I will be uploading a series of presentations on ‘Elements of Neural Networks and Deep Learning’. In these video presentations I discuss the derivations of L -Layer Deep Learning Networks, starting from the basics. The corresponding implementations are available in vectorized R, Python and Octave are available in my book ‘Deep Learning from first principles:Second edition- In vectorized Python, R and Octave‘

1. **Elements of Neural Networks and Deep Learning – Part 1**

This presentation introduces Neural Networks and Deep Learning. A look at history of Neural Networks, Perceptrons and why Deep Learning networks are required and concluding with a simple toy examples of a Neural Network and how they compute

2. **Elements of Neural Networks and Deep Learning – Part 2**

This presentation takes logistic regression as an example and creates an equivalent 2 layer Neural network. The presentation also takes a look at forward & backward propagation and how the cost is minimized using gradient descent

The implementation of the discussed 2 layer Neural Network in vectorized R, Python and Octave are available in my post ‘Deep Learning from first principles in Python, R and Octave – Part 1‘

3. **Elements of Neural Networks and Deep Learning – Part 3**

This 3rd part, discusses a primitive neural network with an input layer, output layer and a hidden layer. The neural network uses tanh activation in the hidden layer and a sigmoid activation in the output layer. The equations for forward and backward propagation are derived.

To see the implementations for the above discussed video see my post ‘Deep Learning from first principles in Python, R and Octave – Part 2‘

**Important note**: Do check out my later version of these videos at Take 4+: Presentations on ‘Elements of Neural Networks and Deep Learning’ – Parts 1-8 . These have more content and also include some corrections. Check it out!

To be continued. Watch this space!

Checkout my book ‘Deep Learning from first principles: Second Edition – In vectorized Python, R and Octave’. My book starts with the implementation of a simple 2-layer Neural Network and works its way to a generic L-Layer Deep Learning Network, with all the bells and whistles. The derivations have been discussed in detail. The code has been extensively commented and included in its entirety in the Appendix sections. My book is available on Amazon as paperback ($18.99) and in kindle version($9.99/Rs449).

You may also like

1. My book ‘Practical Machine Learning in R and Python: Third edition’ on Amazon

2. Introducing cricpy:A python package to analyze performances of cricketers

3. Natural language processing: What would Shakespeare say?

4. TWS-4: Gossip protocol: Epidemics and rumors to the rescue

5. Getting started with memcached-libmemcached

6. Simplifying ML: Impact of degree of polynomial degree on bias & variance and other insights

To see all posts click Index of posts

This post is a continuation of my earlier post Big Data-1: Move into the big league:Graduate from Python to Pyspark. While the earlier post discussed parallel constructs in Python and Pyspark, this post elaborates similar and key constructs in R and SparkR. While this post just focuses on the programming part of R and SparkR it is essential to understand and fully grasp the concept of Spark, RDD and how data is distributed across the clusters. This post like the earlier post shows how if you already have a good handle of R, you can easily graduate to Big Data with SparkR

Note 1: This notebook has also been published at Databricks community site Big Data-2: Move into the big league:Graduate from R to SparkRNote 2: You can download this RMarkdown file from Github at Big Data- Python to Pyspark and R to SparkR