table
-Team Bowler Wicket Runs All Matches – Plot, Table
– Win Loss All Matches – Plot

E) T20 team’s overall performance: this tab can be used analyze the overall performance of any T20 team. For this analysis all matches played by this team is considered. The available functions are
-Team Batsmen Partnerships Overall – Plot, Table {Summary and Detailed)}
-Team Batting Scorecard Overall –Table
-Team Batsmen vs Bowlers Overall – Plot, Table
-Team Bowler vs Batsmen Overall – Plot, Table
-Team Bowling Scorecard Overall – Table
-Team Bowler Wicket Kind Overall – Plot, Table

Below I include a random set of charts that are generated in each of the 5 tabs
A. IPL Batsman
a. Shakib-al-Hassan (Bangladesh) :  Runs vs Deliveries
untitled

b. Virat Kohli (India) – Cumulative Average
untitled

c.  AB Devilliers (South Africa) – Runs at venues
untitled

d. Glenn Maxwell (Australia)  – Predict runs vs deliveries faces
untitled

B. IPL Bowler
a. TG Southee (New Zealand) – Mean Economy Rate vs overs
untitled

b) DJ Bravo – Moving Average of wickets
untitled

c) AC Evans (Scotland) – Bowler Wickets Against Opposition
untitled

C.T20 Match
a. Match Score (Afghanistan vs Canada, 2012-03-18)
untitled

b)  Match batting partnerships (Plot) Hong Kong vs Oman (2015-11-21), Hong Kong
Hong Kong Partnerships
untitled

c) Match batting partnerships (Table) – Ireland vs Scotland(2012-03-18, Ireland)
Batting partnership can also be displayed as a table
untitled

d) Batsmen vs Bowlers (Plot) – India vs England (2012-12-22)
untitled

e) Match Worm Chart – Sri Lanka vs Pakistan (2015-08-01)
untitled

D.Head to head
a) Team Batsmen Partnership (Plot) – India vs Australia (all matches)
Virat Kohli has the highest total runs in partnerships against Australia
untitled

b)  Team Batsmen Partnership (Summary – Table) – Kenya vs Bangladesh
untitled

c) Team Bowling Scorecard (Table only) India vs South Africa all Matches
untitled

d) Wins- Losses New Zealand vs West Indies all Matches
untitled

C) Overall performances
a) Batting Scorecard All Matches  (Table only) – England’s overall batting performance
Eoin Morgan, Kevin Pieterson  & SJ Taylor have the best performance
untitled

b) Batsman vs Bowlers all Matches (Plot)
India’s best performing batsman (Rank=1) is Virat Kohli
untitled

c)  Batsman vs Bowlers all Matches (Table)
The plot above for Virat Kohli can also be displayed as a table. Kohli has score most runs DJ Bravo, SR Watson & Shahid Afridi
untitled

The Inswinger Shiny app can be accessed at Inswinger. Give it a swing!

The code for Inswinger is available at Github. Feel free to clone/download/fork  the code from Inswinger

Also see my other Shiny apps
1.GooglyPlus
2.What would Shakespeare say?
3.Sixer
4.Revisiting crimes against women in India

You may also like
1. Neural Networks: The mechanics of backpropagation
A primer on Qubits, Quantum gates and Quantum Operation
2. Re-working the Lucy Richardson algorithm in OpenCV
3.Design Principles of Scalable, Distributed Systems
4.Spicing up a IBM Bluemix cloud app with MongoDB and NodeExpress
5.Programming languages in layman’s language
7.Re-introducing cricketr! : An R package to analyze performances of cricketers

To see all posts take at a look at Index of Posts

yorkr pads up for the Twenty20s: Part 1- Analyzing team”s match performance


There are two ways of constructing a software design: One way is to make it so simple that there are obviously no deficiencies and the other way is to make it so complicated that there are no obvious deficiencies.

      C.A.R. Hoare, The 1980 ACM Turing Award LectureOne of my most productive days was throwing away 1000 lines of code.
      Ken Thompson

Debugging is twice as hard as writing the code in the first place. Therefore, if you write the code as cleverly as possible, you are, by definition, not smart enough to debug it.

      Brian W. Kernighan and P. J. Plauger in The Elements of Programming Style.
      

“If debugging is the process of removing software bugs, then programming must be the process of putting them in.”

      Edsger Dijkstra

Introduction

In this post I have added functions to my R package ‘yorkr’ that will allow for analysis of Twenty20 matches. yorkr is already available in CRAN and the Twenty20 functionality will be available with yorkr_0.0.4. This package is based on data from Cricsheet. I have now added functionality to perform analysis of T20 matches in addition the existing functionality for analysing ODI matches

The yorkr package provides functions to convert the yaml files to more easily R consumable entities, namely dataframes. In fact all ODI & T20 matches have already been converted and are available for use at yorkrData. However you will have to convert any new matches added to Cricsheet. Also note that there is a file called ’convertedFiles” which will give the details of the original match file and its corresponding converted file.

If you are passionate about cricket, and love analyzing cricket performances, then check out my 2 racy books on cricket! In my books, I perform detailed yet compact analysis of performances of both batsmen, bowlers besides evaluating team & match performances in Tests , ODIs, T20s & IPL. You can buy my books on cricket from Amazon at $12.99 for the paperback and $4.99/$6.99 respectively for the kindle versions. The books can be accessed at Cricket analytics with cricketr  and Beaten by sheer pace-Cricket analytics with yorkr  A must read for any cricket lover! Check it out!!

1

 

This post can be viewed at RPubs at yorkrT20-Part1 or can also be downloaded as a PDF document yorkrT20-1.pdf

Checkout my interactive Shiny apps GooglyPlus (plots & tables) and Googly (only plots) which can be used to analyze IPL players, teams and matches.

Note: To do similar analysis you can use my yorkrT20templates. See my post Analysis of International T20 matches with yorkr templates

2. Install the package from CRAN

library(yorkr)
rm(list=ls())

2a. New functionality for Twenty20

I had to create 2 new functions had to be created for converting Twenty20 yaml files to RData. They are

  1. convertYaml2RDataframeT20
  2. convertAllYaml2RDataframesT20

Note: Most of the existing functions created for ODI matches, also work with the converted T20 RData files, as can be seen below.

3. Convert and save T20 yaml file to dataframe

This function will convert a T20 yaml file in the format as specified in Cricsheet to dataframe. This will be saved as as RData file in the target directory. The name of the file wil have the following format team1-team2-date.RData. An example of how a yaml file can be converted to a dataframe and saved is shown below.

#Available in yorkr_0.0.4
convertYaml2RDataframeT20("211028.yaml",".",".") 
## [1] "./211028.yaml"
## [1] "first loop"
## [1] "second loop"

4. Convert and save all T20 yaml files to dataframes

This function will convert all T20 yaml files from a source directory to dataframes, and save it in the target directory, with the names as mentioned above. Since I have already done this, I will not be executing this again. You can download the zip of all the converted RData files from Github at T20-matches

#Available from yorkr_0.0.4
#convertAllYaml2RDataframesT20("./t20s","./data")

5. yorkrData – A Github repositiory

Cricsheet had a total of 458 Twenty20 matches. Out of which 5 files seemed to have problem. The remaining 453 T20 matches have been converted to RData.

All the converted RData files can be accessed from my Github link yorkrData under the folder T20-matches

You can download the the zip of the files and use it directly in the functions as follows

6. Load the match data as dataframes

For this post I will be using the Twenty20 match data from 5 random matches between 10 different opposing teams/countries. For this I will directly use the converted RData files rather than getting the data through the getMatchDetails() as shown below

With the RData we can load the data in 2 ways

A. With getMatchDetails()

  1. With getMatchDetails() using the 2 teams and the date on which the match occured
afg_ire <- getMatchDetails("Afghanistan","Ireland","2010-02-09",dir="../../data")
dim(afg_ire)
## [1] 245  25

or

B.Directly load RData into your code.

The match details will be loaded into a dataframe called ’overs’ which you can assign to a suitable name as below

The randomly selected matches are

  • Australia vs India – 2007-09-22
  • England vs New Zealand – 2012-09-29
  • Pakistan vs South Africa – 2010-10-26
  • Sri Lanka vs West Indioes -2012-10-07
  • Bangladesh vs Zimbabwe -2016-01-15
load("../../data/Australia-India-2007-09-22.RData")
aus_ind <- overs
load("../../data/England-New Zealand-2012-09-29.RData")
eng_nz <- overs
load("../../data/Pakistan-South Africa-2010-10-26.RData")
pak_sa <- overs
load("../../data/Sri Lanka-West Indies-2012-10-07.RData")
sl_wi<- overs
load("../../data/Bangladesh-Zimbabwe-2016-01-15.RData")
ban_zim <- overs

7. Team batting scorecard

Compute and display the batting scorecard of the teams in the T20 match. The top batsmen in are Yuvraj Singh(Ind), ML Hayden(Aus), JP Duminy(SA) and Jayawardene(SL)

teamBattingScorecardMatch(aus_ind,'India')
## Total= 181
## Source: local data frame [7 x 5]
## 
##        batsman ballsPlayed fours sixes  runs
##         (fctr)       (int) (dbl) (dbl) (dbl)
## 1    G Gambhir          25     4     0    24
## 2     V Sehwag          12     1     0     9
## 3   RV Uthappa          27     1     3    34
## 4 Yuvraj Singh          30     5     5    70
## 5     MS Dhoni          18     4     1    36
## 6    RG Sharma           5     0     1     8
## 7    IK Pathan          NA     0     0     0
teamBattingScorecardMatch(aus_ind,'Australia')
## Total= 165
## Source: local data frame [9 x 5]
## 
##        batsman ballsPlayed fours sixes  runs
##         (fctr)       (int) (dbl) (dbl) (dbl)
## 1 AC Gilchrist          13     2     2    22
## 2    ML Hayden          44     4     4    62
## 3     BJ Hodge          10     0     1    11
## 4    A Symonds          26     3     2    43
## 5   MEK Hussey          12     0     1    13
## 6    MJ Clarke           3     0     0     3
## 7    BJ Haddin           7     0     0     5
## 8        B Lee           2     0     0     2
## 9   MG Johnson           1     1     0     4
teamBattingScorecardMatch(pak_sa,'South Africa')
## Total= 115
## Source: local data frame [6 x 5]
## 
##          batsman ballsPlayed fours sixes  runs
##           (fctr)       (int) (dbl) (dbl) (dbl)
## 1       GC Smith          12     3     0    13
## 2      LE Bosman           4     0     0     2
## 3 AB de Villiers           3     0     0     0
## 4      JP Duminy          45     5     0    41
## 5      CA Ingram          38     4     2    46
## 6      DA Miller           5     3     0    13
teamBattingScorecardMatch(sl_wi,'Sri Lanka')
## Total= 98
## Source: local data frame [10 x 5]
## 
##             batsman ballsPlayed fours sixes  runs
##              (fctr)       (int) (dbl) (dbl) (dbl)
## 1  DPMD Jayawardene          36     2     0    33
## 2        TM Dilshan           2     0     0     0
## 3     KC Sangakkara          26     2     0    22
## 4        AD Mathews           5     0     0     1
## 5       BMAJ Mendis           3     0     0     3
## 6       NLTC Perera           5     0     0     3
## 7   HDRL Thirimanne           7     0     0     4
## 8   KMDN Kulasekara          12     3     1    26
## 9        SL Malinga          12     0     0     5
## 10       BAW Mendis           2     0     0     1

8. Plot the team batting partnerships

The functions below plot the team batting partnetship in the T20 match Note: Many of the plots include an additional parameters plot which is either TRUE or FALSE. The default value is plot=TRUE. When plot=TRUE the plot will be displayed. When plot=FALSE the data frame will be returned to the user. The user can use this to create an interactive chary using one of th epackages like rcharts, ggvis,googleVis or plotly.

teamBatsmenPartnershipMatch(pak_sa,"Pakistan","South Africa")

batsmenPartnership-1

teamBatsmenPartnershipMatch(eng_nz,"New Zealand","England",plot=TRUE)

batsmenPartnership-2

teamBatsmenPartnershipMatch(ban_zim,"Bangladesh","Zimbabwe",plot=FALSE)
##            batsman      nonStriker runs
## 1      Tamim Iqbal   Soumya Sarkar   19
## 2      Tamim Iqbal   Sabbir Rahman   10
## 3    Soumya Sarkar     Tamim Iqbal    7
## 4    Sabbir Rahman     Tamim Iqbal   15
## 5    Sabbir Rahman   Shuvagata Hom   10
## 6    Sabbir Rahman Mushfiqur Rahim   21
## 7    Shuvagata Hom   Sabbir Rahman    6
## 8  Mushfiqur Rahim   Sabbir Rahman   23
## 9  Mushfiqur Rahim Shakib Al Hasan    3
## 10 Shakib Al Hasan Mushfiqur Rahim    4
## 11 Shakib Al Hasan     Mahmudullah    5
## 12 Shakib Al Hasan     Nurul Hasan   11
## 13     Mahmudullah Shakib Al Hasan    7
## 14     Nurul Hasan Shakib Al Hasan    7
teamBatsmenPartnershipMatch(aus_ind,"India","Australia",plot=TRUE)

batsmenPartnership-3

9. Batsmen vs Bowler

The function below computes and plots the performances of the batsmen vs the bowlers. As before the plot parameter can be set to TRUE or FALSE. By default it is plot=TRUE

teamBatsmenVsBowlersMatch(pak_sa,'Pakistan',"South Africa",plot=TRUE)

batsmenVsBowler-1

teamBatsmenVsBowlersMatch(aus_ind,'Australia',"India",plot=TRUE)

batsmenVsBowler-2

teamBatsmenVsBowlersMatch(ban_zim,'Zimbabwe',"Bangladesh",plot=TRUE)

batsmenVsBowler-3

m <- teamBatsmenVsBowlersMatch(sl_wi,'West Indies',"Sri Lanka",plot=FALSE)
m
## Source: local data frame [25 x 3]
## Groups: batsman [?]
## 
##       batsman          bowler runsConceded
##        (fctr)          (fctr)        (dbl)
## 1   J Charles      AD Mathews            0
## 2  MN Samuels      AD Mathews            8
## 3  MN Samuels KMDN Kulasekara            5
## 4  MN Samuels      SL Malinga           39
## 5  MN Samuels      BAW Mendis            7
## 6  MN Samuels     A Dananjaya            4
## 7  MN Samuels     BMAJ Mendis           15
## 8    CH Gayle      AD Mathews            0
## 9    CH Gayle KMDN Kulasekara            1
## 10   CH Gayle      SL Malinga            2
## ..        ...             ...          ...

10. Bowling Scorecard

This function provides the bowling performance, the number of overs bowled, maidens, runs conceded and wickets taken for each match

teamBowlingScorecardMatch(eng_nz,'England')
## Source: local data frame [5 x 5]
## 
##       bowler overs maidens  runs wickets
##       (fctr) (int)   (int) (dbl)   (dbl)
## 1  DR Briggs     4       0    36       1
## 2    ST Finn     4       0    16       3
## 3 TT Bresnan     4       0    29       1
## 4   GP Swann     4       0    20       1
## 5  SCJ Broad     4       0    37       0
teamBowlingScorecardMatch(eng_nz,'New Zealand')
## Source: local data frame [7 x 5]
## 
##          bowler overs maidens  runs wickets
##          (fctr) (int)   (int) (dbl)   (dbl)
## 1      KD Mills     4       0    23       1
## 2    TG Southee     2       0    32       0
## 3    DL Vettori     4       0    20       1
## 4   NL McCullum     4       0    22       1
## 5      RJ Nicol     3       0    29       0
## 6  JEC Franklin     1       0    12       0
## 7 DAJ Bracewell     1       0     8       1
teamBowlingScorecardMatch(aus_ind,'Australia')
## Source: local data frame [6 x 5]
## 
##       bowler overs maidens  runs wickets
##       (fctr) (int)   (int) (dbl)   (dbl)
## 1      B Lee     4       0    25       0
## 2 NW Bracken     4       0    38       0
## 3   SR Clark     4       0    38       0
## 4 MG Johnson     4       0    31       4
## 5  A Symonds     3       0    37       0
## 6  MJ Clarke     1       0    13       1

11. Wicket Kind

The plots below provide the bowling kind of wicket taken by the bowler (caught, bowled, lbw etc.)

teamBowlingWicketKindMatch(aus_ind,"India","Australia")

bowlingWicketKind-1

teamBowlingWicketKindMatch(aus_ind,"Australia","India")

bowlingWicketKind-2

teamBowlingWicketKindMatch(pak_sa,"South Africa","Pakistan")

bowlingWicketKind-3

m <-teamBowlingWicketKindMatch(sl_wi,"Sri Lanka","West Indies",plot=FALSE)
m
##            bowler wicketKind wicketPlayerOut runs
## 1      AD Mathews     caught       J Charles   11
## 2      BAW Mendis        lbw        CH Gayle   12
## 3      BAW Mendis        lbw        DJ Bravo   12
## 4      BAW Mendis     caught      KA Pollard   12
## 5      BAW Mendis        lbw      AD Russell   12
## 6     A Dananjaya     caught      MN Samuels   16
## 7 KMDN Kulasekara   noWicket        noWicket   22
## 8      SL Malinga   noWicket        noWicket   54
## 9     BMAJ Mendis   noWicket        noWicket   20

12. Wicket vs Runs conceded

The plots below provide the wickets taken and the runs conceded by the bowler in the match

teamBowlingWicketRunsMatch(pak_sa,"Pakistan","South Africa")

wicketRuns-1

teamBowlingWicketRunsMatch(aus_ind,"Australia","India")

wicketRuns-2

m <-teamBowlingWicketRunsMatch(sl_wi,"West Indies","Sri Lanka",plot=FALSE)
m
## Source: local data frame [6 x 5]
## 
##       bowler overs maidens  runs wickets
##       (fctr) (int)   (int) (dbl)   (chr)
## 1   S Badree     4       0    24       1
## 2  R Rampaul     3       0    31       1
## 3 MN Samuels     4       0    15       2
## 4   CH Gayle     2       0    14       0
## 5  SP Narine     4       1     9       4
## 6  DJG Sammy     2       0     6       2

13. Wickets taken by bowler

The plots provide the wickets taken by the bowler

m <-teamBowlingWicketMatch(eng_nz,'England',"New Zealand",plot=FALSE)
m
##       bowler wicketKind wicketPlayerOut runs
## 1    ST Finn        lbw      MJ Guptill   16
## 2    ST Finn     caught     BB McCullum   16
## 3   GP Swann     caught        RJ Nicol   20
## 4  DR Briggs     caught   KS Williamson   36
## 5    ST Finn     caught     LRPL Taylor   16
## 6 TT Bresnan    run out    JEC Franklin   29
## 7  SCJ Broad   noWicket        noWicket   37
teamBowlingWicketMatch(sl_wi,"Sri Lanka","West Indies")

bowlingWickets-1

teamBowlingWicketMatch(eng_nz,"New Zealand","England")

bowlingWickets-2

14. Bowler Vs Batsmen

The functions compute and display how the different bowlers of the country performed against the batting opposition.

teamBowlersVsBatsmenMatch(ban_zim,"Bangladesh","Zimbabwe")

bowlerVsBatsmen-1

teamBowlersVsBatsmenMatch(aus_ind,"India","Australia")

bowlerVsBatsmen-2

teamBowlersVsBatsmenMatch(eng_nz,"England","New Zealand")

bowlerVsBatsmen-3

m <- teamBowlersVsBatsmenMatch(pak_sa,"Pakistan","South Africa",plot=FALSE)
m
## Source: local data frame [19 x 3]
## Groups: bowler [?]
## 
##             bowler        batsman runsConceded
##             (fctr)         (fctr)        (dbl)
## 1    Shoaib Akhtar       GC Smith            5
## 2    Shoaib Akhtar      LE Bosman            1
## 3    Shoaib Akhtar AB de Villiers            0
## 4    Shoaib Akhtar      JP Duminy            8
## 5    Shoaib Akhtar      CA Ingram           11
## 6    Shoaib Akhtar      DA Miller            4
## 7     Abdul Razzaq       GC Smith            8
## 8     Abdul Razzaq      LE Bosman            1
## 9     Abdul Razzaq      CA Ingram            1
## 10    Abdul Razzaq      DA Miller            9
## 11 Mohammad Hafeez       GC Smith            0
## 12 Mohammad Hafeez      JP Duminy            7
## 13 Mohammad Hafeez      CA Ingram            3
## 14        Umar Gul      JP Duminy            6
## 15        Umar Gul      CA Ingram           11
## 16     Saeed Ajmal      JP Duminy           10
## 17     Saeed Ajmal      CA Ingram            7
## 18   Shahid Afridi      JP Duminy           10
## 19   Shahid Afridi      CA Ingram           13

15. Match worm graph

The plots below provide the match worm graph for the Twenty 20 matches

matchWormGraph(aus_ind,'Australia',"India")

matchWorm-1

matchWormGraph(sl_wi,'Sri Lanka',"West Indies")

matchWorm-2

Conclusion

This post included all functions between 2 opposing countries from the package yorkr for Twenty20 matches.As mentioned above the yaml match files have been already converted to dataframes and are available for download from Github. Go ahead and give it a try

To be continued. Watch this space!

You may also like

  1. Introducing cricketr! : An R package to analyze performances of cricketers
  2. Cricket analytics with cricketr
  3. Introducing cricket package yorkr-Part1:Beaten by sheer pace!.
  4. What’s up Watson? Using IBM Watson’s QAAPI with Bluemix, NodeExpress
  5. Introducing cricket package yorkr: Part 3-Foxed by flight!
  6. Natural language processing: What would Shakespeare say?
  7. Experiment with deblurring using OpenCV
  8. Unravelling the mysteries of life
  9. Presentation on “Intelligent Networks, CAMEL protocol, services & applications”

Introducing cricket package yorkr:Part 4-In the block hole!


Introduction

“The nitrogen in our DNA, the calcium in our teeth, the iron in our blood, the carbon in our apple pies were made in the interiors of collapsing stars. We are made of starstuff.”

“If you wish to make an apple pie from scratch, you must first invent the universe.”

“We are like butterflies who flutter for a day and think it is forever.”

“The absence of evidence is not the evidence of absence.”

“We are star stuff which has taken its destiny into its own hands.”

                              Cosmos - Carl Sagan

This post is the 4th and possibly, the last part of my introduction, to my latest cricket package yorkr. This is the 4th part of the introduction, the 3 earlier ones were

  1. Introducing cricket package yorkr-Part1:Beaten by sheer pace!.
  2. Introducing cricket package yorkr: Part 2-Trapped leg before wicket!
  3. Introducing cricket package yorkr: Part 3-Foxed by flight!

The 1st part included functions dealing with a specific match, the 2nd part dealt with functions between 2 opposing teams. The 3rd part dealt with functions between a team and all matches with all oppositions. This 4th part includes individual batting and bowling performances in ODI matches and deals with Class 4 functions.

If you are passionate about cricket, and love analyzing cricket performances, then check out my 2 racy books on cricket! In my books, I perform detailed yet compact analysis of performances of both batsmen, bowlers besides evaluating team & match performances in Tests , ODIs, T20s & IPL. You can buy my books on cricket from Amazon at $12.99 for the paperback and $4.99/$6.99 respectively for the kindle versions. The books can be accessed at Cricket analytics with cricketr  and Beaten by sheer pace-Cricket analytics with yorkr  A must read for any cricket lover! Check it out!!

1

d $4.99/Rs 320 and $6.99/Rs448 respectively

 

This post has also been published at RPubs yorkr-Part4 and can also be downloaded as a PDF document from yorkr-Part4.pdf.

You can clone/fork the code for the package yorkr from Github at yorkr-package

Checkout my interactive Shiny apps GooglyPlus (plots & tables) and Googly (only plots) which can be used to analyze IPL players, teams and matches.

Batsman functions

  1. batsmanRunsVsDeliveries
  2. batsmanFoursSixes
  3. batsmanDismissals
  4. batsmanRunsVsStrikeRate
  5. batsmanMovingAverage
  6. batsmanCumulativeAverageRuns
  7. batsmanCumulativeStrikeRate
  8. batsmanRunsAgainstOpposition
  9. batsmanRunsVenue
  10. batsmanRunsPredict

Bowler functions

  1. bowlerMeanEconomyRate
  2. bowlerMeanRunsConceded
  3. bowlerMovingAverage
  4. bowlerCumulativeAvgWickets
  5. bowlerCumulativeAvgEconRate
  6. bowlerWicketPlot
  7. bowlerWicketsAgainstOpposition
  8. bowlerWicketsVenue
  9. bowlerWktsPredict

Note: The yorkr package in its current avatar only supports ODI, T20 and IPL T20 matches.

library(yorkr)
library(gridExtra)
library(rpart.plot)
library(dplyr)
library(ggplot2)
rm(list=ls())

A. Batsman functions

1. Get Team Batting details

The function below gets the overall team batting details based on the RData file available in ODI matches. This is currently also available in Github at (https://github.com/tvganesh/yorkrData/tree/master/ODI/ODI-matches).  However you may have to do this as future matches are added! The batting details of the team in each match is created and a huge data frame is created by rbinding the individual dataframes. This can be saved as a RData file

setwd("C:/software/cricket-package/york-test/yorkrData/ODI/ODI-matches")
india_details <- getTeamBattingDetails("India",dir=".", save=TRUE)
dim(india_details)
## [1] 11085    15
sa_details <- getTeamBattingDetails("South Africa",dir=".",save=TRUE)
dim(sa_details)
## [1] 6375   15
nz_details <- getTeamBattingDetails("New Zealand",dir=".",save=TRUE)
dim(nz_details)
## [1] 6262   15
eng_details <- getTeamBattingDetails("England",dir=".",save=TRUE)
dim(eng_details)
## [1] 9001   15

2. Get batsman details

This function is used to get the individual batting record for a the specified batsmen of the country as in the functions below. For analyzing the batting performances the following cricketers have been chosen

  1. Virat Kohli (Ind)
  2. M S Dhoni (Ind)
  3. AB De Villiers (SA)
  4. Q De Kock (SA)
  5. J Root (Eng)
  6. M J Guptill (NZ)
setwd("C:/software/cricket-package/york-test/yorkrData/ODI/ODI-matches")
kohli <- getBatsmanDetails(team="India",name="Kohli",dir=".")
## [1] "./India-BattingDetails.RData"
dhoni <- getBatsmanDetails(team="India",name="Dhoni")
## [1] "./India-BattingDetails.RData"
devilliers <-  getBatsmanDetails(team="South Africa",name="Villiers",dir=".")
## [1] "./South Africa-BattingDetails.RData"
deKock <-  getBatsmanDetails(team="South Africa",name="Kock",dir=".")
## [1] "./South Africa-BattingDetails.RData"
root <-  getBatsmanDetails(team="England",name="Root",dir=".")
## [1] "./England-BattingDetails.RData"
guptill <-  getBatsmanDetails(team="New Zealand",name="Guptill",dir=".")
## [1] "./New Zealand-BattingDetails.RData"

3. Runs versus deliveries

Kohli, De Villiers and Guptill have a good cluster of points that head towards 150 runs at 150 deliveries.

p1 <-batsmanRunsVsDeliveries(kohli,"Kohli")
p2 <- batsmanRunsVsDeliveries(dhoni, "Dhoni")
p3 <- batsmanRunsVsDeliveries(devilliers,"De Villiers")
p4 <- batsmanRunsVsDeliveries(deKock,"Q de Kock")
p5 <- batsmanRunsVsDeliveries(root,"JE Root")
p6 <- batsmanRunsVsDeliveries(guptill,"MJ Guptill")
grid.arrange(p1,p2,p3,p4,p5,p6, ncol=3)

runsVsDeliveries-1

4. Batsman Total runs, Fours and Sixes

The plots below show the total runs, fours and sixes by the batsmen

kohli46 <- select(kohli,batsman,ballsPlayed,fours,sixes,runs)
p1 <- batsmanFoursSixes(kohli46,"Kohli")
dhoni46 <- select(dhoni,batsman,ballsPlayed,fours,sixes,runs)
p2 <- batsmanFoursSixes(dhoni46,"Dhoni")
devilliers46 <- select(devilliers,batsman,ballsPlayed,fours,sixes,runs)
p3 <- batsmanFoursSixes(devilliers46, "De Villiers")
deKock46 <- select(deKock,batsman,ballsPlayed,fours,sixes,runs)
p4 <- batsmanFoursSixes(deKock46,"Q de Kock")
root46 <- select(root,batsman,ballsPlayed,fours,sixes,runs)
p5 <- batsmanFoursSixes(root46,"JE Root")
guptill46 <- select(guptill,batsman,ballsPlayed,fours,sixes,runs)
p6 <- batsmanFoursSixes(guptill46,"MJ Guptill")
grid.arrange(p1,p2,p3,p4,p5,p6, ncol=3)

foursSixes-1

5. Batsman dismissals

The type of dismissal for each batsman is shown below

p1 <-batsmanDismissals(kohli,"Kohli")
p2 <- batsmanDismissals(dhoni, "Dhoni")
p3 <- batsmanDismissals(devilliers, "De Villiers")
p4 <- batsmanDismissals(deKock,"Q de Kock")
p5 <- batsmanDismissals(root,"JE Root")
p6 <- batsmanDismissals(guptill,"MJ Guptill")
grid.arrange(p1,p2,p3,p4,p5,p6, ncol=3)

dismissal-1

6. Runs versus Strike Rate

De villiers has the best strike rate among all as there are more points to the right side of the plot for the same runs. Kohli and Dhoni do well too. Q De Kock and Joe Root also have a very good spread of points though they have fewer innings.

p1 <-batsmanRunsVsStrikeRate(kohli,"Kohli")
p2 <- batsmanRunsVsStrikeRate(dhoni, "Dhoni")
p3 <- batsmanRunsVsStrikeRate(devilliers, "De Villiers")
p4 <- batsmanRunsVsStrikeRate(deKock,"Q de Kock")
p5 <- batsmanRunsVsStrikeRate(root,"JE Root")
p6 <- batsmanRunsVsStrikeRate(guptill,"MJ Guptill")
grid.arrange(p1,p2,p3,p4,p5,p6, ncol=3)

runsSR-1

7. Batsman moving average

Kohli’s average is on a gentle increase from below 50 to around 60’s. Joe Root performance is impressive with his moving average of late tending towards the 70’s. Q De Kock seemed to have a slump around 2015 but his performance is on the increase. Devilliers consistently averages around 50. Dhoni also has been having a stable run in the last several years.

p1 <-batsmanMovingAverage(kohli,"Kohli")
p2 <- batsmanMovingAverage(dhoni, "Dhoni")
p3 <- batsmanMovingAverage(devilliers, "De Villiers")
p4 <- batsmanMovingAverage(deKock,"Q de Kock")
p5 <- batsmanMovingAverage(root,"JE Root")
p6 <- batsmanMovingAverage(guptill,"MJ Guptill")
grid.arrange(p1,p2,p3,p4,p5,p6, ncol=3)

ma-1

8. Batsman cumulative average

The functions below provide the cumulative average of runs scored. As can be seen Kohli and Devilliers have a cumulative runs rate that averages around 48-50. Q De Kock seems to have had a rocky career with several highs and lows as the cumulative average oscillates between 45-40. Root steadily improves to a cumulative average of around 42-43 from his 50th innings

p1 <-batsmanCumulativeAverageRuns(kohli,"Kohli")
p2 <- batsmanCumulativeAverageRuns(dhoni, "Dhoni")
p3 <- batsmanCumulativeAverageRuns(devilliers, "De Villiers")
p4 <- batsmanCumulativeAverageRuns(deKock,"Q de Kock")
p5 <- batsmanCumulativeAverageRuns(root,"JE Root")
p6 <- batsmanCumulativeAverageRuns(guptill,"MJ Guptill")
grid.arrange(p1,p2,p3,p4,p5,p6, ncol=3)

cAvg-1

9. Cumulative Average Strike Rate

The plots below show the cumulative average strike rate of the batsmen. Dhoni and Devilliers have the best cumulative average strike rate of 90%. The rest average around 80% strike rate. Guptill shows a slump towards the latter part of his career.

p1 <-batsmanCumulativeStrikeRate(kohli,"Kohli")
p2 <- batsmanCumulativeStrikeRate(dhoni, "Dhoni")
p3 <- batsmanCumulativeStrikeRate(devilliers, "De Villiers")
p4 <- batsmanCumulativeStrikeRate(deKock,"Q de Kock")
p5 <- batsmanCumulativeStrikeRate(root,"JE Root")
p6 <- batsmanCumulativeStrikeRate(guptill,"MJ Guptill")
grid.arrange(p1,p2,p3,p4,p5,p6, ncol=3)

cSR-1

10. Batsman runs against opposition

Kohli’s best performances are against Australia, West Indies and Sri Lanka

batsmanRunsAgainstOpposition(kohli,"Kohli")

runsOppn1-1

batsmanRunsAgainstOpposition(dhoni, "Dhoni")

runsOppn2-1

Kohli’s best performances are against Australia, Pakistan and West Indies

batsmanRunsAgainstOpposition(devilliers, "De Villiers")

runsOppn3-1

Quentin de Kock average almost 100 runs against India and 75 runs against England

batsmanRunsAgainstOpposition(deKock, "Q de Kock")

runsOppn4-1

Root’s best performances are against South Africa, Sri Lanka and West Indies

batsmanRunsAgainstOpposition(root, "JE Root")

runsOppn5-1

batsmanRunsAgainstOpposition(guptill, "MJ Guptill")

runsOppn6-1

11. Runs at different venues

The plots below give the performances of the batsmen at different grounds.

batsmanRunsVenue(kohli,"Kohli")

runsVenue1-1

batsmanRunsVenue(dhoni, "Dhoni")

runsVenue2-1

batsmanRunsVenue(devilliers, "De Villiers")

runsVenue3-1

batsmanRunsVenue(deKock, "Q de Kock")

runsVenue4-1

batsmanRunsVenue(root, "JE Root")

runsVenue5-1

batsmanRunsVenue(guptill, "MJ Guptill")

runsVenue6-1

12. Predict number of runs to deliveries

The plots below use rpart classification tree to predict the number of deliveries required to score the runs in the leaf node. For e.g. Kohli takes 66 deliveries to score 64 runs and for higher number of deliveries scores around 115 runs. Devilliers needs

par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
batsmanRunsPredict(kohli,"Kohli")
batsmanRunsPredict(dhoni, "Dhoni")
batsmanRunsPredict(devilliers, "De Villiers")

runsPredict1,runsVenue1-1

par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
batsmanRunsPredict(deKock,"Q de Kock")
batsmanRunsPredict(root,"JE Root")
batsmanRunsPredict(guptill,"MJ Guptill")

runsPredict2,runsVenue1-1

B. Bowler functions

13. Get bowling details

The function below gets the overall team bowling details based on the RData file available in ODI matches. This is currently also available in Github at (https://github.com/tvganesh/yorkrData/tree/master/ODI/ODI-matches). The bowling details of the team in each match is created and a huge data frame is created by rbinding the individual dataframes. This can be saved as a RData file

setwd("C:/software/cricket-package/york-test/yorkrData/ODI/ODI-matches")
ind_bowling <- getTeamBowlingDetails("India",dir=".",save=TRUE)
dim(ind_bowling)
## [1] 7816   12
aus_bowling <- getTeamBowlingDetails("Australia",dir=".",save=TRUE)
dim(aus_bowling)
## [1] 9191   12
ban_bowling <- getTeamBowlingDetails("Bangladesh",dir=".",save=TRUE)
dim(ban_bowling)
## [1] 5665   12
sa_bowling <- getTeamBowlingDetails("South Africa",dir=".",save=TRUE)
dim(sa_bowling)
## [1] 3806   12
sl_bowling <- getTeamBowlingDetails("Sri Lanka",dir=".",save=TRUE)
dim(sl_bowling)
## [1] 3964   12

14. Get bowling details of the individual bowlers

This function is used to get the individual bowling record for a specified bowler of the country as in the functions below. For analyzing the bowling performances the following cricketers have been chosen

  1. R A Jadeja (Ind)
  2. Ravichander Ashwin (Ind)
  3. Mitchell Starc (Aus)
  4. Shakib Al Hasan (Ban)
  5. Ajantha Mendis (SL)
  6. Dale Steyn (SA)
jadeja <- getBowlerWicketDetails(team="India",name="Jadeja",dir=".")
ashwin <- getBowlerWicketDetails(team="India",name="Ashwin",dir=".")
starc <-  getBowlerWicketDetails(team="Australia",name="Starc",dir=".")
shakib <-  getBowlerWicketDetails(team="Bangladesh",name="Shakib",dir=".")
mendis <-  getBowlerWicketDetails(team="Sri Lanka",name="Mendis",dir=".")
steyn <-  getBowlerWicketDetails(team="South Africa",name="Steyn",dir=".")

15. Bowler Mean Economy Rate

Shakib Al Hassan is expensive in the 1st 3 overs after which he is very economical with a economy rate of 3-4. Starc, Steyn average around a ER of 4.0

p1<-bowlerMeanEconomyRate(jadeja,"RA Jadeja")
p2<-bowlerMeanEconomyRate(ashwin, "R Ashwin")
p3<-bowlerMeanEconomyRate(starc, "MA Starc")
p4<-bowlerMeanEconomyRate(shakib, "Shakib Al Hasan")
p5<-bowlerMeanEconomyRate(mendis, "A Mendis")
p6<-bowlerMeanEconomyRate(steyn, "D Steyn")
grid.arrange(p1,p2,p3,p4,p5,p6, ncol=3)

meanER-1

16. Bowler Mean Runs conceded

Ashwin is expensive around 6 & 7 overs

p1<-bowlerMeanRunsConceded(jadeja,"RA Jadeja")
p2<-bowlerMeanRunsConceded(ashwin, "R Ashwin")
p3<-bowlerMeanRunsConceded(starc, "M A Starc")
p4<-bowlerMeanRunsConceded(shakib, "Shakib Al Hasan")
p5<-bowlerMeanRunsConceded(mendis, "A Mendis")
p6<-bowlerMeanRunsConceded(steyn, "D Steyn")
grid.arrange(p1,p2,p3,p4,p5,p6, ncol=3)

meanRunsConceded-1

17. Bowler Moving average

RA jadeja and Mendis’ performance has dipped considerably, while Ashwin and Shakib have improving performances. Starc average around 4 wickets

p1<-bowlerMovingAverage(jadeja,"RA Jadeja")
p2<-bowlerMovingAverage(ashwin, "Ashwin")
p3<-bowlerMovingAverage(starc, "M A Starc")
p4<-bowlerMovingAverage(shakib, "Shakib Al Hasan")
p5<-bowlerMovingAverage(mendis, "Ajantha Mendis")
p6<-bowlerMovingAverage(steyn, "Dale Steyn")
grid.arrange(p1,p2,p3,p4,p5,p6, ncol=3)

bowlerMA-1

17. Bowler cumulative average wickets

Starc is clearly the most consistent performer with 3 wickets on an average over his career, while Jadeja averages around 2.0. Ashwin seems to have dropped from 2.4-2.0 wickets, while Mendis drops from high 3.5 to 2.2 wickets. The fractional wickets only show a tendency to take another wicket.

p1<-bowlerCumulativeAvgWickets(jadeja,"RA Jadeja")
p2<-bowlerCumulativeAvgWickets(ashwin, "Ashwin")
p3<-bowlerCumulativeAvgWickets(starc, "M A Starc")
p4<-bowlerCumulativeAvgWickets(shakib, "Shakib Al Hasan")
p5<-bowlerCumulativeAvgWickets(mendis, "Ajantha Mendis")
p6<-bowlerCumulativeAvgWickets(steyn, "Dale Steyn")
grid.arrange(p1,p2,p3,p4,p5,p6, ncol=3)

cumWkts-1

18. Bowler cumulative Economy Rate (ER)

The plots below are interesting. All of the bowlers seem to average around 4.5 runs/over. RA Jadeja’s ER improves and heads to 4.5, Mendis is seen to getting more expensive as his career progresses. From a ER of 3.0 he increases towards 4.5

p1<-bowlerCumulativeAvgEconRate(jadeja,"RA Jadeja")
p2<-bowlerCumulativeAvgEconRate(ashwin, "Ashwin")
p3<-bowlerCumulativeAvgEconRate(starc, "M A Starc")
p4<-bowlerCumulativeAvgEconRate(shakib, "Shakib Al Hasan")
p5<-bowlerCumulativeAvgEconRate(mendis, "Ajantha Mendis")
p6<-bowlerCumulativeAvgEconRate(steyn, "Dale Steyn")
grid.arrange(p1,p2,p3,p4,p5,p6, ncol=3)

cumER-1

19. Bowler wicket plot

The plot below gives the average wickets versus number of overs

p1<-bowlerWicketPlot(jadeja,"RA Jadeja")
p2<-bowlerWicketPlot(ashwin, "Ashwin")
p3<-bowlerWicketPlot(starc, "M A Starc")
p4<-bowlerWicketPlot(shakib, "Shakib Al Hasan")
p5<-bowlerWicketPlot(mendis, "Ajantha Mendis")
p6<-bowlerWicketPlot(steyn, "Dale Steyn")
grid.arrange(p1,p2,p3,p4,p5,p6, ncol=3)

wktPlot-1

20. Bowler wicket against opposition

#Jadeja's' best pertformance are against England, Pakistan and West Indies
bowlerWicketsAgainstOpposition(jadeja,"RA Jadeja")

wktsOppn1-1

#Ashwin's bets pertformance are against England, Pakistan and South Africa
bowlerWicketsAgainstOpposition(ashwin, "Ashwin")

wktsOppn2-1

#Starc has good performances against India, New Zealand, Pakistan, West Indies
bowlerWicketsAgainstOpposition(starc, "M A Starc")

wktsOppn3-1

bowlerWicketsAgainstOpposition(shakib,"Shakib Al Hasan")

wktsOppn4-1

bowlerWicketsAgainstOpposition(mendis, "Ajantha Mendis")

wktsOppn5-1

#Steyn has good performances against India, Sri Lanka, Pakistan, West Indies
bowlerWicketsAgainstOpposition(steyn, "Dale Steyn")

wktsOppn6-1

21. Bowler wicket at cricket grounds

bowlerWicketsVenue(jadeja,"RA Jadeja")

wktsAve1-1

bowlerWicketsVenue(ashwin, "Ashwin")

wktsAve2-1

bowlerWicketsVenue(starc, "M A Starc")
## Warning: Removed 2 rows containing missing values (geom_bar).

wktsAve3-1

bowlerWicketsVenue(shakib,"Shakib Al Hasan")

wktsAve4-1

bowlerWicketsVenue(mendis, "Ajantha Mendis")

wktsAve5-1

bowlerWicketsVenue(steyn, "Dale Steyn")

wktsAve6-1

22. Get Delivery wickets for bowlers

Thsi function creates a dataframe of deliveries and the wickets taken

setwd("C:/software/cricket-package/york-test/yorkrData/ODI/ODI-matches")
jadeja1 <- getDeliveryWickets(team="India",dir=".",name="Jadeja",save=FALSE)
ashwin1 <- getDeliveryWickets(team="India",dir=".",name="Ashwin",save=FALSE)
starc1 <- getDeliveryWickets(team="Australia",dir=".",name="MA Starc",save=FALSE)
shakib1 <- getDeliveryWickets(team="Bangladesh",dir=".",name="Shakib",save=FALSE)
mendis1 <- getDeliveryWickets(team="Sri Lanka",dir=".",name="Mendis",save=FALSE)
steyn1 <- getDeliveryWickets(team="South Africa",dir=".",name="Steyn",save=FALSE)

23. Predict number of deliveries to wickets

#Jadeja and Ashwin need around 22 to 28 deliveries to make a break through
par(mfrow=c(1,2))
par(mar=c(4,4,2,2))
bowlerWktsPredict(jadeja1,"RA Jadeja")
bowlerWktsPredict(ashwin1,"RAshwin")

wktsPred1-1

#Starc and Shakib provide an early breakthrough producing a wicket in around 16 balls. Starc's 2nd wicket comed around the 30th delivery
par(mfrow=c(1,2))
par(mar=c(4,4,2,2))
bowlerWktsPredict(starc1,"MA Starc")
bowlerWktsPredict(shakib1,"Shakib Al Hasan")

wktsPred2-1

#Steyn and Mendis take 20 deliveries to get their 1st wicket
par(mfrow=c(1,2))
par(mar=c(4,4,2,2))
bowlerWktsPredict(mendis1,"A Mendis")
bowlerWktsPredict(steyn1,"DSteyn")

wktsPred3-1

Conclusion

This concludes the 4 part introduction to my new R cricket package yorkr for ODIs. I will be enhancing the package to handle Twenty20 and IPL matches soon. You can fork/clone the code from Github at yorkr.

The yaml data from Cricsheet have already beeen converted into R consumable dataframes. The converted data can be downloaded from Github at yorkrData. There are 3 folders – ODI matches, ODI matches between 2 teams (oppnAllMatches), ODI matches between a team and the rest of the world (all matches,all oppositions).

As I have already mentioned I have around 67 functions for analysis, however I am certain that the data has a lot more secrets waiting to be tapped. So please do go ahead and run any machine learning or statistical learning algorithms on them. If you do come up with interesting insights, I would appreciate if attribute the source to Cricsheet(http://cricsheet.org), and my package yorkr and my blog Giga thoughts*, besides dropping me a note.

Hope you have a great time with my yorkr package!

Also see

  1. Introducing cricketr! : An R package to analyze performances of cricketers
  2. Cricket analytics with cricketr in paperback and Kindle versions
  3. My TEDx talk on the “Internet of Things”
  4. Bend it like Bluemix,MongoDB with autoscaling – Part 1
  5. The mind of a programmer
  6. Fun simulation of a chain in Android
  7. Taking cricketr for a spin-Part 1
  8. Latency,throughput implications for the cloud
  9. Hand detection through haar-training: A hands-on approach
  10. Cricket analytics with cricketr

Introducing cricket package yorkr: Part 3-Foxed by flight!


Introduction

He will win, who knows when to fight and when not to fight.

He will win, who knows how to handle both superior and inferior forces

If you know neither the enemy nor yourself, you will succumb in every battle.

Hence the skilful fighter puts himself in a position which makes defeat impossible, and does not miss the moment for defeating the enemy.

Hence that general is skillful in attack whose opponent does not know what to defend; and he is skilled in defense whose opponent does know what to attack.

                                         The Art of War - Sun Tzu

This post is a continuation of my introduction to my latest cricket package yorkr. This is the 3rd part of the introduction, the 2 earlier ones were

  1. Introducing cricket package yorkr-Part1:Beaten by sheer pace!.
  2. Introducing cricket package yorkr: Part 2-Trapped leg before wicket!

This post deals with Class 3 functions, namely the performances of a team in all matches against all oppositions for e.g India/Australia/South Africa against all oppositions in all matches. In other words it is the performance of the team against the rest of the world.

If you are passionate about cricket, and love analyzing cricket performances, then check out my 2 racy books on cricket! In my books, I perform detailed yet compact analysis of performances of both batsmen, bowlers besides evaluating team & match performances in Tests , ODIs, T20s & IPL. You can buy my books on cricket from Amazon at $12.99 for the paperback and $4.99/$6.99 respectively for the kindle versions. The books can be accessed at Cricket analytics with cricketr  and Beaten by sheer pace-Cricket analytics with yorkr  A must read for any cricket lover! Check it out!!

1

 

This post has also been published at RPubs yorkr-Part3 and can also be downloaded as a PDF document from yorkr-Part3.pdf.

You can clone/fork the code for the package yorkr from Github at yorkr-package

Checkout my interactive Shiny apps GooglyPlus (plots & tables) and Googly (only plots) which can be used to analyze IPL players, teams and matches.

The list of functions in Class 3 are

  1. teamBattingScorecardAllOppnAllMatches()
  2. teamBatsmenPartnershipAllOppnAllMatches()
  3. teamBatsmenPartnershipAllOppnAllMatchesPlot()
  4. teamBatsmenVsBowlersAllOppnAllMatchesRept()
  5. teamBatsmenVsBowlersAllOppnAllMatchesPlot()
  6. teamBowlingScorecardAllOppnAllMatchesMain()
  7. teamBowlersVsBatsmenAllOppnAllMatchesRept()
  8. teamBowlersVsBatsmenAllOppnAllMatchesPlot()
  9. teamBowlingWicketKindAllOppnAllMatches()
  10. teamBowlingWicketRunsAllOppnAllMatches()

Note 1: The yorkr package in its current avatar supports ODI, T20 and IPL T20 matches. 

Note 2: As in the previous parts the plots usually have the plot=TRUE/FALSE parameter. This is to allow the user to get a return value of the desired dataframe. The user can choose to plot this, in any way he/she likes for e.g in interactive charts using rcharts, ggvis,googleVis,plotly etc

1. Install the package from CRAN

The yorkr package can be installed directly from CRAN now! Install the yorkr package.

if (!require("yorkr")) {
  install.packages("yorkr") 
  library("yorkr")
}
rm(list=ls())

2. Get data for all matches against all oppositions for a team

We can get all matches against all oppositions for a team/country using the function below. The dir parameter should point to the folder in which the RData files of the individual matches exist. This function creates a data frame of all the matches and also saves the resulting dataframe as RData

setwd("C:/software/cricket-package/york-test/yorkrData/ODI/ODI-team-allmatches-allOppositions")

# Get all matches against all oppositions for India and save as RData
matches <-getAllMatchesAllOpposition("India",dir=".",save=TRUE)
dim(matches)
## [1] 140655     25

“`

3. Save data for all matches against all oppositions

This can be done locally using the function below. This function gets all the matches of the country/team against all other countrioes//teams and combines them into a single dataframe and saves it in the current folder. The current implementation expects that the the RData files of individual matches are in ../data folder. Since I already have converted this I will not be running this again

#saveAllMatchesAllOpposition()

4. Load data directly for all matches between 2 teams

As in my earlier posts (yorkr-Part1 & yorkr-Part2) I have however already saved the data, for all matches of the individual countries, against all oppositons. The data for these matches for the individual teams/countries can be downloaded directly from Github folder at ODI-team-allmatches-allOppositions

Note: The dataframe for the different for all the matches of a country agaisnt all oppositons can be loaded directly into your code. As can be seen in the calls below the datframes are ~100,000+ rows x 25 columns. While I have 10+ functions to process these dataframes, for a particular team, feel free to download these data frames and perform your own analysis. The data frames include ball-by-ball details, details on non-striker, bowler, runs, extras, venue,date etc. Certainly these data frames are a gold-mine of interesting insights. So do go ahead and unleash your bagging/boosting algorithms, SVM classifiers or Random Forest algorithm on them.

I plan to try out some algorithms of statistical/machine learning in the months to come. If you do come up with interesting insights, I would appreciate if attribute the source to Cricsheet(http://cricsheet.org), and my package yorkr and my blog Giga thoughts, besides dropping me a note.*

As in my earlier post I will be directly loading the saved files. For the illustration of the functions, I will use India in all the functions, (for obvious reasons) and will randomly use the data from the rest of the top 8 teams

setwd("C:/software/cricket-package/york-test/yorkrData/ODI/ODI-team-allmatches-allOppositions")
load("allMatchesAllOpposition-India.RData")
ind_matches <- matches
dim(ind_matches)
## [1] 140655     25
load("allMatchesAllOpposition-Australia.RData")
aus_matches <- matches
dim(aus_matches)
## [1] 128148     25
load("allMatchesAllOpposition-New Zealand.RData")
nz_matches <- matches
dim(nz_matches)
## [1] 98573    25
load("allMatchesAllOpposition-Pakistan.RData")
pak_matches <- matches
dim(pak_matches)
## [1] 117947     25
load("allMatchesAllOpposition-England.RData")
eng_matches <- matches
dim(eng_matches)
## [1] 118859     25
load("allMatchesAllOpposition-Sri Lanka.RData")
sl_matches <- matches
dim(sl_matches)
## [1] 125893     25
load("allMatchesAllOpposition-West Indies.RData")
wi_matches <- matches
dim(wi_matches)
## [1] 92716    25
load("allMatchesAllOpposition-South Africa.RData")
sa_matches <- matches
dim(sa_matches)
## [1] 100916     25

5. Team Batting Scorecard (all matches with opposition)

The following functions shows the batting scorecards in each country. It returns a dataframe with the top batsmen in each country

#Top ODI performers for India
m <-teamBattingScorecardAllOppnAllMatches(ind_matches,theTeam="India")
## Total= 58079
## Source: local data frame [68 x 5]
## 
##         batsman ballsPlayed fours sixes  runs
##          (fctr)       (int) (int) (int) (dbl)
## 1       V Kohli        7774   663    67  7039
## 2      MS Dhoni        7878   515   129  6885
## 3      SK Raina        5076   429   114  4964
## 4     G Gambhir        5138   472    15  4503
## 5     RG Sharma        5245   372    89  4385
## 6  SR Tendulkar        4708   504    43  4196
## 7  Yuvraj Singh        4472   403    96  3976
## 8      V Sehwag        3106   494    74  3681
## 9      S Dhawan        2956   314    37  2694
## 10    AM Rahane        2490   195    24  2009
## ..          ...         ...   ...   ...   ...
#Top ODI batsmen for Australia
m <-teamBattingScorecardAllOppnAllMatches(aus_matches,theTeam="Australia")
## Total= 54736
## Source: local data frame [70 x 5]
## 
##       batsman ballsPlayed fours sixes  runs
##        (fctr)       (int) (int) (int) (dbl)
## 1   MJ Clarke        7060   440    39  5485
## 2   SR Watson        5435   519   114  5035
## 3  RT Ponting        5301   447    43  4440
## 4  MEK Hussey        4990   286    60  4286
## 5   BJ Haddin        3308   266    69  2858
## 6   DA Warner        2701   264    43  2537
## 7   GJ Bailey        2805   176    43  2392
## 8   SPD Smith        2303   174    19  2082
## 9    CL White        2471   142    44  2018
## 10  ML Hayden        2276   219    37  2002
## ..        ...         ...   ...   ...   ...
#Top ODI batsmen for Pakistan
m <-teamBattingScorecardAllOppnAllMatches(pak_matches,theTeam="Pakistan")
## Total= NA
## Source: local data frame [74 x 5]
## 
##            batsman ballsPlayed fours sixes  runs
##             (fctr)       (int) (int) (int) (dbl)
## 1  Mohammad Hafeez        5714   471    71  4574
## 2      Younis Khan        4561   306    24  3465
## 3    Shahid Afridi        2316   264   132  3125
## 4     Shoaib Malik        3472   240    40  2897
## 5       Umar Akmal        3272   241    47  2843
## 6    Ahmed Shehzad        3386   259    18  2491
## 7  Mohammad Yousuf        2933   191    11  2241
## 8     Kamran Akmal        2533   247    25  2104
## 9      Salman Butt        2037   206     6  1653
## 10   Nasir Jamshed        1862   150    19  1418
## ..             ...         ...   ...   ...   ...
#Top ODI batsmen for New Zealand
m <-teamBattingScorecardAllOppnAllMatches(nz_matches,theTeam="New Zealand")
## Total= 39993
## Source: local data frame [68 x 5]
## 
##          batsman ballsPlayed fours sixes  runs
##           (fctr)       (int) (int) (int) (dbl)
## 1    LRPL Taylor        6153   418   103  5120
## 2    BB McCullum        4321   446   159  4489
## 3     MJ Guptill        5205   462   100  4460
## 4  KS Williamson        4044   325    25  3418
## 5      SB Styris        2324   167    23  1944
## 6     GD Elliott        2274   149    26  1889
## 7       JD Ryder        1232   139    33  1223
## 8       JDP Oram        1174    81    48  1195
## 9     DL Vettori        1238    97     8  1130
## 10      L Ronchi         927   108    32  1070
## ..           ...         ...   ...   ...   ...
#Top ODI batsmen for England
m <-teamBattingScorecardAllOppnAllMatches(eng_matches,theTeam="England")
## Total= 48152
## Source: local data frame [72 x 5]
## 
##           batsman ballsPlayed fours sixes  runs
##            (fctr)       (int) (int) (int) (dbl)
## 1         IR Bell        6401   488    31  5051
## 2      EJG Morgan        4249   323    98  3927
## 3    KP Pietersen        3828   315    44  3231
## 4         AN Cook        4052   360    10  3163
## 5  PD Collingwood        3693   213    48  2992
## 6       IJL Trott        3418   205     3  2653
## 7       RS Bopara        3326   202    32  2624
## 8      AJ Strauss        3062   276    20  2566
## 9         JE Root        2983   200    26  2543
## 10     JC Buttler        1467   155    54  1777
## ..            ...         ...   ...   ...   ...
#Top ODI batsmen for West Indies
m <-teamBattingScorecardAllOppnAllMatches(wi_matches,theTeam="West Indies")
## Total= 34622
## Source: local data frame [65 x 5]
## 
##          batsman ballsPlayed fours sixes  runs
##           (fctr)       (int) (int) (int) (dbl)
## 1       CH Gayle        3839   386   144  3635
## 2     MN Samuels        4057   294    72  3062
## 3  S Chanderpaul        3521   188    28  2469
## 4       DJ Bravo        2804   193    49  2390
## 5       DM Bravo        2916   174    41  2051
## 6      RR Sarwan        2682   172    20  1960
## 7     KA Pollard        2064   127    92  1947
## 8    LMP Simmons        2538   157    46  1863
## 9      DJG Sammy        1799   143    83  1835
## 10      D Ramdin        1817   115    23  1516
## ..           ...         ...   ...   ...   ...
#Top ODI batsmen for Sri Lanka
m <-teamBattingScorecardAllOppnAllMatches(sl_matches,theTeam="Sri Lanka")
## Total= NA
## Source: local data frame [60 x 5]
## 
##             batsman ballsPlayed fours sixes  runs
##              (fctr)       (int) (int) (int) (dbl)
## 1     KC Sangakkara       10449   852    64  8778
## 2        TM Dilshan        8838   914    45  7981
## 3  DPMD Jayawardene        7482   599    43  6260
## 4       WU Tharanga        5690   483    24  4232
## 5        AD Mathews        4383   288    59  3764
## 6     ST Jayasuriya        2266   297    61  2396
## 7   HDRL Thirimanne        3286   192    17  2371
## 8      LD Chandimal        3026   165    27  2308
## 9   KMDN Kulasekara        1406    83    37  1204
## 10      NLTC Perera        1007    90    42  1137
## ..              ...         ...   ...   ...   ...

6. Team Batting Scorecard

The following functions show the best batsmen from the opposition ‘theTeam’ in the ‘matches’. For e.g. when the matches=ind_matches and theTeam=“England” then the returned dataframe shows the best English batsmen against India

#Top England batsmen against India
m <-teamBattingScorecardAllOppnAllMatches(matches=ind_matches,theTeam="England")
## Total= 7620
## Source: local data frame [43 x 5]
## 
##           batsman ballsPlayed fours sixes  runs
##            (fctr)       (int) (int) (int) (dbl)
## 1         IR Bell        1238   110     9  1085
## 2    KP Pietersen         990    89    10   847
## 3         AN Cook        1049   103     2   822
## 4       RS Bopara         632    42     8   534
## 5  PD Collingwood         450    39     6   397
## 6         OA Shah         394    40     7   385
## 7       IJL Trott         410    33     2   349
## 8         JE Root         408    32     4   336
## 9        SR Patel         336    25    10   329
## 10   C Kieswetter         309    34    13   313
## ..            ...         ...   ...   ...   ...
#Top Australian batsmen against India
m <-teamBattingScorecardAllOppnAllMatches(matches=ind_matches,theTeam="Australia")
## Total= 9995
## Source: local data frame [47 x 5]
## 
##       batsman ballsPlayed fours sixes  runs
##        (fctr)       (int) (int) (int) (dbl)
## 1  RT Ponting        1107    86     8   876
## 2  MEK Hussey         816    56     5   753
## 3   GJ Bailey         578    51    13   614
## 4   SR Watson         653    81    10   609
## 5   MJ Clarke         786    45     5   607
## 6   ML Hayden         660    72     8   573
## 7   A Symonds         543    43    15   536
## 8    AJ Finch         617    52     9   525
## 9   SPD Smith         431    44     7   467
## 10  DA Warner         385    40     6   391
## ..        ...         ...   ...   ...   ...
#Top New Zealand batsmen against Australia
m <-teamBattingScorecardAllOppnAllMatches(aus_matches,theTeam="New Zealand")
## Total= 6106
## Source: local data frame [44 x 5]
## 
##        batsman ballsPlayed fours sixes  runs
##         (fctr)       (int) (int) (int) (dbl)
## 1  LRPL Taylor        1012    71    13   804
## 2  BB McCullum         768    71    25   761
## 3   MJ Guptill         618    50    17   485
## 4    PG Fulton         526    35     9   425
## 5   GD Elliott         469    29     4   405
## 6    SB Styris         415    36     5   369
## 7   DL Vettori         334    24     2   291
## 8    L Vincent         338    27     5   272
## 9  CD McMillan         227    28    10   266
## 10    JDP Oram         181    13     7   193
## ..         ...         ...   ...   ...   ...
#Top Sri Lankan batsmen against West Indies
m <-teamBattingScorecardAllOppnAllMatches(wi_matches,theTeam="Sri Lanka")
## Total= 1851
## Source: local data frame [28 x 5]
## 
##             batsman ballsPlayed fours sixes  runs
##              (fctr)       (int) (int) (int) (dbl)
## 1  DPMD Jayawardene         330    26     2   288
## 2     KC Sangakkara         326    16     2   238
## 3        TM Dilshan         173    18     7   224
## 4       WU Tharanga         349    22    NA   220
## 5        AD Mathews         171    10     3   161
## 6     ST Jayasuriya         146    19     4   160
## 7       ML Udawatte         138     8     1    87
## 8   HDRL Thirimanne         144     6    NA    67
## 9       MDKJ Perera          63     4     2    64
## 10    CK Kapugedera          68     2    NA    57
## ..              ...         ...   ...   ...   ...

7. Team Batting Partnerships

This gives the top batting partnerships in each team in all its matches against all oppositions. The report can either be a ‘summary’ or a ‘detailed’ breakup of the batting partnerships.

# The function gives the names of highest partnership for India. The default report parameter is "summary"
m <- teamBatsmenPartnershipAllOppnAllMatches(ind_matches,theTeam='India')
m
## Source: local data frame [68 x 2]
## 
##         batsman totalRuns
##          (fctr)     (dbl)
## 1       V Kohli      7039
## 2      MS Dhoni      6885
## 3      SK Raina      4964
## 4     G Gambhir      4503
## 5     RG Sharma      4385
## 6  SR Tendulkar      4196
## 7  Yuvraj Singh      3976
## 8      V Sehwag      3681
## 9      S Dhawan      2694
## 10    AM Rahane      2009
## ..          ...       ...
# When the report parameter is 'detailed' then the detailed break up of the partnership is returned as a data frame
m <- teamBatsmenPartnershipAllOppnAllMatches(matches,theTeam='India',report="detailed")
head(m,30)
##     batsman      nonStriker partnershipRuns totalRuns
## 1   V Kohli        S Dhawan             661      7039
## 2   V Kohli       AM Rahane             502      7039
## 3   V Kohli       RG Sharma            1073      7039
## 4   V Kohli      KD Karthik             139      7039
## 5   V Kohli    SR Tendulkar             278      7039
## 6   V Kohli        R Dravid             132      7039
## 7   V Kohli        V Sehwag             255      7039
## 8   V Kohli    Yuvraj Singh             420      7039
## 9   V Kohli        SK Raina            1072      7039
## 10  V Kohli        MS Dhoni             534      7039
## 11  V Kohli Harbhajan Singh              13      7039
## 12  V Kohli       IK Pathan               1      7039
## 13  V Kohli       G Gambhir             962      7039
## 14  V Kohli      RV Uthappa              10      7039
## 15  V Kohli       RA Jadeja              91      7039
## 16  V Kohli        R Ashwin              71      7039
## 17  V Kohli       AT Rayudu             345      7039
## 18  V Kohli Gurkeerat Singh               1      7039
## 19  V Kohli       YK Pathan              68      7039
## 20  V Kohli       STR Binny               4      7039
## 21  V Kohli       MK Tiwary             111      7039
## 22  V Kohli        AR Patel              39      7039
## 23  V Kohli        PA Patel             180      7039
## 24  V Kohli         M Vijay              33      7039
## 25  V Kohli       KM Jadhav              10      7039
## 26  V Kohli        AM Nayar              25      7039
## 27  V Kohli     S Badrinath               9      7039
## 28 MS Dhoni        S Dhawan              49      6885
## 29 MS Dhoni       AM Rahane              50      6885
## 30 MS Dhoni       RG Sharma             300      6885

9. More Team Batting Partnerships

When we use the dataframe ind_matches (matches of India against all opoositions) and choose another country in the theTeam then we will get the names of those top batsmen against India.

# Top England batting partnerships against India (report="summary")
m <- teamBatsmenPartnershipAllOppnAllMatches(ind_matches,theTeam='England')
m
## Source: local data frame [43 x 2]
## 
##           batsman totalRuns
##            (fctr)     (dbl)
## 1         IR Bell      1085
## 2    KP Pietersen       847
## 3         AN Cook       822
## 4       RS Bopara       534
## 5  PD Collingwood       397
## 6         OA Shah       385
## 7       IJL Trott       349
## 8         JE Root       336
## 9        SR Patel       329
## 10   C Kieswetter       313
## ..            ...       ...
# Top South Africa  batting partnerships against India (report="detailed")
m <- teamBatsmenPartnershipAllOppnAllMatches(ind_matches,theTeam='South Africa', report="detailed")
m[1:30,]
##           batsman       nonStriker partnershipRuns totalRuns
## 1  AB de Villiers       MN van Wyk              30      1179
## 2  AB de Villiers        JH Kallis             207      1179
## 3  AB de Villiers         HH Gibbs              20      1179
## 4  AB de Villiers        JP Duminy             168      1179
## 5  AB de Villiers       MV Boucher              37      1179
## 6  AB de Villiers          JM Kemp               5      1179
## 7  AB de Villiers      AN Petersen               8      1179
## 8  AB de Villiers       WD Parnell              56      1179
## 9  AB de Villiers         DW Steyn               5      1179
## 10 AB de Villiers    CK Langeveldt              19      1179
## 11 AB de Villiers          HM Amla              26      1179
## 12 AB de Villiers         GC Smith             106      1179
## 13 AB de Villiers     F du Plessis             133      1179
## 14 AB de Villiers        Q de Kock             113      1179
## 15 AB de Villiers        DA Miller             103      1179
## 16 AB de Villiers      F Behardien              64      1179
## 17 AB de Villiers        CH Morris              32      1179
## 18 AB de Villiers      AM Phangiso              37      1179
## 19 AB de Villiers       SM Pollock              10      1179
## 20        HM Amla       MN van Wyk              66       704
## 21        HM Amla   AB de Villiers               9       704
## 22        HM Amla        JH Kallis              88       704
## 23        HM Amla         HH Gibbs              10       704
## 24        HM Amla        JP Duminy              79       704
## 25        HM Amla        LE Bosman              43       704
## 26        HM Amla RE van der Merwe              17       704
## 27        HM Amla         GC Smith              92       704
## 28        HM Amla     F du Plessis              45       704
## 29        HM Amla      RJ Peterson               2       704
## 30        HM Amla        Q de Kock             211       704

10. Team Batting partnerships of other countries

#Top Indian batting partnerships  against England matches
m <- teamBatsmenPartnershipAllOppnAllMatches(eng_matches,theTeam='India',report="detailed")
head(m,30)
##     batsman    nonStriker partnershipRuns totalRuns
## 1  MS Dhoni     G Gambhir               6      1083
## 2  MS Dhoni      R Dravid              59      1083
## 3  MS Dhoni     PP Chawla               1      1083
## 4  MS Dhoni        Z Khan               4      1083
## 5  MS Dhoni      RP Singh              26      1083
## 6  MS Dhoni  Yuvraj Singh             157      1083
## 7  MS Dhoni      RR Powar              15      1083
## 8  MS Dhoni    RV Uthappa              29      1083
## 9  MS Dhoni     AM Rahane               1      1083
## 10 MS Dhoni       V Kohli              28      1083
## 11 MS Dhoni      SK Raina             372      1083
## 12 MS Dhoni       P Kumar              42      1083
## 13 MS Dhoni R Vinay Kumar              12      1083
## 14 MS Dhoni      R Ashwin              27      1083
## 15 MS Dhoni     RA Jadeja             238      1083
## 16 MS Dhoni     AT Rayudu              17      1083
## 17 MS Dhoni     STR Binny              41      1083
## 18 MS Dhoni     YK Pathan               8      1083
## 19 SK Raina     G Gambhir              23       918
## 20 SK Raina      R Dravid               1       918
## 21 SK Raina      MS Dhoni             450       918
## 22 SK Raina  Yuvraj Singh              56       918
## 23 SK Raina     AM Rahane              17       918
## 24 SK Raina       V Kohli             144       918
## 25 SK Raina     RG Sharma              58       918
## 26 SK Raina     MK Tiwary              28       918
## 27 SK Raina      R Ashwin              15       918
## 28 SK Raina     RA Jadeja              59       918
## 29 SK Raina     AT Rayudu              61       918
## 30 SK Raina      V Sehwag               6       918
#Top South Africa batting partnerships 
m <- teamBatsmenPartnershipAllOppnAllMatches(sa_matches,theTeam='South Africa', report="detailed")
head(m,30)
##           batsman       nonStriker partnershipRuns totalRuns
## 1  AB de Villiers         GC Smith             957      7693
## 2  AB de Villiers        JH Kallis             897      7693
## 3  AB de Villiers         HH Gibbs             295      7693
## 4  AB de Villiers       MV Boucher             143      7693
## 5  AB de Villiers          JM Kemp               8      7693
## 6  AB de Villiers       SM Pollock              16      7693
## 7  AB de Villiers    CK Langeveldt              19      7693
## 8  AB de Villiers          HM Amla            1437      7693
## 9  AB de Villiers        JP Duminy            1123      7693
## 10 AB de Villiers        JA Morkel             169      7693
## 11 AB de Villiers          J Botha              27      7693
## 12 AB de Villiers        Q de Kock             248      7693
## 13 AB de Villiers     F du Plessis             667      7693
## 14 AB de Villiers        DA Miller             571      7693
## 15 AB de Villiers        R McLaren             120      7693
## 16 AB de Villiers         DW Steyn              32      7693
## 17 AB de Villiers      AM Phangiso              37      7693
## 18 AB de Villiers         M Morkel              21      7693
## 19 AB de Villiers       WD Parnell              83      7693
## 20 AB de Villiers      F Behardien             223      7693
## 21 AB de Villiers     VD Philander              12      7693
## 22 AB de Villiers       RR Rossouw              90      7693
## 23 AB de Villiers      RJ Peterson               5      7693
## 24 AB de Villiers      AN Petersen             132      7693
## 25 AB de Villiers       MN van Wyk              89      7693
## 26 AB de Villiers        CH Morris              32      7693
## 27 AB de Villiers        KJ Abbott              21      7693
## 28 AB de Villiers          D Elgar              54      7693
## 29 AB de Villiers RE van der Merwe               1      7693
## 30 AB de Villiers        CA Ingram             138      7693
#Top Sri Lanka batting partnerships 
m <- teamBatsmenPartnershipAllOppnAllMatches(sl_matches,theTeam='Sri Lanka',report="summary")
m
## Source: local data frame [60 x 2]
## 
##             batsman totalRuns
##              (fctr)     (dbl)
## 1     KC Sangakkara      8778
## 2        TM Dilshan      7981
## 3  DPMD Jayawardene      6260
## 4       WU Tharanga      4232
## 5        AD Mathews      3764
## 6     ST Jayasuriya      2396
## 7   HDRL Thirimanne      2371
## 8      LD Chandimal      2308
## 9   KMDN Kulasekara      1204
## 10      NLTC Perera      1137
## ..              ...       ...
#Top England batting partnerships 
m <- teamBatsmenPartnershipAllOppnAllMatches(eng_matches,theTeam='England',report="summary")
m
## Source: local data frame [72 x 2]
## 
##           batsman totalRuns
##            (fctr)     (dbl)
## 1         IR Bell      5051
## 2      EJG Morgan      3927
## 3    KP Pietersen      3231
## 4         AN Cook      3163
## 5  PD Collingwood      2992
## 6       IJL Trott      2653
## 7       RS Bopara      2624
## 8      AJ Strauss      2566
## 9         JE Root      2543
## 10     JC Buttler      1777
## ..            ...       ...
#Top Australian batting partnerships in West Indian matches
m <- teamBatsmenPartnershipAllOppnAllMatches(wi_matches,theTeam='Australia',report="summary")
m
## Source: local data frame [39 x 2]
## 
##       batsman totalRuns
##        (fctr)     (dbl)
## 1   SR Watson       851
## 2  MEK Hussey       630
## 3  RT Ponting       503
## 4   MJ Clarke       435
## 5   GJ Bailey       341
## 6   A Symonds       252
## 7    SE Marsh       245
## 8   BJ Haddin       220
## 9   DJ Hussey       211
## 10   AC Voges       209
## ..        ...       ...
#Top England batting partnerships in New Zealand  matches
m <- teamBatsmenPartnershipAllOppnAllMatches(nz_matches,theTeam='England',report="summary")
m
## Source: local data frame [47 x 2]
## 
##           batsman totalRuns
##            (fctr)     (dbl)
## 1         IR Bell       654
## 2         JE Root       612
## 3  PD Collingwood       514
## 4      EJG Morgan       479
## 5         AN Cook       464
## 6       IJL Trott       362
## 7    KP Pietersen       358
## 8      JC Buttler       287
## 9         OA Shah       274
## 10      RS Bopara       222
## ..            ...       ...

11. Team Batting Partnership plots

Graphical plot of batting partnerships for the countries

# Plot of batting partnerships of India (Virat Kohli and M S Dhoni have the best partnerships)
teamBatsmenPartnershipAllOppnAllMatchesPlot(ind_matches,"India",main="India")

batsmenPartnership1-1

# Plot of batting partnerships of Pakistan
teamBatsmenPartnershipAllOppnAllMatchesPlot(pak_matches,"Pakistan",main="Pakistan")

batsmenPartnership1-2

# Plot of batting partnerships of Australia
teamBatsmenPartnershipAllOppnAllMatchesPlot(aus_matches,"Australia",main="Australia")

batsmenPartnership1-3

12. Top opposition batting partnerships.

This gives the best performance of the team against a specified country Indian partnetships against Australia

New Zealand Partnetship against South Africa

# Top India partnerships against West Indies
teamBatsmenPartnershipAllOppnAllMatchesPlot(ind_matches,"India",main="West Indies")

batsmenPartnership2-1

# Top Sri Lanka parnerships ahgains India
teamBatsmenPartnershipAllOppnAllMatchesPlot(sl_matches,"Sri Lanka",main="India")

batsmenPartnership2-2

# Top New Zealand partnerships against South Africa
teamBatsmenPartnershipAllOppnAllMatchesPlot(nz_matches,"New Zealand",main="South Africa")

batsmenPartnership2-3

13. Batsmen vs Bowlers

The function below gives the top performance of batsmen against the opposition countries

# Top batsmen against bowlers when rank=0
m <-teamBatsmenVsBowlersAllOppnAllMatchesRept(ind_matches,"India",rank=0)
m
## Source: local data frame [68 x 2]
## 
##         batsman runsScored
##          (fctr)      (dbl)
## 1       V Kohli       7039
## 2      MS Dhoni       6885
## 3      SK Raina       4964
## 4     G Gambhir       4503
## 5     RG Sharma       4385
## 6  SR Tendulkar       4196
## 7  Yuvraj Singh       3976
## 8      V Sehwag       3681
## 9      S Dhawan       2694
## 10    AM Rahane       2009
## ..          ...        ...
# Performance of India batsman with rank=1 against international bowlers and runs scored against bowlers. This is Virat Kohli for India
m <-teamBatsmenVsBowlersAllOppnAllMatchesRept(ind_matches,"India",rank=1,dispRows=30)
m
## Source: local data frame [30 x 3]
## Groups: batsman [1]
## 
##    batsman          bowler  runs
##     (fctr)          (fctr) (dbl)
## 1  V Kohli     NLTC Perera   242
## 2  V Kohli KMDN Kulasekara   196
## 3  V Kohli      SL Malinga   175
## 4  V Kohli      AD Mathews   155
## 5  V Kohli      BAW Mendis   132
## 6  V Kohli       R Rampaul   127
## 7  V Kohli     JW Dernbach   121
## 8  V Kohli     JP Faulkner   118
## 9  V Kohli       DJG Sammy   116
## 10 V Kohli    HMRKB Herath   113
## ..     ...             ...   ...
# Performance of India batsman with rank=2 against international bowlers and runs scored against these bowlers. This is M S Dhoni for India
m <-teamBatsmenVsBowlersAllOppnAllMatchesRept(ind_matches,"India",rank=2,dispRows=50)
m
## Source: local data frame [50 x 3]
## Groups: batsman [1]
## 
##     batsman         bowler  runs
##      (fctr)         (fctr) (dbl)
## 1  MS Dhoni M Muralitharan   195
## 2  MS Dhoni  ST Jayasuriya   183
## 3  MS Dhoni     SL Malinga   144
## 4  MS Dhoni      SR Watson   135
## 5  MS Dhoni        ST Finn   130
## 6  MS Dhoni     MG Johnson   128
## 7  MS Dhoni    JP Faulkner   125
## 8  MS Dhoni  Shahid Afridi   120
## 9  MS Dhoni     TT Bresnan   111
## 10 MS Dhoni     AD Mathews   111
## ..      ...            ...   ...
# Performance of England batsman with rank=1 against international bowlers and runs scored against these bowlers. This returns a data frame of the the theTeam's batsmen against the bowlers for which the 'matches' dataframe is used. This Is IR Bell,
m <-teamBatsmenVsBowlersAllOppnAllMatchesRept(matches=ind_matches,theTeam="England",rank=1,dispRows=25)
m
## Source: local data frame [25 x 3]
## Groups: batsman [1]
## 
##    batsman       bowler  runs
##     (fctr)       (fctr) (dbl)
## 1  IR Bell       Z Khan   127
## 2  IR Bell    PP Chawla   111
## 3  IR Bell    RA Jadeja    94
## 4  IR Bell      B Kumar    78
## 5  IR Bell     MM Patel    77
## 6  IR Bell     R Ashwin    71
## 7  IR Bell   AB Agarkar    66
## 8  IR Bell     I Sharma    57
## 9  IR Bell     RP Singh    51
## 10 IR Bell Yuvraj Singh    51
## ..     ...          ...   ...
# All the best Australian batsmen against India in all of Indian matches
m <-teamBatsmenVsBowlersAllOppnAllMatchesRept(ind_matches,"Australia",rank=0)
m
## Source: local data frame [47 x 2]
## 
##       batsman runsScored
##        (fctr)      (dbl)
## 1  RT Ponting        876
## 2  MEK Hussey        753
## 3   GJ Bailey        614
## 4   SR Watson        609
## 5   MJ Clarke        607
## 6   ML Hayden        573
## 7   A Symonds        536
## 8    AJ Finch        525
## 9   SPD Smith        467
## 10  DA Warner        391
## ..        ...        ...

14. Batsmen vs Bowlers (continued)

# The best India batsman(rank=0) against England and his performance against England bowlers
m <-teamBatsmenVsBowlersAllOppnAllMatchesRept(eng_matches,"India",rank=1,dispRows=30)
m
## Source: local data frame [28 x 3]
## Groups: batsman [1]
## 
##     batsman      bowler  runs
##      (fctr)      (fctr) (dbl)
## 1  MS Dhoni     ST Finn   130
## 2  MS Dhoni  TT Bresnan   111
## 3  MS Dhoni    GP Swann   101
## 4  MS Dhoni JW Dernbach    95
## 5  MS Dhoni   SCJ Broad    92
## 6  MS Dhoni JM Anderson    89
## 7  MS Dhoni    SR Patel    83
## 8  MS Dhoni JC Tredwell    40
## 9  MS Dhoni   CR Woakes    38
## 10 MS Dhoni  MS Panesar    37
## ..      ...         ...   ...
# All the top Sri Lanka batsmen (rank=0) against Australia and performances against Australian bowlers
m <-teamBatsmenVsBowlersAllOppnAllMatchesRept(aus_matches,"Sri Lanka",rank=0)
m
## Source: local data frame [31 x 2]
## 
##             batsman runsScored
##              (fctr)      (dbl)
## 1     KC Sangakkara        888
## 2  DPMD Jayawardene        846
## 3        TM Dilshan        799
## 4       WU Tharanga        464
## 5      LD Chandimal        413
## 6        AD Mathews        404
## 7   HDRL Thirimanne        290
## 8   KMDN Kulasekara        232
## 9     ST Jayasuriya        117
## 10       SL Malinga         91
## ..              ...        ...
#All the top England batsmen (rank=0) and their performances against South African bowlers
m <-teamBatsmenVsBowlersAllOppnAllMatchesRept(sa_matches,"England",rank=0)
m
## Source: local data frame [39 x 2]
## 
##           batsman runsScored
##            (fctr)      (dbl)
## 1       IJL Trott        424
## 2         JE Root        372
## 3         IR Bell        362
## 4      EJG Morgan        335
## 5  PD Collingwood        319
## 6        AD Hales        271
## 7    KP Pietersen        192
## 8      A Flintoff        192
## 9         OA Shah        177
## 10     JC Buttler        154
## ..            ...        ...

15. Batsmen vs Bowlers Plot

The following functions plot the performances of the batsman based on the rank chosen against opposition bowlers. Note: The rank has to be >0

#The following plot displays the performance of the top India batsman (rank=1) against all opposition bowlers. This is Virat Kohli for India

d <- teamBatsmenVsBowlersAllOppnAllMatchesRept(ind_matches,"India",rank=1,dispRows=50)
d
## Source: local data frame [50 x 3]
## Groups: batsman [1]
## 
##    batsman          bowler  runs
##     (fctr)          (fctr) (dbl)
## 1  V Kohli     NLTC Perera   242
## 2  V Kohli KMDN Kulasekara   196
## 3  V Kohli      SL Malinga   175
## 4  V Kohli      AD Mathews   155
## 5  V Kohli      BAW Mendis   132
## 6  V Kohli       R Rampaul   127
## 7  V Kohli     JW Dernbach   121
## 8  V Kohli     JP Faulkner   118
## 9  V Kohli       DJG Sammy   116
## 10 V Kohli    HMRKB Herath   113
## ..     ...             ...   ...
teamBatsmenVsBowlersAllOppnAllMatchesPlot(d)

batsmenVsBowler1-1

e <- teamBatsmenVsBowlersAllOppnAllMatchesPlot(d,plot=FALSE)
e
## Source: local data frame [50 x 3]
## Groups: batsman [1]
## 
##    batsman          bowler  runs
##     (fctr)          (fctr) (dbl)
## 1  V Kohli     NLTC Perera   242
## 2  V Kohli KMDN Kulasekara   196
## 3  V Kohli      SL Malinga   175
## 4  V Kohli      AD Mathews   155
## 5  V Kohli      BAW Mendis   132
## 6  V Kohli       R Rampaul   127
## 7  V Kohli     JW Dernbach   121
## 8  V Kohli     JP Faulkner   118
## 9  V Kohli       DJG Sammy   116
## 10 V Kohli    HMRKB Herath   113
## ..     ...             ...   ...
# The following plot displays the performance of the batsman (rank=2) against all opposition bowlers. This is M S Dhoni for India
d <- teamBatsmenVsBowlersAllOppnAllMatchesRept(ind_matches,"India",rank=2,dispRows=50)
teamBatsmenVsBowlersAllOppnAllMatchesPlot(d)

batsmenVsBowler1-2

# Best batsman of South Africa against Indian  bowlers
d <- teamBatsmenVsBowlersAllOppnAllMatchesRept(ind_matches,"South Africa",rank=1,dispRows=30)
d
## Source: local data frame [30 x 3]
## Groups: batsman [1]
## 
##           batsman          bowler  runs
##            (fctr)          (fctr) (dbl)
## 1  AB de Villiers Harbhajan Singh   133
## 2  AB de Villiers         B Kumar    93
## 3  AB de Villiers       RA Jadeja    90
## 4  AB de Villiers        A Mishra    77
## 5  AB de Villiers       MM Sharma    68
## 6  AB de Villiers          Z Khan    65
## 7  AB de Villiers     S Sreesanth    61
## 8  AB de Villiers         A Nehra    58
## 9  AB de Villiers        R Ashwin    55
## 10 AB de Villiers       IK Pathan    45
## ..            ...             ...   ...
teamBatsmenVsBowlersAllOppnAllMatchesPlot(d)

batsmenVsBowler1-3

# Best batsman of England (rank=1) against Indian bowlers (matches=ind_matches)
d <-teamBatsmenVsBowlersAllOppnAllMatchesRept(matches=ind_matches,"England",rank=1,dispRows=50)
d
## Source: local data frame [28 x 3]
## Groups: batsman [1]
## 
##    batsman       bowler  runs
##     (fctr)       (fctr) (dbl)
## 1  IR Bell       Z Khan   127
## 2  IR Bell    PP Chawla   111
## 3  IR Bell    RA Jadeja    94
## 4  IR Bell      B Kumar    78
## 5  IR Bell     MM Patel    77
## 6  IR Bell     R Ashwin    71
## 7  IR Bell   AB Agarkar    66
## 8  IR Bell     I Sharma    57
## 9  IR Bell     RP Singh    51
## 10 IR Bell Yuvraj Singh    51
## ..     ...          ...   ...
teamBatsmenVsBowlersAllOppnAllMatchesPlot(d)

batsmenVsBowler1-4

15. Batsmen vs Bowlers Plot (continued)

# Top batsman of South Africa and performance against opposition bowlers of all countries
d <- teamBatsmenVsBowlersAllOppnAllMatchesRept(sa_matches,"South Africa",rank=1,dispRows=50)
d
## Source: local data frame [50 x 3]
## Groups: batsman [1]
## 
##           batsman          bowler  runs
##            (fctr)          (fctr) (dbl)
## 1  AB de Villiers   Shahid Afridi   227
## 2  AB de Villiers     Saeed Ajmal   174
## 3  AB de Villiers Mohammad Hafeez   151
## 4  AB de Villiers       JO Holder   138
## 5  AB de Villiers Harbhajan Singh   133
## 6  AB de Villiers      Wahab Riaz   130
## 7  AB de Villiers      MG Johnson   129
## 8  AB de Villiers        P Utseya   128
## 9  AB de Villiers       DJG Sammy   110
## 10 AB de Villiers        DJ Bravo   107
## ..            ...             ...   ...
teamBatsmenVsBowlersAllOppnAllMatchesPlot(d)

batsmenVsBowler2-1

# Do not display plot but return dataframe
e <- teamBatsmenVsBowlersAllOppnAllMatchesPlot(d,plot=FALSE)
e
## Source: local data frame [50 x 3]
## Groups: batsman [1]
## 
##           batsman          bowler  runs
##            (fctr)          (fctr) (dbl)
## 1  AB de Villiers   Shahid Afridi   227
## 2  AB de Villiers     Saeed Ajmal   174
## 3  AB de Villiers Mohammad Hafeez   151
## 4  AB de Villiers       JO Holder   138
## 5  AB de Villiers Harbhajan Singh   133
## 6  AB de Villiers      Wahab Riaz   130
## 7  AB de Villiers      MG Johnson   129
## 8  AB de Villiers        P Utseya   128
## 9  AB de Villiers       DJG Sammy   110
## 10 AB de Villiers        DJ Bravo   107
## ..            ...             ...   ...
# Top batsman of Sri Lanka against bowlers of all countries
d <- teamBatsmenVsBowlersAllOppnAllMatchesRept(sl_matches,"Sri Lanka",rank=1,dispRows=50)
teamBatsmenVsBowlersAllOppnAllMatchesPlot(d)

batsmenVsBowler2-2

# Best West Indian against English bowlrs
d <- teamBatsmenVsBowlersAllOppnAllMatchesRept(eng_matches,"West Indies",rank=1,dispRows=50)
teamBatsmenVsBowlersAllOppnAllMatchesPlot(d)

batsmenVsBowler2-3

16 Team bowling scorecard against all opposition

The functions lists the top bowlers of each country in ODI matches. This function returns a dataframe when ‘matches’ is the matches of the country and ‘theTeam’ is the same country as in the functions below

teamBowlingScorecardAllOppnAllMatchesMain(matches=ind_matches,theTeam="India")
## Source: local data frame [57 x 5]
## 
##             bowler overs maidens  runs wickets
##             (fctr) (int)   (int) (dbl)   (dbl)
## 1        RA Jadeja    43       0  4749     153
## 2         R Ashwin    49       0  4225     146
## 3           Z Khan    47       0  3692     141
## 4  Harbhajan Singh    45       0  4040     123
## 5         I Sharma    51       0  3216     113
## 6         MM Patel    49       1  2400      92
## 7          P Kumar    50       2  2752      84
## 8         UT Yadav    51       0  2442      80
## 9   Mohammed Shami    43       0  1806      80
## 10    Yuvraj Singh    38       0  2588      77
## ..             ...   ...     ...   ...     ...
teamBowlingScorecardAllOppnAllMatchesMain(matches=aus_matches,theTeam="Australia")
## Source: local data frame [54 x 5]
## 
##          bowler overs maidens  runs wickets
##          (fctr) (int)   (int) (dbl)   (dbl)
## 1    MG Johnson    51       0  5635     245
## 2         B Lee    50       0  3400     147
## 3     SR Watson    45      NA    NA     136
## 4    NW Bracken    51       0  2763     114
## 5      CJ McKay    49      NA    NA     103
## 6      MA Starc    48       1  1769      97
## 7   JP Faulkner    44       0  2004      75
## 8      JR Hopes    43       0  2098      69
## 9       SW Tait    50       0  1461      66
## 10 DE Bollinger    51       0  1482      65
## ..          ...   ...     ...   ...     ...
teamBowlingScorecardAllOppnAllMatchesMain(eng_matches,"England")
## Source: local data frame [52 x 5]
## 
##            bowler overs maidens  runs wickets
##            (fctr) (int)   (int) (dbl)   (dbl)
## 1     JM Anderson    51       0  5688     202
## 2       SCJ Broad    51       0  5160     198
## 3      TT Bresnan    51       0  3730     117
## 4         ST Finn    49       0  2839     106
## 5        GP Swann    39       0  2760     106
## 6  PD Collingwood    40       1  2517      77
## 7      A Flintoff    45       0  1260      68
## 8     JC Tredwell    42       0  1614      62
## 9       CR Woakes    47       0  1859      57
## 10      RS Bopara    34       0  1508      42
## ..            ...   ...     ...   ...     ...
teamBowlingScorecardAllOppnAllMatchesMain(pak_matches,"Pakistan")
## Source: local data frame [55 x 5]
## 
##             bowler overs maidens  runs wickets
##             (fctr) (int)   (int) (dbl)   (dbl)
## 1    Shahid Afridi    45       0  6674     212
## 2      Saeed Ajmal    44       0  4089     184
## 3         Umar Gul    49       0  4127     151
## 4       Wahab Riaz    50       0  2954     111
## 5  Mohammad Hafeez    51       0  3502     109
## 6   Mohammad Irfan    49       0  2523      86
## 7    Sohail Tanvir    48       1  2534      75
## 8      Junaid Khan    48       1  2056      75
## 9   Iftikhar Anjum    49       2  1674      62
## 10    Shoaib Malik    41       1  2206      59
## ..             ...   ...     ...   ...     ...
teamBowlingScorecardAllOppnAllMatchesMain(sa_matches,"South Africa")
## Source: local data frame [41 x 5]
## 
##           bowler overs maidens  runs wickets
##           (fctr) (int)   (int) (dbl)   (dbl)
## 1       DW Steyn    51       0  4294     179
## 2       M Morkel    51       0  4012     172
## 3    LL Tsotsobe    42       0  2231     100
## 4    Imran Tahir    39       0  2124      93
## 5      R McLaren    41       1  1983      80
## 6      JH Kallis    44       0  2075      77
## 7     WD Parnell    44       0  1957      74
## 8        J Botha    44       0  2311      69
## 9    RJ Peterson    47       1  1872      68
## 10 CK Langeveldt    49       0  1829      65
## ..           ...   ...     ...   ...     ...
teamBowlingScorecardAllOppnAllMatchesMain(nz_matches,"New Zealand")
## Source: local data frame [51 x 5]
## 
##            bowler overs maidens  runs wickets
##            (fctr) (int)   (int) (dbl)   (dbl)
## 1        KD Mills    50       1  3918     160
## 2      DL Vettori    43       1  3767     147
## 3      TG Southee    51       0  3996     134
## 4  MJ McClenaghan    49       0  2252      85
## 5        JDP Oram    46       0  2064      78
## 6     NL McCullum    46       0  2840      67
## 7         SE Bond    37       1  1449      62
## 8        TA Boult    40       3  1324      58
## 9     CJ Anderson    41       0  1297      52
## 10       MJ Henry    41       0  1098      47
## ..            ...   ...     ...   ...     ...
teamBowlingScorecardAllOppnAllMatchesMain(sl_matches,"Sri Lanka")
## Source: local data frame [54 x 5]
## 
##             bowler overs maidens  runs wickets
##             (fctr) (int)   (int) (dbl)   (dbl)
## 1       SL Malinga    51       0  7214     281
## 2  KMDN Kulasekara    51       0  5481     179
## 3       BAW Mendis    47       0  2979     135
## 4      NLTC Perera    48       0  3624     129
## 5   M Muralitharan    45       0  2471     114
## 6       AD Mathews    51       0  3394     113
## 7       TM Dilshan    50       0  3049      73
## 8     CRD Fernando    51       1  2067      73
## 9     HMRKB Herath    41       0  2027      71
## 10     MF Maharoof    48       0  1860      70
## ..             ...   ...     ...   ...     ...
teamBowlingScorecardAllOppnAllMatchesMain(wi_matches,"West Indies")
## Source: local data frame [45 x 5]
## 
##        bowler overs maidens  runs wickets
##        (fctr) (int)   (int) (dbl)   (dbl)
## 1    DJ Bravo    51       0  4239     153
## 2   JE Taylor    50       0  2530     103
## 3   R Rampaul    46       1  2608     102
## 4   KAJ Roach    49       0  2500      98
## 5   SP Narine    47       0  1924      82
## 6   DJG Sammy    51       1  3584      79
## 7  AD Russell    48       0  1987      63
## 8    CH Gayle    38       0  1955      53
## 9   JO Holder    44       0  1542      50
## 10 MN Samuels    38       0  2209      48
## ..        ...   ...     ...   ...     ...

17 Team bowling scorecard against all opposition (continued)

The function lists the top bowlers of a country (‘matches’) against the opposition country

# Best Indian bowlers in matches against Australia
teamBowlingScorecardAllOppnAllMatches(ind_matches,'Australia')
## Source: local data frame [36 x 5]
## 
##             bowler overs maidens  runs wickets
##             (fctr) (int)   (int) (dbl)   (dbl)
## 1         I Sharma    44       1   739      26
## 2  Harbhajan Singh    40       0   926      25
## 3        IK Pathan    42       1   702      22
## 4         UT Yadav    37       2   606      18
## 5      S Sreesanth    34       0   454      18
## 6        RA Jadeja    39       0   867      16
## 7           Z Khan    33       1   500      15
## 8         R Ashwin    43       0   684      14
## 9          P Kumar    27       0   501      14
## 10   R Vinay Kumar    31       1   380      14
## ..             ...   ...     ...   ...     ...
# Best Australian bowlers in matches against India
teamBowlingScorecardAllOppnAllMatches(aus_matches,'India')
## Source: local data frame [39 x 5]
## 
##         bowler overs maidens  runs wickets
##         (fctr) (int)   (int) (dbl)   (dbl)
## 1   MG Johnson    47       0  1020      44
## 2        B Lee    41       3   671      28
## 3    SR Watson    36       1   532      18
## 4     CJ McKay    37       1   403      18
## 5      GB Hogg    33       0   427      17
## 6  JP Faulkner    26       0   598      16
## 7     JR Hopes    31       0   346      14
## 8   NW Bracken    35       1   429      13
## 9  JW Hastings    27       2   259      13
## 10    MA Starc    26       0   251      13
## ..         ...   ...     ...   ...     ...
# Best New Zealand bowlers in matches against England
teamBowlingScorecardAllOppnAllMatches(nz_matches,'England')
## Source: local data frame [33 x 5]
## 
##            bowler overs maidens  runs wickets
##            (fctr) (int)   (int) (dbl)   (dbl)
## 1      TG Southee    39       2   684      33
## 2      DL Vettori    27       1   561      28
## 3        KD Mills    27       0   742      24
## 4  MJ McClenaghan    25       1   515      20
## 5    JEC Franklin    23       0   418      12
## 6         SE Bond    16       0   205      12
## 7      GD Elliott    10       3   194      12
## 8       SB Styris     8       0   296       9
## 9     NL McCullum    24       0   425       7
## 10     MJ Santner    18       0   230       7
## ..            ...   ...     ...   ...     ...
# Best Sri Lankan bowlers in matches against West Indies
teamBowlingScorecardAllOppnAllMatches(sl_matches,"West Indies")
## Source: local data frame [24 x 5]
## 
##             bowler overs maidens  runs wickets
##             (fctr) (int)   (int) (dbl)   (dbl)
## 1       SL Malinga    28       1   280      14
## 2       BAW Mendis    15       0   267       9
## 3  KMDN Kulasekara    13       1   185       8
## 4       AD Mathews    14       0   191       7
## 5   M Muralitharan    20       1   157       6
## 6      MF Maharoof     9       2    14       6
## 7       WPUJC Vaas     7       2    82       5
## 8       RAS Lakmal     7       0    55       5
## 9     HMRKB Herath    10       1   124       4
## 10   ST Jayasuriya     1       0    38       4
## ..             ...   ...     ...   ...     ...

18. Team Bowlers versus Batsmen (against all oppositions)

The functions below give the peformance of bowlers versus batsman. They give the best bowlers and the total runs conceded and against whom were the runs conceded

# Best bowlers overall from India against all opposition (rank=0)
teamBowlersVsBatsmenAllOppnAllMatchesMain(ind_matches,theTeam="India",rank=0)
## Source: local data frame [10 x 2]
## 
##             bowler  runs
##             (fctr) (dbl)
## 1        RA Jadeja  4691
## 2         R Ashwin  4111
## 3  Harbhajan Singh  3858
## 4           Z Khan  3514
## 5         I Sharma  3100
## 6          P Kumar  2646
## 7     Yuvraj Singh  2542
## 8        IK Pathan  2359
## 9         UT Yadav  2343
## 10        MM Patel  2314
# Top ODI bowler of India and runs conceded against different opposition batsmen 
(rank=1)
## [1] 1
m <-teamBowlersVsBatsmenAllOppnAllMatchesMain(ind_matches,theTeam="India",rank=1)
m
## Source: local data frame [207 x 3]
## Groups: bowler [1]
## 
##       bowler          batsman runsConceded
##       (fctr)           (fctr)        (dbl)
## 1  RA Jadeja    KC Sangakkara          172
## 2  RA Jadeja DPMD Jayawardene          117
## 3  RA Jadeja       TM Dilshan          108
## 4  RA Jadeja     LD Chandimal          103
## 5  RA Jadeja        GJ Bailey           99
## 6  RA Jadeja      LRPL Taylor           95
## 7  RA Jadeja          IR Bell           94
## 8  RA Jadeja    KS Williamson           92
## 9  RA Jadeja   AB de Villiers           90
## 10 RA Jadeja        SR Watson           85
## ..       ...              ...          ...
# Top ODI bowler of India and runs conceded against different opposition batsmen (rank=2)
m <-teamBowlersVsBatsmenAllOppnAllMatchesMain(ind_matches,theTeam="India",rank=2)
m
## Source: local data frame [177 x 3]
## Groups: bowler [1]
## 
##      bowler          batsman runsConceded
##      (fctr)           (fctr)        (dbl)
## 1  R Ashwin        GJ Bailey          132
## 2  R Ashwin    KC Sangakkara          117
## 3  R Ashwin          AN Cook          115
## 4  R Ashwin    KS Williamson          114
## 5  R Ashwin         DM Bravo          111
## 6  R Ashwin       AD Mathews          100
## 7  R Ashwin     LD Chandimal           98
## 8  R Ashwin      LRPL Taylor           93
## 9  R Ashwin DPMD Jayawardene           93
## 10 R Ashwin     KP Pietersen           81
## ..      ...              ...          ...

18. Team Bowlers versus Batsmen (against all oppositions continued)

# Top bowlers versus batsmen of South Africa(rank=0)
teamBowlersVsBatsmenAllOppnAllMatchesMain(sa_matches,theTeam="South Africa",rank=0)
## Source: local data frame [10 x 2]
## 
##         bowler  runs
##         (fctr) (dbl)
## 1     DW Steyn  4116
## 2     M Morkel  3808
## 3      J Botha  2244
## 4  LL Tsotsobe  2147
## 5    JP Duminy  2111
## 6  Imran Tahir  2087
## 7    JH Kallis  2014
## 8   WD Parnell  1864
## 9    R McLaren  1863
## 10 RJ Peterson  1842
# Top bowlers versus batsmen of Pakistan(rank=0)
teamBowlersVsBatsmenAllOppnAllMatchesMain(pak_matches,theTeam="Pakistan",rank=0)
## Source: local data frame [10 x 2]
## 
##             bowler  runs
##             (fctr) (dbl)
## 1    Shahid Afridi  6444
## 2      Saeed Ajmal  3956
## 3         Umar Gul  3901
## 4  Mohammad Hafeez  3434
## 5       Wahab Riaz  2755
## 6   Mohammad Irfan  2399
## 7    Sohail Tanvir  2337
## 8     Shoaib Malik  2105
## 9      Junaid Khan  1974
## 10  Iftikhar Anjum  1626
# Top bowlers versus batsmen of Sri Lanka(rank=0)
teamBowlersVsBatsmenAllOppnAllMatchesMain(sl_matches,theTeam="Sri Lanka",rank=1)
## Source: local data frame [314 x 3]
## Groups: bowler [1]
## 
##        bowler         batsman runsConceded
##        (fctr)          (fctr)        (dbl)
## 1  SL Malinga Mohammad Hafeez          191
## 2  SL Malinga         V Kohli          175
## 3  SL Malinga       G Gambhir          170
## 4  SL Malinga        MS Dhoni          144
## 5  SL Malinga      Umar Akmal          142
## 6  SL Malinga        V Sehwag          140
## 7  SL Malinga         IR Bell          134
## 8  SL Malinga    SR Tendulkar          133
## 9  SL Malinga   Ahmed Shehzad          121
## 10 SL Malinga         AN Cook          120
## ..        ...             ...          ...
m <-teamBowlersVsBatsmenAllOppnAllMatchesMain(ind_matches,theTeam="India",rank=2)
m
## Source: local data frame [177 x 3]
## Groups: bowler [1]
## 
##      bowler          batsman runsConceded
##      (fctr)           (fctr)        (dbl)
## 1  R Ashwin        GJ Bailey          132
## 2  R Ashwin    KC Sangakkara          117
## 3  R Ashwin          AN Cook          115
## 4  R Ashwin    KS Williamson          114
## 5  R Ashwin         DM Bravo          111
## 6  R Ashwin       AD Mathews          100
## 7  R Ashwin     LD Chandimal           98
## 8  R Ashwin      LRPL Taylor           93
## 9  R Ashwin DPMD Jayawardene           93
## 10 R Ashwin     KP Pietersen           81
## ..      ...              ...          ...

19. Team bowlers versus batsmen report (all oppositions)

#Top bowlers of other countries against India
teamBowlersVsBatsmenAllOppnAllMatchesRept(matches=ind_matches,theTeam="India",rank=0)
## Source: local data frame [10 x 2]
## 
##             bowler  runs
##             (fctr) (dbl)
## 1  KMDN Kulasekara  1448
## 2       SL Malinga  1319
## 3      NLTC Perera   959
## 4      JM Anderson   954
## 5       MG Johnson   939
## 6        SCJ Broad   877
## 7       BAW Mendis   783
## 8       AD Mathews   776
## 9          ST Finn   751
## 10      TT Bresnan   741
# Best performer against India is KMDN Kulasekar of Sri Lanka in ODIs
a <- teamBowlersVsBatsmenAllOppnAllMatchesRept(ind_matches,theTeam="India",rank=1)
a
## Source: local data frame [31 x 3]
## Groups: bowler [1]
## 
##             bowler      batsman runsConceded
##             (fctr)       (fctr)        (dbl)
## 1  KMDN Kulasekara     V Sehwag          199
## 2  KMDN Kulasekara      V Kohli          196
## 3  KMDN Kulasekara    G Gambhir          157
## 4  KMDN Kulasekara SR Tendulkar          127
## 5  KMDN Kulasekara Yuvraj Singh          118
## 6  KMDN Kulasekara    RG Sharma          114
## 7  KMDN Kulasekara     SK Raina          104
## 8  KMDN Kulasekara     MS Dhoni           80
## 9  KMDN Kulasekara   KD Karthik           56
## 10 KMDN Kulasekara   SC Ganguly           51
## ..             ...          ...          ...

20. Team bowlers versus batsmen report (all oppositions continued)

#Top Indian bowlers against Sri Lanka 
teamBowlersVsBatsmenAllOppnAllMatchesRept(matches=ind_matches,theTeam="Sri Lanka",rank=0)
## Source: local data frame [10 x 2]
## 
##             bowler  runs
##             (fctr) (dbl)
## 1           Z Khan  1141
## 2        RA Jadeja   882
## 3         I Sharma   855
## 4  Harbhajan Singh   805
## 5          P Kumar   758
## 6         R Ashwin   740
## 7        IK Pathan   678
## 8          A Nehra   584
## 9         UT Yadav   544
## 10        MM Patel   488
#Top Indian bowlers against England
teamBowlersVsBatsmenAllOppnAllMatchesRept(ind_matches,"England",rank=0)
## Source: local data frame [10 x 2]
## 
##          bowler  runs
##          (fctr) (dbl)
## 1      R Ashwin   777
## 2     RA Jadeja   735
## 3        Z Khan   507
## 4      MM Patel   463
## 5      RP Singh   410
## 6      I Sharma   396
## 7     PP Chawla   375
## 8  Yuvraj Singh   370
## 9       B Kumar   353
## 10   AB Agarkar   336

21. Team bowlers versus batsmen report (all oppositions coninued-1)

#Top ODI opposition bowlers against New Zealand
teamBowlersVsBatsmenAllOppnAllMatchesRept(nz_matches,theTeam="New Zealand",rank=0)
## Source: local data frame [10 x 2]
## 
##             bowler  runs
##             (fctr) (dbl)
## 1      JM Anderson   889
## 2       MG Johnson   828
## 3    Shahid Afridi   751
## 4  KMDN Kulasekara   728
## 5        SCJ Broad   638
## 6       NW Bracken   626
## 7       SL Malinga   601
## 8         DW Steyn   556
## 9          ST Finn   482
## 10       SR Watson   468
# Top ODI opposition bowlers against Australia
teamBowlersVsBatsmenAllOppnAllMatchesRept(aus_matches,"Australia",rank=0)
## Source: local data frame [10 x 2]
## 
##             bowler  runs
##             (fctr) (dbl)
## 1      JM Anderson  1211
## 2       TT Bresnan  1087
## 3       SL Malinga  1078
## 4        SCJ Broad   948
## 5  Harbhajan Singh   890
## 6       DL Vettori   883
## 7  KMDN Kulasekara   875
## 8         DW Steyn   872
## 9        RA Jadeja   853
## 10        DJ Bravo   830
# Top ODI bowlers against Sri Lanka
teamBowlersVsBatsmenAllOppnAllMatchesRept(sl_matches,"Sri Lanka",rank=0)
## Source: local data frame [10 x 2]
## 
##             bowler  runs
##             (fctr) (dbl)
## 1    Shahid Afridi  1177
## 2           Z Khan  1141
## 3        RA Jadeja   882
## 4         I Sharma   855
## 5      Saeed Ajmal   814
## 6  Harbhajan Singh   805
## 7  Mohammad Hafeez   774
## 8          P Kumar   758
## 9         R Ashwin   740
## 10        Umar Gul   718

22. Team bowlers versus batsmen report (all oppositions) plot

This function can only be used for rank>0 (rank=1,2,3..)

# Top ODI bowler against India (KMDN Kulasekara)
df <- teamBowlersVsBatsmenAllOppnAllMatchesRept(ind_matches,theTeam="India",rank=1)
teamBowlersVsBatsmenAllOppnAllMatchesPlot(df,"India","India")

bowlerVsbatsmen1-1

# Top ODI Indian bowler versus England (R Ashwin)
df <- teamBowlersVsBatsmenAllOppnAllMatchesRept(ind_matches,theTeam="England",rank=1)
teamBowlersVsBatsmenAllOppnAllMatchesPlot(df,"India","England")

bowlerVsbatsmen1-2

#Top ODI Indian bowler against West Indies (RA Jadeja)
df <- teamBowlersVsBatsmenAllOppnAllMatchesRept(ind_matches,theTeam="West Indies",rank=1)
teamBowlersVsBatsmenAllOppnAllMatchesPlot(df,"India","West Indies")

bowlerVsbatsmen1-3

23. Team bowlers versus batsmen plot (all oppositions)

#Top bowler against South Africa (Shahid Afridi)
df <- teamBowlersVsBatsmenAllOppnAllMatchesRept(sa_matches,theTeam="South Africa",rank=1)
teamBowlersVsBatsmenAllOppnAllMatchesPlot(df,"South Africa","South Africa")

bowlerVsbatsmen2-1

# Top  bowler versus Pakistan (SL Malinga)
df <- teamBowlersVsBatsmenAllOppnAllMatchesRept(pak_matches,theTeam="Pakistan",rank=1)
teamBowlersVsBatsmenAllOppnAllMatchesPlot(df,"Pakistan","Pakistan")

bowlerVsbatsmen2-2

24. Team Bowler Wicket Kind

# Top opposition bowlers against India and the kind of wickets
teamBowlingWicketKindAllOppnAllMatches(ind_matches,t1="India",t2="All")

bowlingWicketkind1-1

# Get the data frame. Do not plot
m <-teamBowlingWicketKindAllOppnAllMatches(ind_matches,t1="India",t2="All",plot=FALSE)
m
## Source: local data frame [34 x 3]
## Groups: bowler [?]
## 
##         bowler        wicketKind     m
##         (fctr)             (chr) (int)
## 1   MG Johnson            bowled     8
## 2   MG Johnson            caught    27
## 3   MG Johnson caught and bowled     1
## 4   MG Johnson               lbw     6
## 5   MG Johnson           run out     2
## 6  JM Anderson            bowled     4
## 7  JM Anderson            caught    25
## 8  JM Anderson               lbw     1
## 9  JM Anderson           run out     3
## 10     ST Finn            bowled    10
## ..         ...               ...   ...
# Best Indian bowlers against South Africa
teamBowlingWicketKindAllOppnAllMatches(ind_matches,t1="India",t2="South Africa")

bowlingWicketkind1-2

# Best Indian bowlers against Pakistan
teamBowlingWicketKindAllOppnAllMatches(ind_matches,t1="India",t2="Pakistan")

bowlingWicketkind1-3

25. Team Bowler Wicket Kind (continued)

# Best ODI opposition bowlers against  England
teamBowlingWicketKindAllOppnAllMatches(eng_matches,t1="England",t2="All")

bowlingWicketkind2-1

# Best ODI opposition bowlers  Australia
teamBowlingWicketKindAllOppnAllMatches(aus_matches,t1="Australia",t2="All")

bowlingWicketkind2-2

# Best bowlera against  Sri Lanka
teamBowlingWicketKindAllOppnAllMatches(sl_matches,t1="Sri Lanka",t2="All")

bowlingWicketkind2-3

26. Team Bowler Wicket Runs

# Opposition bowlers against India and runs conceded
teamBowlingWicketRunsAllOppnAllMatches(ind_matches,t1="India",t2="All",plot=TRUE)

bowlingWicketRuns1-1

# Opposition bowlers against India and runs conceded returned as dataframe
m <-teamBowlingWicketRunsAllOppnAllMatches(ind_matches,t1="India",t2="All",plot=FALSE)
m
## Source: local data frame [10 x 3]
## 
##             bowler runsConceded wickets
##             (fctr)        (dbl)   (dbl)
## 1       MG Johnson         1020      44
## 2  KMDN Kulasekara         1492      40
## 3         DW Steyn          714      34
## 4       BAW Mendis          810      34
## 5      JM Anderson          991      33
## 6       SL Malinga         1402      33
## 7       AD Mathews          800      31
## 8          ST Finn          775      30
## 9      NLTC Perera          983      30
## 10       SCJ Broad          903      29
# Top Indian bowlers and runs conceded
teamBowlingWicketRunsAllOppnAllMatches(ind_matches,t1="India",t2="Australia",plot=TRUE)

bowlingWicketRuns1-2

27. Team Bowler Wicket Runs (continued)

#Top opposition bowlers against Pakistan
teamBowlingWicketRunsAllOppnAllMatches(pak_matches,t1="Pakistan",t2="All",plot=TRUE)

bowlingWicketRuns2-1

#Top opposition bowlers against West Indies
teamBowlingWicketRunsAllOppnAllMatches(wi_matches,t1="West Indies",t2="All",plot=TRUE)

bowlingWicketRuns2-2

#Top opposition bowlers against Sri Lanka
teamBowlingWicketRunsAllOppnAllMatches(sl_matches,t1="Sri Lanka",t2="All",plot=TRUE)

bowlingWicketRuns2-3

#Top opposition bowlers against New Zealand
teamBowlingWicketRunsAllOppnAllMatches(nz_matches,t1="New Zealand",t2="All",plot=TRUE)

bowlingWicketRuns2-4

Conclusion

This post included all functions for a team in all matches against all oppositions. As before the data frames are already available. You can load the data and begin to use them. If more insights from the dataframe are possible do go ahead. But please do attribute the source to Cricheet (http://cricsheet.org), my package yorkr and my blog. Do give the functions a spin for yourself.

I will be coming up with the last part to my introduction to cricket package yorkr soon.

Watch this space!

You may also like

  1. Introducing cricketr! : An R package to analyze performances of cricketers
  2. Cricket analytics with cricketr
  3. Literacy in India: A deepR dive
  4. Simulating an Edge shape in Android
  5. Re-working the Lucy Richardson algorithm in OpenCV
  6. Design principles of scalable distributed systems 7.TWS-4: Gossip protocol: Epidemics and rumors to the rescue

Revisiting crimes against women in India


Here I go again, raking the muck about crimes against women in India. My earlier post “A crime map of India in R: Crimes against women in India” garnered a lot of responses from readers. In fact one of the readers even volunteered to create the only choropleth map in that post. The data for this post is taken from http://data.gov.in. You can download the data from the link “Crimes against women in India

I was so impressed by the choropleth map that I decided to do that for all crimes against women.(Wikipedia definition: A choropleth map is a thematic map in which areas are shaded or patterned in proportion to the measurement of the statistical variable being displayed on the map). Personally, I think pictures tell the story better. I am sure you will agree!

So here, I have it a Shiny app which will plot choropleth maps for a chosen crime in a given year.

You can try out my interactive Shiny app at  Crimes against women in India

Checkout out my book  on Amazon available in both  Paperback ($9.99) and a Kindle version($6.99/Rs449/). (see ‘Practical Machine Learning with R and Python – Machine Learning in stereo‘)

The following technique can be used to determine the ‘goodness’ of a hypothesis or how well the hypothesis can fit the data and can also generalize to new examples not in the training set.

In the picture below  are the details of  ‘Rape” in the year 2015.
1

Interestingly the ‘Total Crime against women’ in 2001 shows the Top 5 as
1) Uttar Pradresh 2) Andhra Pradesh 3) Madhya Pradesh 4) Maharashtra 5) Rajasthan

2

But in 2015 West Bengal tops the list, as the real heavy weight in crimes against women. The new pecking order in 2015 for ‘Total Crimes against Women’ is

1) West Bengal 2) Andhra Pradesh 3) Uttar Pradesh  4) Rajasthan 5) Maharashtra

3

Similarly for rapes, West Bengal is nowhere in the top 5 list in 2001. In 2015, it is in second only to the national rape leader Madhya Pradesh.  Also in 2001 West Bengal is not in the top 5 for any of 6 crime heads. But in 2015, West Bengal is in the top 5 of 6 crime heads. The emergence of West Bengal as the leader in Crimes against Women is due to the steep increase in crime rate  over the years.Clearly the law and order situation in West Bengal is heading south.

In Dowry Deaths, UP, Bihar, MP, West Bengal lead the pack, and in that order in 2015.

The usual suspects for most crime categories are West Bengal, UP, MP, AP & Maharashtra.

The state-wise crime charts plot the incidence of the crime (rape, dowry death, assault on women etc) over the years. Data for each state and for each crime was available from 2001-2013. The data for period 2014-2018 are projected using linear regression. The shaded portion in the plots indicate the 95% confidence level in the prediction (i.e in other words we can be 95% certain that the true mean of the crime rate in the projected years will lie within the shaded region)

4

Several  interesting requests came from readers to my earlier post. Some of them were to to plot the crimes as function of population and per capita income of the State/Union Territory to see if the plots  throw up new crime leaders. I have not got the relevant state-wise population distribution data yet. I intend to update this when I get my hands on this data.

I have included the crimes.csv which has been used to generate the visualization. However for the Shiny app I save this as .RData for better performance of the app.

You can clone/download  the code for the Shiny app from GitHub at  crimesAgainWomenIndia

Please checkout my Shiny app : Crimes against women

I also intend to add further interactivity to my visualizations in a future version. Watch this space. I’ll be back!

You may like
1. My book ‘Practical Machine Learning with R and Python’ on Amazon
2. Natural Language Processing: What would Shakespeare say?
3. Introducing cricketr! : An R package to analyze performances of cricketers
4. A peek into literacy in India: Statistical Learning with R
5. Informed choices through Machine Learning : Analyzing Kohli, Tendulkar and Dravid
6. Re-working the Lucy-Richardson Algorithm in OpenCV
7.  What’s up Watson? Using IBM Watson’s QAAPI with Bluemix, NodeExpress – Part 1
8.  Bend it like Bluemix, MongoDB with autoscaling – Part 2
9. TWS-4: Gossip protocol: Epidemics and rumors to the rescue
10. Thinking Web Scale (TWS-3): Map-Reduce – Bring compute to data
11.  Simulating an Edge Shape in Android

cricketr adapts to the Twenty20 International!


Introduction

This should be last in the series of posts based on my R package cricketr. That is, unless some bright idea comes trotting along and light bulbs go on around my head.

In this post cricketr adapts to the Twenty20 International format. Now cricketr can handle stats from all 3 formats of the game namely Test matches, ODIs and Twenty20 International from ESPN Cricinfo. You should be able to install the package from GitHub and use the many of the functions available in the package.

Please be mindful of the ESPN Cricinfo Terms of Use

Unititled2

If you are passionate about cricket, and love analyzing cricket performances, then check out my 2 racy books on cricket! In my books, I perform detailed yet compact analysis of performances of both batsmen, bowlers besides evaluating team & match performances in Tests , ODIs, T20s & IPL. You can buy my books on cricket from Amazon at $12.99 for the paperback and $4.99/$6.99 respectively for the kindle versions. The books can be accessed at Cricket analytics with cricketr  and Beaten by sheer pace-Cricket analytics with yorkr  A must read for any cricket lover! Check it out!!

1

 

Important note: Do check out the python avatar of cricketr, ‘cricpy’ in my post ‘Introducing cricpy:A python package to analyze performances of cricketers

You can also read this post at Rpubs as twenty20-cricketr. Download this report as a PDF file from twenty20-cricketr.pdf

Do check out my interactive Shiny app implementation using the cricketr package – Sixer – R package cricketr’s new Shiny avatar

Note: If you would like to do a similar analysis for a different set of batsman and bowlers, you can clone/download my skeleton cricketr template from Github (which is the R Markdown file I have used for the analysis below). You will only need to make appropriate changes for the players you are interested in. Just a familiarity with R and R Markdown only is needed.

I have chosen the Top 4 batsmen and top 4 bowlers based on ICC rankings and/or number of matches played.

Batsmen

  1. Virat Kohli (Ind)
  2. Faf du Plessis (SA)
  3. A J Finch (Aus)
  4. Brendon McCullum (Aus)

Bowlers

  1. Samuel Badree (WI)
  2. Sunil Narine (WI)
  3. Ravichander Ashwin (Ind)
  4. Ajantha Mendis (SL)

I have explained the plots and added my own observations. Please feel free to draw your conclusions!

The data for a particular player can be obtained with the getPlayerData() function. To do you will need to go to ESPN CricInfo Player and type in the name of the player for e.g Virat Kohli, Sunil Narine etc. This will bring up a page which have the profile number for the player e.g. for Virat Kohli this would be http://www.espncricinfo.com/india/content/player/253802.html.

The package can be installed directly from CRAN

if (!require("cricketr")){ 
    install.packages("cricketr",lib = "c:/test") 
} 
library(cricketr)

or from Github

library(devtools)
install_github("tvganesh/cricketr")
library(cricketr)

The data for a particular player can be obtained with the getPlayerData() function. To do you will need to go to ESPN CricInfo Player and type in the name of the player for e.g Virat Kohli, Sunil Narine etc. This will bring up a page which have the profile number for the player e.g. for Virat Kohli this would be http://www.espncricinfo.com/india/content/player/253802.html. Hence, Kohlis profile is 253802. This can be used to get the data for Virat Kohli as shown below

kohli <- getPlayerDataTT(253802,dir="..",file="kohli.csv",type="batting")

The analysis is included below

Analyses of Batsmen

The following plots gives the analysis of the 4 ODI batsmen

  1. Virat Kohli (Ind) – Innings-26, Runs-972, Average-46.28,Strike Rate-131.70
  2. Faf du Plessis (SA) – Innings-24, Runs-805, Average-42.36,Strike Rate-135.75
  3. A J Finch (Aus) – Innings-22, Runs-756, Average-39.78,Strike Rate-152.41
  4. Brendon McCullum (NZ) – Innings-70, Runs-2140, Average-35.66,Strike Rate-136.21

Plot of 4s, 6s and the scoring rate in ODIs

The 3 charts below give the number of

  1. 4s vs Runs scored
  2. 6s vs Runs scored
  3. Balls faced vs Runs scored A regression line is fitted in each of these plots for each of the ODI batsmen

A. Virat Kohli
– The 1st plot shows that Kohli approximately hits about 5 4’s on his way to the 50s
– The 2nd box plot of no of 6s and runs shows the range of runs when Kohli scored 1,2 or 4 6s. The dark line in the box shows the average runs when he scored those number of 6s. So when he scored 1 6 the average runs he scored was 45
– The 3rd plot shows the number of runs scored against the balls faced. It can be seen when Kohli faced 50 balls he had scored around ~ 70 runs

par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
batsman4s("./kohli.csv","Kohli")
batsman6s("./kohli.csv","Kohli")
batsmanScoringRateODTT("./kohli.csv","Kohli")

kohli-4s6sSR-1

dev.off()
## null device 
##           1

B. Faf du Plessis

par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
batsman4s("./plessis.csv","Du Plessis")
batsman6s("./plessis.csv","Du Plessis")
batsmanScoringRateODTT("./plessis.csv","Du Plessss")

plessis-4s6SR-1

dev.off()
## null device 
##           1

C. A J Finch

par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
batsman4s("./finch.csv","A J Finch")
batsman6s("./finch.csv","A J Finch")
batsmanScoringRateODTT("./finch.csv","A J Finch")

finch-4s6sSR-1

dev.off()
## null device 
##           1

D. Brendon McCullum

par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
batsman4s("./mccullum.csv","McCullum")
batsman6s("./mccullum.csv","McCullum")
batsmanScoringRateODTT("./mccullum.csv","McCullum")

mccullum-4s6sout-1

dev.off()
## null device 
##           1

Relative Mean Strike Rate

This plot shows the Mean Strike Rate of the batsman in each run range. It can be seen the A J Finch has the best strike rate followed by B McCullum.

par(mar=c(4,4,2,2))
frames <- list("./kohli.csv","./plessis.csv","finch.csv","mccullum.csv")
names <- list("Kohli","Du Plessis","Finch","McCullum")
relativeBatsmanSRODTT(frames,names)

plot-1-1

Relative Runs Frequency Percentage

The plot below provides the average runs scored in each run range 0-5,5-10,10-15 etc. Clearly Kohli has the most runs scored in most of the runs ranges. . This is also evident in the fact that Kohli has the highest average. He is followed by McCullum

frames <- list("./kohli.csv","./plessis.csv","finch.csv","mccullum.csv")
names <- list("Kohli","Du Plessis","Finch","McCullum")
relativeRunsFreqPerfODTT(frames,names)

plot-2-1

Percent 4’s,6’s in total runs scored

The plot below shows the percentage of runs scored by way of 4s and 6s for each batsman. Du Plessis has the highest percentage of 4s, McCullum has the highest 6s. Finch has the highest percentage of 4s & 6s – 25.37 + 15.64= 41.01%

rames <- list("./kohli.csv","./plessis.csv","finch.csv","mccullum.csv")
names <- list("Kohli","Du Plessis","Finch","McCullum")
runs4s6s <-batsman4s6s(frames,names)

plot-46s-1

print(runs4s6s)
##                Kohli Du Plessis Finch McCullum
## Runs(1s,2s,3s) 64.29      64.55 58.99    61.45
## 4s             27.78      24.38 25.37    22.87
## 6s              7.94      11.07 15.64    15.69

3D plot of Runs vs Balls Faced and Minutes at Crease

The plot is a scatter plot of Runs vs Balls faced and Minutes at Crease. A prediction plane is then fitted based on the Balls Faced and Minutes at Crease to give the runs scored

par(mfrow=c(1,2))
par(mar=c(4,4,2,2))
battingPerf3d("./kohli.csv","Kohli")
battingPerf3d("./plessis.csv","Du Plessis")

plot-3-1

dev.off()
## null device 
##           1
par(mfrow=c(1,2))
par(mar=c(4,4,2,2))
battingPerf3d("./finch.csv","A J Finch")
battingPerf3d("./mccullum.csv","McCullum")

plot-4-1

dev.off()
## null device 
##           1

Predicting Runs given Balls Faced and Minutes at Crease

A hypothetical Balls faced and Minutes at Crease is used to predict the runs scored by each batsman based on the computed prediction plane

BF <- seq( 5, 70,length=10)
Mins <- seq(5,70,length=10)
newDF <- data.frame(BF,Mins)

kohli <- batsmanRunsPredict("./kohli.csv","Kohli",newdataframe=newDF)
plessis <- batsmanRunsPredict("./plessis.csv","Du Plessis",newdataframe=newDF)
finch <- batsmanRunsPredict("./finch.csv","A J Finch",newdataframe=newDF)
mccullum <- batsmanRunsPredict("./mccullum.csv","McCullum",newdataframe=newDF)

The predicted runs is displayed. As can be seen Finch has the best overall strike rate followed by McCullum.

batsmen <-cbind(round(kohli$Runs),round(plessis$Runs),round(finch$Runs),round(mccullum$Runs))
colnames(batsmen) <- c("Kohli","Du Plessis","Finch","McCullum")
newDF <- data.frame(round(newDF$BF),round(newDF$Mins))
colnames(newDF) <- c("BallsFaced","MinsAtCrease")
predictedRuns <- cbind(newDF,batsmen)
predictedRuns
##    BallsFaced MinsAtCrease Kohli Du Plessis Finch McCullum
## 1           5            5     2          1     5        3
## 2          12           12    12         10    22       16
## 3          19           19    22         19    40       28
## 4          27           27    31         28    57       41
## 5          34           34    41         37    74       54
## 6          41           41    51         47    91       66
## 7          48           48    60         56   108       79
## 8          56           56    70         65   125       91
## 9          63           63    79         74   142      104
## 10         70           70    89         84   159      117

Highest runs likelihood

The plots below the runs likelihood of batsman. This uses K-Means Kohli has the highest likelihood of scoring runs 34.2% likely to score 66 runs. Du Plessis has 25% likelihood to score 53 runs, A. Virat Kohli

batsmanRunsLikelihood("./kohli.csv","Kohli")

kohli-lh-1

## Summary of  Kohli 's runs scoring likelihood
## **************************************************
## 
## There is a 23.08 % likelihood that Kohli  will make  10 Runs in  10 balls over 13  Minutes 
## There is a 42.31 % likelihood that Kohli  will make  29 Runs in  23 balls over  30  Minutes 
## There is a 34.62 % likelihood that Kohli  will make  66 Runs in  47 balls over 63  Minutes

B. Faf Du Plessis

batsmanRunsLikelihood("./plessis.csv","Du Plessis")

plessis-l-1

## Summary of  Du Plessis 's runs scoring likelihood
## **************************************************
## 
## There is a 62.5 % likelihood that Du Plessis  will make  14 Runs in  11 balls over 19  Minutes 
## There is a 25 % likelihood that Du Plessis  will make  53 Runs in  40 balls over  50  Minutes 
## There is a 12.5 % likelihood that Du Plessis  will make  94 Runs in  61 balls over 90  Minutes

C. A J Finch

batsmanRunsLikelihood("./finch.csv","A J Finch")

finch-lh,cache-TRUE-1

## Summary of  A J Finch 's runs scoring likelihood
## **************************************************
## 
## There is a 20 % likelihood that A J Finch  will make  95 Runs in  54 balls over 70  Minutes 
## There is a 25 % likelihood that A J Finch  will make  42 Runs in  27 balls over  35  Minutes 
## There is a 55 % likelihood that A J Finch  will make  8 Runs in  8 balls over 12  Minutes

D. Brendon McCullum

batsmanRunsLikelihood("./mccullum.csv","McCullum")

mccullum-1

## Summary of  McCullum 's runs scoring likelihood
## **************************************************
## 
## There is a 50.72 % likelihood that McCullum  will make  11 Runs in  10 balls over 13  Minutes 
## There is a 28.99 % likelihood that McCullum  will make  36 Runs in  27 balls over  37  Minutes 
## There is a 20.29 % likelihood that McCullum  will make  74 Runs in  48 balls over 70  Minutes

Moving Average of runs over career

The moving average for the 4 batsmen indicate the following. It must be noted that there is not sufficient data yet on Twenty20 Internationals. Kpohli, Du Plessis and Finch average only 26 innings while McCullum has close to 70. So the moving average while an indication will regress towards the mean over time.

  1. The moving average of Kohli and Du Plessis is on the way up.
  2. McCullum has a consistent performance while Finch had a brief burst in 2013-2014
par(mfrow=c(2,2))
par(mar=c(4,4,2,2))
batsmanMovingAverage("./kohli.csv","Kohli")
batsmanMovingAverage("./plessis.csv","Du Plessis")
batsmanMovingAverage("./finch.csv","A J Finch")
batsmanMovingAverage("./mccullum.csv","McCullum")

sdgm-ma-1

dev.off()
## null device 
##           1

Analysis of bowlers

  1. Samuel Badree (WI) – Innings-22, Runs -464, Wickets – 31, Econ Rate : 5.39
  2. Sunil Narine (WI)- Innings-31,Runs-666, Wickets – 38 , Econ Rate : 5.70
  3. Ravichander Ashwin (Ind)- Innings-26, Runs- 732, Wickets – 25, Econ Rate : 7.32
  4. Ajantha Mendis (SL)- Innings-39, Runs – 952,Wickets – 66, Econ Rate : 6.45

The plot shows the frequency with which the bowlers have taken 1,2,3 etc wickets. The most wickets taken is by Ajantha Mendis (6 wickets)

Wicket Frequency percentage

This plot gives the percentage of wickets for each wickets (1,2,3…etc)

par(mfrow=c(1,4))
par(mar=c(4,4,2,2))
bowlerWktsFreqPercent("./badree.csv","Badree")
bowlerWktsFreqPercent("./mendis.csv","Mendis")
bowlerWktsFreqPercent("./narine.csv","Narine")
bowlerWktsFreqPercent("./ashwin.csv","Ashwin")

relBowlFP-1

dev.off()
## null device 
##           1

Wickets Runs plot

The plot below gives a boxplot of the runs ranges for each of the wickets taken by the bowlers. The ends of the box indicate the 25% and 75% percentile of runs scored for the wickets taken and the dark balck line is the average runs conceded.

par(mfrow=c(1,4))
par(mar=c(4,4,2,2))
bowlerWktsRunsPlot("./badree.csv","Badree")
bowlerWktsRunsPlot("./mendis.csv","Mendis")
bowlerWktsRunsPlot("./narine.csv","Narine")
bowlerWktsRunsPlot("./ashwin.csv","Ashwin")

wktsrun-1

dev.off()
## null device 
##           1

This plot below shows the average number of deliveries needed by the bowler to take the wickets (1,2,3 etc)

par(mfrow=c(1,2))
par(mar=c(4,4,2,2))
bowlerWktRateTT("./badree.csv","Badree")
bowlerWktRateTT("./mendis.csv","Mendis")

wktsrate1-1

dev.off()
## null device 
##           1
par(mfrow=c(1,2))
par(mar=c(4,4,2,2))
bowlerWktRateTT("./narine.csv","Narine")
bowlerWktRateTT("./ashwin.csv","Ashwin")

wktsrate2-1

dev.off()
## null device 
##           1

Relative bowling performance

The plot below shows that Narine has the most wickets in the 2 -4 range followed by Mendis

frames <- list("./badree.csv","./mendis.csv","narine.csv","ashwin.csv")
names <- list("Badree","Mendis","Narine","Ashwin")
relativeBowlingPerf(frames,names)

relBowlPerf-1

Relative Economy Rate against wickets taken

The economy rate can be deduced as follows from the plot below. Narine has a good economy rate around 1 & 4 wickets, Ashwin around 2 wickets and Badree around 3. wickets

frames <- list("./badree.csv","./mendis.csv","narine.csv","ashwin.csv")
names <- list("Badree","Mendis","Narine","Ashwin")
relativeBowlingERODTT(frames,names)

relBowlER-1

Relative Wicket Rate

The relative wicket rate plots the mean number of deliveries needed to take the wickets namely (1,2,3,4). For e.g. Narine needed an average of 22 deliveries to take 1 wicket and 22.5,23.2, 24 deliveries to take 2,3 & 4 wickets respectively

frames <- list("./badree.csv","./mendis.csv","narine.csv","ashwin.csv")
names <- list("Badree","Mendis","Narine","Ashwin")
relativeWktRateTT(frames,names)

relBowlWktRate-1

Moving average of wickets over career

par(mfrow=c(2,2))
par(mar=c(4,4,2,2))
bowlerMovingAverage("./badree.csv","Badree")
bowlerMovingAverage("./mendis.csv","Mendis")
bowlerMovingAverage("./narine.csv","Narine")
bowlerMovingAverage("./ashwin.csv","Ashwin")
## null device 
##           1

jsba-bowlma-1

Key findings

Here are some key conclusions

Twenty 20 batsmen

  1. Kohli has the a very consistent performance scoring high runs in the different run ranges. Kohli also has a 34.2% likelihood to score 6 runs. He is followed by McCullum for consisten performance
  2. Finch has a best strike rate followed by McCullum.
  3. Du Plessis has the highest percentage of 4s and McCullum has the percentage of 6s. Finch is superior in the percentage of runs scored in 4s and 6s
  4. For a hypothetical balls faced and minutes at crease, Finch does best followed by McCullum
  5. Kohli’s & Du Plessis Twenty20 career is on a upswing. Can they maintain the momentum. McCullum is consistent

Twenty20 bowlers

  1. Narine has the highest wickets percentage for different wickets taken followed by Mendis
  2. Mendis has taken 1,2,3,4,6 wickets in 24 deliveries
  3. Narine has the lowest economy rate for 1 & 4 wickets, Ashwin for 2 wickets and Badree for 3 wickets. Mendis is comparatively expensive
  4. Narine needed the least deliveries to get 1 (22.5) & 2 (23.2) wickets, Mendis needed 20.5 deliveries and Ashwin 19 deliveries for 4 wickets

Key takeaways 1. If all the above batsment and bowlers were in the same team we expect

  1. Finch would be most useful when the run rate has to be greatly accelerated followed by McCullum
  2. If the need is to consolidate, then Kohli is the best man for the job followed by McCullum
  3. Overall McCullum is the best bet for Twenty20
  4. When it comes to bowling Narine wins hands down as he has the most wickets, a good economy rate and a very good attack rate. So Narine is great bet for providing a vital breakthrough.

Also see my other posts in R

  1. Introducing cricketr! : An R package to analyze performances of cricketers
  2. cricketr plays the ODIs!
  3. A peek into literacy in India: Statistical Learning with R
  4. A crime map of India in R – Crimes against women
  5. Analyzing cricket’s batting legends – Through the mirage with R
  6. Mirror, mirror . the best batsman of them all?

You may also like

  1. A closer look at “Robot Horse on a Trot” in Android
  2. What’s up Watson? Using IBM Watson’s QAAPI with Bluemix, NodeExpress – Part 1
  3. Bend it like Bluemix, MongoDB with autoscaling – Part 2
  4. Informed choices through Machine Learning : Analyzing Kohli, Tendulkar and Dravid
  5. TWS-4: Gossip protocol: Epidemics and rumors to the rescue
  6. Deblurring with OpenCV:Weiner filter reloaded
  7. Architecting a cloud based IP Multimedia System (IMS)

cricketr plays the ODIs!


Published in R bloggers: cricketr plays the ODIs

Introduction

In this post my package ‘cricketr’ takes a swing at One Day Internationals(ODIs). Like test batsman who adapt to ODIs with some innovative strokes, the cricketr package has some additional functions and some modified functions to handle the high strike and economy rates in ODIs. As before I have chosen my top 4 ODI batsmen and top 4 ODI bowlers.

Unititled2

If you are passionate about cricket, and love analyzing cricket performances, then check out my 2 racy books on cricket! In my books, I perform detailed yet compact analysis of performances of both batsmen, bowlers besides evaluating team & match performances in Tests , ODIs, T20s & IPL. You can buy my books on cricket from Amazon at $12.99 for the paperback and $4.99/$6.99 respectively for the kindle versions. The books can be accessed at Cricket analytics with cricketr  and Beaten by sheer pace-Cricket analytics with yorkr  A must read for any cricket lover! Check it out!!

1

d $4.99/Rs 320 and $6.99/Rs448 respectively

Important note: Do check out the python avatar of cricketr, ‘cricpy’ in my post ‘Introducing cricpy:A python package to analyze performances of cricketers

Do check out my interactive Shiny app implementation using the cricketr package – Sixer – R package cricketr’s new Shiny avatar

You can also read this post at Rpubs as odi-cricketr. Dowload this report as a PDF file from odi-cricketr.pdf

Note: If you would like to do a similar analysis for a different set of batsman and bowlers, you can clone/download my skeleton cricketr template from Github (which is the R Markdown file I have used for the analysis below). You will only need to make appropriate changes for the players you are interested in. Just a familiarity with R and R Markdown only is needed.
Batsmen

  1. Virendar Sehwag (Ind)
  2. AB Devilliers (SA)
  3. Chris Gayle (WI)
  4. Glenn Maxwell (Aus)

Bowlers

  1. Mitchell Johnson (Aus)
  2. Lasith Malinga (SL)
  3. Dale Steyn (SA)
  4. Tim Southee (NZ)

I have sprinkled the plots with a few of my comments. Feel free to draw your conclusions! The analysis is included below

The profile for Virender Sehwag is 35263. This can be used to get the ODI data for Sehwag. For a batsman the type should be “batting” and for a bowler the type should be “bowling” and the function is getPlayerDataOD()

The package can be installed directly from CRAN

if (!require("cricketr")){ 
    install.packages("cricketr",lib = "c:/test") 
} 
library(cricketr)

or from Github

library(devtools)
install_github("tvganesh/cricketr")
library(cricketr)

The One day data for a particular player can be obtained with the getPlayerDataOD() function. To do you will need to go to ESPN CricInfo Player and type in the name of the player for e.g Virendar Sehwag, etc. This will bring up a page which have the profile number for the player e.g. for Virendar Sehwag this would be http://www.espncricinfo.com/india/content/player/35263.html. Hence, Sehwag’s profile is 35263. This can be used to get the data for Virat Sehwag as shown below

sehwag <- getPlayerDataOD(35263,dir="..",file="sehwag.csv",type="batting")

Analyses of Batsmen

The following plots gives the analysis of the 4 ODI batsmen

  1. Virendar Sehwag (Ind) – Innings – 245, Runs = 8586, Average=35.05, Strike Rate= 104.33
  2. AB Devilliers (SA) – Innings – 179, Runs= 7941, Average=53.65, Strike Rate= 99.12
  3. Chris Gayle (WI) – Innings – 264, Runs= 9221, Average=37.65, Strike Rate= 85.11
  4. Glenn Maxwell (Aus) – Innings – 45, Runs= 1367, Average=35.02, Strike Rate= 126.69

Plot of 4s, 6s and the scoring rate in ODIs

The 3 charts below give the number of

  1. 4s vs Runs scored
  2. 6s vs Runs scored
  3. Balls faced vs Runs scored

A regression line is fitted in each of these plots for each of the ODI batsmen A. Virender Sehwag

par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
batsman4s("./sehwag.csv","Sehwag")
batsman6s("./sehwag.csv","Sehwag")
batsmanScoringRateODTT("./sehwag.csv","Sehwag")

sehwag-4s6sSR-1

dev.off()
## null device 
##           1

B. AB Devilliers

par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
batsman4s("./devilliers.csv","Devillier")
batsman6s("./devilliers.csv","Devillier")
batsmanScoringRateODTT("./devilliers.csv","Devillier")

devillier-4s6SR-1

dev.off()
## null device 
##           1

C. Chris Gayle

par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
batsman4s("./gayle.csv","Gayle")
batsman6s("./gayle.csv","Gayle")
batsmanScoringRateODTT("./gayle.csv","Gayle")

gayle-4s6sSR-1

dev.off()
## null device 
##           1

D. Glenn Maxwell

par(mfrow=c(1,3))
par(mar=c(4,4,2,2))
batsman4s("./maxwell.csv","Maxwell")
batsman6s("./maxwell.csv","Maxwell")
batsmanScoringRateODTT("./maxwell.csv","Maxwell")

maxwell-4s6sout-1

dev.off()
## null device 
##           1

Relative Mean Strike Rate

In this first plot I plot the Mean Strike Rate of the batsmen. It can be seen that Maxwell has a awesome strike rate in ODIs. However we need to keep in mind that Maxwell has relatively much fewer (only 45 innings) innings. He is followed by Sehwag who(most innings- 245) also has an excellent strike rate till 100 runs and then we have Devilliers who roars ahead. This is also seen in the overall strike rate in above

par(mar=c(4,4,2,2))
frames <- list("./sehwag.csv","./devilliers.csv","gayle.csv","maxwell.csv")
names <- list("Sehwag","Devilliers","Gayle","Maxwell")
relativeBatsmanSRODTT(frames,names)

plot-1-1

Relative Runs Frequency Percentage

Sehwag leads in the percentage of runs in 10 run ranges upto 50 runs. Maxwell and Devilliers lead in 55-66 & 66-85 respectively.

frames <- list("./sehwag.csv","./devilliers.csv","gayle.csv","maxwell.csv")
names <- list("Sehwag","Devilliers","Gayle","Maxwell")
relativeRunsFreqPerfODTT(frames,names)

plot-2-1

Percentage of 4s,6s in the runs scored

The plot below shows the percentage of runs made by the batsmen by ways of 1s,2s,3s, 4s and 6s. It can be seen that Sehwag has the higheest percent of 4s (33.36%) in his overall runs in ODIs. Maxwell has the highest percentage of 6s (13.36%) in his ODI career. If we take the overall 4s+6s then Sehwag leads with (33.36 +5.95 = 39.31%),followed by Gayle (27.80+10.15=37.95%)

Percent 4’s,6’s in total runs scored

The plot below shows the contrib

frames <- list("./sehwag.csv","./devilliers.csv","gayle.csv","maxwell.csv")
names <- list("Sehwag","Devilliers","Gayle","Maxwell")
runs4s6s <-batsman4s6s(frames,names)

plot-46s-1

print(runs4s6s)
##                Sehwag Devilliers Gayle Maxwell
## Runs(1s,2s,3s)  60.69      67.39 62.05   62.11
## 4s              33.36      24.28 27.80   24.53
## 6s               5.95       8.32 10.15   13.36
 

Runs forecast

The forecast for the batsman is shown below.

par(mfrow=c(2,2))
par(mar=c(4,4,2,2))
batsmanPerfForecast("./sehwag.csv","Sehwag")
batsmanPerfForecast("./devilliers.csv","Devilliers")
batsmanPerfForecast("./gayle.csv","Gayle")
batsmanPerfForecast("./maxwell.csv","Maxwell")

swcr-perf-1

dev.off()
## null device 
##           1

3D plot of Runs vs Balls Faced and Minutes at Crease

The plot is a scatter plot of Runs vs Balls faced and Minutes at Crease. A prediction plane is fitted

par(mfrow=c(1,2))
par(mar=c(4,4,2,2))
battingPerf3d("./sehwag.csv","V Sehwag")
battingPerf3d("./devilliers.csv","AB Devilliers")

plot-3-1

dev.off()
## null device 
##           1
par(mfrow=c(1,2))
par(mar=c(4,4,2,2))
battingPerf3d("./gayle.csv","C Gayle")
battingPerf3d("./maxwell.csv","G Maxwell")

plot-4-1

dev.off()
## null device 
##           1

Predicting Runs given Balls Faced and Minutes at Crease

A multi-variate regression plane is fitted between Runs and Balls faced +Minutes at crease.

BF <- seq( 10, 200,length=10)
Mins <- seq(30,220,length=10)
newDF <- data.frame(BF,Mins)

sehwag <- batsmanRunsPredict("./sehwag.csv","Sehwag",newdataframe=newDF)
devilliers <- batsmanRunsPredict("./devilliers.csv","Devilliers",newdataframe=newDF)
gayle <- batsmanRunsPredict("./gayle.csv","Gayle",newdataframe=newDF)
maxwell <- batsmanRunsPredict("./maxwell.csv","Maxwell",newdataframe=newDF)

The fitted model is then used to predict the runs that the batsmen will score for a hypotheticial Balls faced and Minutes at crease. It can be seen that Maxwell sets a searing pace in the predicted runs for a given Balls Faced and Minutes at crease followed by Sehwag. But we have to keep in mind that Maxwell has only around 1/5th of the innings of Sehwag (45 to Sehwag’s 245 innings). They are followed by Devilliers and then finally Gayle

batsmen <-cbind(round(sehwag$Runs),round(devilliers$Runs),round(gayle$Runs),round(maxwell$Runs))
colnames(batsmen) <- c("Sehwag","Devilliers","Gayle","Maxwell")
newDF <- data.frame(round(newDF$BF),round(newDF$Mins))
colnames(newDF) <- c("BallsFaced","MinsAtCrease")
predictedRuns <- cbind(newDF,batsmen)
predictedRuns
##    BallsFaced MinsAtCrease Sehwag Devilliers Gayle Maxwell
## 1          10           30     11         12    11      18
## 2          31           51     33         32    28      43
## 3          52           72     55         52    46      67
## 4          73           93     77         71    63      92
## 5          94          114    100         91    81     117
## 6         116          136    122        111    98     141
## 7         137          157    144        130   116     166
## 8         158          178    167        150   133     191
## 9         179          199    189        170   151     215
## 10        200          220    211        190   168     240

Highest runs likelihood

The plots below the runs likelihood of batsman. This uses K-Means It can be seen that Devilliers has almost 27.75% likelihood to make around 90+ runs. Gayle and Sehwag have 34% to make 40+ runs. A. Virender Sehwag

A. Virender Sehwag

batsmanRunsLikelihood("./sehwag.csv","Sehwag")

smith-1

## Summary of  Sehwag 's runs scoring likelihood
## **************************************************
## 
## There is a 35.22 % likelihood that Sehwag  will make  46 Runs in  44 balls over 67  Minutes 
## There is a 9.43 % likelihood that Sehwag  will make  119 Runs in  106 balls over  158  Minutes 
## There is a 55.35 % likelihood that Sehwag  will make  12 Runs in  13 balls over 18  Minutes

B. AB Devilliers

batsmanRunsLikelihood("./devilliers.csv","Devilliers")

warner-1

## Summary of  Devilliers 's runs scoring likelihood
## **************************************************
## 
## There is a 30.65 % likelihood that Devilliers  will make  44 Runs in  43 balls over 60  Minutes 
## There is a 29.84 % likelihood that Devilliers  will make  91 Runs in  88 balls over  124  Minutes 
## There is a 39.52 % likelihood that Devilliers  will make  11 Runs in  15 balls over 21  Minutes

C. Chris Gayle

batsmanRunsLikelihood("./gayle.csv","Gayle")

cook,cache-TRUE-1

## Summary of  Gayle 's runs scoring likelihood
## **************************************************
## 
## There is a 32.69 % likelihood that Gayle  will make  47 Runs in  51 balls over 72  Minutes 
## There is a 54.49 % likelihood that Gayle  will make  10 Runs in  15 balls over  20  Minutes 
## There is a 12.82 % likelihood that Gayle  will make  109 Runs in  119 balls over 172  Minutes

D. Glenn Maxwell

batsmanRunsLikelihood("./maxwell.csv","Maxwell")

oot-1

## Summary of  Maxwell 's runs scoring likelihood
## **************************************************
## 
## There is a 34.38 % likelihood that Maxwell  will make  39 Runs in  29 balls over 35  Minutes 
## There is a 15.62 % likelihood that Maxwell  will make  89 Runs in  55 balls over  69  Minutes 
## There is a 50 % likelihood that Maxwell  will make  6 Runs in  7 balls over 9  Minutes

Average runs at ground and against opposition

A. Virender Sehwag

par(mfrow=c(1,2))
par(mar=c(4,4,2,2))
batsmanAvgRunsGround("./sehwag.csv","Sehwag")
batsmanAvgRunsOpposition("./sehwag.csv","Sehwag")

avgrg-1-1

dev.off()
## null device 
##           1

B. AB Devilliers

par(mfrow=c(1,2))
par(mar=c(4,4,2,2))
batsmanAvgRunsGround("./devilliers.csv","Devilliers")
batsmanAvgRunsOpposition("./devilliers.csv","Devilliers")

avgrg-2-1

dev.off()
## null device 
##           1

C. Chris Gayle

par(mfrow=c(1,2))
par(mar=c(4,4,2,2))
batsmanAvgRunsGround("./gayle.csv","Gayle")
batsmanAvgRunsOpposition("./gayle.csv","Gayle")

avgrg-3-1

dev.off()
## null device 
##           1

D. Glenn Maxwell

par(mfrow=c(1,2))
par(mar=c(4,4,2,2))
batsmanAvgRunsGround("./maxwell.csv","Maxwell")
batsmanAvgRunsOpposition("./maxwell.csv","Maxwell")

avgrg-4-1

dev.off()
## null device 
##           1

Moving Average of runs over career

The moving average for the 4 batsmen indicate the following

1. The moving average of Devilliers and Maxwell is on the way up.
2. Sehwag shows a slight downward trend from his 2nd peak in 2011
3. Gayle maintains a consistent 45 runs for the last few years

par(mfrow=c(2,2))
par(mar=c(4,4,2,2))
batsmanMovingAverage("./sehwag.csv","Sehwag")
batsmanMovingAverage("./devilliers.csv","Devilliers")
batsmanMovingAverage("./gayle.csv","Gayle")
batsmanMovingAverage("./maxwell.csv","Maxwell")

sdgm-ma-1

dev.off()
## null device 
##           1

Check batsmen in-form, out-of-form

  1. Maxwell, Devilliers, Sehwag are in-form. This is also evident from the moving average plot
  2. Gayle is out-of-form
checkBatsmanInForm("./sehwag.csv","Sehwag")
## *******************************************************************************************
## 
## Population size: 143  Mean of population: 33.76 
## Sample size: 16  Mean of sample: 37.44 SD of sample: 55.15 
## 
## Null hypothesis H0 : Sehwag 's sample average is within 95% confidence interval 
##         of population average
## Alternative hypothesis Ha : Sehwag 's sample average is below the 95% confidence
##         interval of population average
## 
## [1] "Sehwag 's Form Status: In-Form because the p value: 0.603525  is greater than alpha=  0.05"
## *******************************************************************************************
checkBatsmanInForm("./devilliers.csv","Devilliers")
## *******************************************************************************************
## 
## Population size: 111  Mean of population: 43.5 
## Sample size: 13  Mean of sample: 57.62 SD of sample: 40.69 
## 
## Null hypothesis H0 : Devilliers 's sample average is within 95% confidence interval 
##         of population average
## Alternative hypothesis Ha : Devilliers 's sample average is below the 95% confidence
##         interval of population average
## 
## [1] "Devilliers 's Form Status: In-Form because the p value: 0.883541  is greater than alpha=  0.05"
## *******************************************************************************************
checkBatsmanInForm("./gayle.csv","Gayle")
## *******************************************************************************************
## 
## Population size: 140  Mean of population: 37.1 
## Sample size: 16  Mean of sample: 17.25 SD of sample: 20.25 
## 
## Null hypothesis H0 : Gayle 's sample average is within 95% confidence interval 
##         of population average
## Alternative hypothesis Ha : Gayle 's sample average is below the 95% confidence
##         interval of population average
## 
## [1] "Gayle 's Form Status: Out-of-Form because the p value: 0.000609  is less than alpha=  0.05"
## *******************************************************************************************
checkBatsmanInForm("./maxwell.csv","Maxwell")
## *******************************************************************************************
## 
## Population size: 28  Mean of population: 25.25 
## Sample size: 4  Mean of sample: 64.25 SD of sample: 36.97 
## 
## Null hypothesis H0 : Maxwell 's sample average is within 95% confidence interval 
##         of population average
## Alternative hypothesis Ha : Maxwell 's sample average is below the 95% confidence
##         interval of population average
## 
## [1] "Maxwell 's Form Status: In-Form because the p value: 0.948744  is greater than alpha=  0.05"
## *******************************************************************************************

Analysis of bowlers

  1. Mitchell Johnson (Aus) – Innings-150, Wickets – 239, Econ Rate : 4.83
  2. Lasith Malinga (SL)- Innings-182, Wickets – 287, Econ Rate : 5.26
  3. Dale Steyn (SA)- Innings-103, Wickets – 162, Econ Rate : 4.81
  4. Tim Southee (NZ)- Innings-96, Wickets – 135, Econ Rate : 5.33

Malinga has the highest number of innings and wickets followed closely by Mitchell. Steyn and Southee have relatively fewer innings.

To get the bowler’s data use

malinga <- getPlayerDataOD(49758,dir=".",file="malinga.csv",type="bowling")

Wicket Frequency percentage

This plot gives the percentage of wickets for each wickets (1,2,3…etc)

par(mfrow=c(1,4))
par(mar=c(4,4,2,2))
bowlerWktsFreqPercent("./mitchell.csv","J Mitchell")
bowlerWktsFreqPercent("./malinga.csv","Malinga")
bowlerWktsFreqPercent("./steyn.csv","Steyn")
bowlerWktsFreqPercent("./southee.csv","southee")

relBowlFP-1

dev.off()
## null device 
##           1

Wickets Runs plot

The plot below gives a boxplot of the runs ranges for each of the wickets taken by the bowlers. M Johnson and Steyn are more economical than Malinga and Southee corroborating the figures above

par(mfrow=c(1,4))
par(mar=c(4,4,2,2))

bowlerWktsRunsPlot("./mitchell.csv","J Mitchell")
bowlerWktsRunsPlot("./malinga.csv","Malinga")
bowlerWktsRunsPlot("./steyn.csv","Steyn")
bowlerWktsRunsPlot("./southee.csv","southee")

wktsrun-1

dev.off()
## null device 
##           1

Average wickets in different grounds and opposition

A. Mitchell Johnson

par(mfrow=c(1,2))
par(mar=c(4,4,2,2))
bowlerAvgWktsGround("./mitchell.csv","J Mitchell")
bowlerAvgWktsOpposition("./mitchell.csv","J Mitchell")

gr-1-1

dev.off()
## null device 
##           1

B. Lasith Malinga

par(mfrow=c(1,2))
par(mar=c(4,4,2,2))
bowlerAvgWktsGround("./malinga.csv","Malinga")
bowlerAvgWktsOpposition("./malinga.csv","Malinga")

gr-2-1

dev.off()
## null device 
##           1

C. Dale Steyn

par(mfrow=c(1,2))
par(mar=c(4,4,2,2))
bowlerAvgWktsGround("./steyn.csv","Steyn")
bowlerAvgWktsOpposition("./steyn.csv","Steyn")

gr-3-1

dev.off()
## null device 
##           1

D. Tim Southee

par(mfrow=c(1,2))
par(mar=c(4,4,2,2))
bowlerAvgWktsGround("./southee.csv","southee")
bowlerAvgWktsOpposition("./southee.csv","southee")

avgrg-4-1

dev.off()
## null device 
##           1

Relative bowling performance

The plot below shows that Mitchell Johnson and Southee have more wickets in 3-4 wickets range while Steyn and Malinga in 1-2 wicket range

frames <- list("./mitchell.csv","./malinga.csv","steyn.csv","southee.csv")
names <- list("M Johnson","Malinga","Steyn","Southee")
relativeBowlingPerf(frames,names)

relBowlPerf-1

Relative Economy Rate against wickets taken

Steyn had the best economy rate followed by M Johnson. Malinga and Southee have a poorer economy rate

frames <- list("./mitchell.csv","./malinga.csv","steyn.csv","southee.csv")
names <- list("M Johnson","Malinga","Steyn","Southee")
relativeBowlingERODTT(frames,names)

relBowlER-1

Moving average of wickets over career

Johnson and Steyn career vs wicket graph is on the up-swing. Southee is maintaining a reasonable record while Malinga shows a decline in ODI performance

par(mfrow=c(2,2))
par(mar=c(4,4,2,2))
bowlerMovingAverage("./mitchell.csv","M Johnson")
bowlerMovingAverage("./malinga.csv","Malinga")
bowlerMovingAverage("./steyn.csv","Steyn")
bowlerMovingAverage("./southee.csv","Southee")

jmss-bowlma-1

dev.off()
## null device 
##           1

Wickets forecast

par(mfrow=c(2,2))
par(mar=c(4,4,2,2))
bowlerPerfForecast("./mitchell.csv","M Johnson")
bowlerPerfForecast("./malinga.csv","Malinga")
bowlerPerfForecast("./steyn.csv","Steyn")
bowlerPerfForecast("./southee.csv","southee")

jsba-pfcst-1

dev.off()
## null device 
##           1

Check bowler in-form, out-of-form

All the bowlers are shown to be still in-form

checkBowlerInForm("./mitchell.csv","J Mitchell")
## *******************************************************************************************
## 
## Population size: 135  Mean of population: 1.55 
## Sample size: 15  Mean of sample: 2 SD of sample: 1.07 
## 
## Null hypothesis H0 : J Mitchell 's sample average is within 95% confidence interval 
##         of population average
## Alternative hypothesis Ha : J Mitchell 's sample average is below the 95% confidence
##         interval of population average
## 
## [1] "J Mitchell 's Form Status: In-Form because the p value: 0.937917  is greater than alpha=  0.05"
## *******************************************************************************************
checkBowlerInForm("./malinga.csv","Malinga")
## *******************************************************************************************
## 
## Population size: 163  Mean of population: 1.58 
## Sample size: 19  Mean of sample: 1.58 SD of sample: 1.22 
## 
## Null hypothesis H0 : Malinga 's sample average is within 95% confidence interval 
##         of population average
## Alternative hypothesis Ha : Malinga 's sample average is below the 95% confidence
##         interval of population average
## 
## [1] "Malinga 's Form Status: In-Form because the p value: 0.5  is greater than alpha=  0.05"
## *******************************************************************************************
checkBowlerInForm("./steyn.csv","Steyn")
## *******************************************************************************************
## 
## Population size: 93  Mean of population: 1.59 
## Sample size: 11  Mean of sample: 1.45 SD of sample: 0.69 
## 
## Null hypothesis H0 : Steyn 's sample average is within 95% confidence interval 
##         of population average
## Alternative hypothesis Ha : Steyn 's sample average is below the 95% confidence
##         interval of population average
## 
## [1] "Steyn 's Form Status: In-Form because the p value: 0.257438  is greater than alpha=  0.05"
## *******************************************************************************************
checkBowlerInForm("./southee.csv","southee")
## *******************************************************************************************
## 
## Population size: 86  Mean of population: 1.48 
## Sample size: 10  Mean of sample: 0.8 SD of sample: 1.14 
## 
## Null hypothesis H0 : southee 's sample average is within 95% confidence interval 
##         of population average
## Alternative hypothesis Ha : southee 's sample average is below the 95% confidence
##         interval of population average
## 
## [1] "southee 's Form Status: Out-of-Form because the p value: 0.044302  is less than alpha=  0.05"
## *******************************************************************************************

***************

Key findings

Here are some key conclusions ODI batsmen

  1. AB Devilliers has high frequency of runs in the 60-120 range and the highest average
  2. Sehwag has the most number of innings and good strike rate
  3. Maxwell has the best strike rate but it should be kept in mind that he has 1/5 of the innings of Sehwag. We need to see how he progress further
  4. Sehwag has the highest percentage of 4s in the runs scored, while Maxwell has the most 6s
  5. For a hypothetical Balls Faced and Minutes at creases Maxwell will score the most runs followed by Sehwag
  6. The moving average of indicates that the best is yet to come for Devilliers and Maxwell. Sehwag has a few more years in him while Gayle shows a decline in ODI performance and an out of form is indicated.

ODI bowlers

  1. Malinga has the highest played the highest innings and also has the highest wickets though he has poor economy rate
  2. M Johnson is the most effective in the 3-4 wicket range followed by Southee
  3. M Johnson and Steyn has the best overall economy rate followed by Malinga and Steyn 4 M Johnson and Steyn’s career is on the up-swing,Southee maintains a steady consistent performance, while Malinga shows a downward trend

Hasta la vista! I’ll be back!
Watch this space!

Also see my other posts in R

  1. Introducing cricketr! : An R package to analyze performances of cricketers
  2. cricketr digs the Ashes!
  3. A peek into literacy in India: Statistical Learning with R
  4. A crime map of India in R – Crimes against women
  5. Analyzing cricket’s batting legends – Through the mirage with R
  6. Mirror, mirror . the best batsman of them all?

You may also like

  1. A closer look at “Robot Horse on a Trot” in Android
  2. What’s up Watson? Using IBM Watson’s QAAPI with Bluemix, NodeExpress – Part 1
  3. Bend it like Bluemix, MongoDB with autoscaling – Part 2
  4. Informed choices through Machine Learning : Analyzing Kohli, Tendulkar and Dravid
  5. TWS-4: Gossip protocol: Epidemics and rumors to the rescue
  6. Deblurring with OpenCV:Weiner filter reloadedhttp://www.r-bloggers.com/cricketr-plays-the-odis/