GooglyPlusPlus: Win Probability using Deep Learning and player embeddings

In my last post ‘GooglyPlusPlus now with Win Probability Analysis for all T20 matches‘ I had discussed the performance of my ML models, created with and without player embeddings, in computing the Win Probability of T20 matches. With batsman & bowler embeddings I got much better performance than without the embeddings

  • glmnet – Accuracy – 0.73
  • Random Forest (RF) – Accuracy – 0.92

While the Random Forest gave excellent accuracy, it was bulky and also took an unusually long time to predict the Win Probability of a single T20 match. The above 2 ML models were built using R’s Tidymodels. glmnet was fast, but I wanted to see if I could create a ML model that was better, lighter and faster. I had initially tried to use Tensorflow, Keras in Python but then abandoned it, since I did not know how to port the Deep Learning model to R and use in my app GooglyPlusPlus.

But later, since I was stuck with a bulky Random Forest model, I decided to again explore options for saving the Keras Deep Learning model and loading it in R. I found out that saving the model as .h5, we can load it in R and use it for predictions. Hence, I rebuilt a Deep Learning model using Keras, Python with player embeddings and I got excellent performance. The DL model was light and had an accuracy 0.8639 with an ROC_AUC of 0.964 which was great!

GooglyPlusPlus uses data from Cricsheet and is based on my R package yorkr

You can try out this latest version of GooglyPlusPlus at gpp2023-1

Here are the steps

A. Build a Keras Deep Learning model

a. Import necessary packages

import pandas as pd
import numpy as np
from zipfile import ZipFile
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras import regularizers
from pathlib import Path
import matplotlib.pyplot as plt

b, Upload the data of all 9 T20 leagues (BBL, CPL, IPL, T20 (men) , T20(women), NTB, CPL, SSM, WBB)

# Read all T20 leagues 
df1=pd.read_csv('t20.csv')
print("Shape of dataframe=",df1.shape)

# Create training and test data set
train_dataset = df1.sample(frac=0.8,random_state=0)
test_dataset = df1.drop(train_dataset.index)
train_dataset1 = train_dataset[['batsmanIdx','bowlerIdx','ballNum','ballsRemaining','runs','runRate','numWickets','runsMomentum','perfIndex']]
test_dataset1 = test_dataset[['batsmanIdx','bowlerIdx','ballNum','ballsRemaining','runs','runRate','numWickets','runsMomentum','perfIndex']]
train_dataset1

# Set the target data
train_labels = train_dataset.pop('isWinner')
test_labels = test_dataset.pop('isWinner')
train_dataset1

a=train_dataset1.describe()
stats=a.transpose
a

c. Create a Deep Learning ML model using batsman & bowler embeddings

import pandas as pd
import numpy as np
from keras.layers import Input, Embedding, Flatten, Dense
from keras.models import Model
from keras.layers import Input, Embedding, Flatten, Dense, Reshape, Concatenate, Dropout
from keras.models import Model

# Set seed
tf.random.set_seed(432)

# create input layers for each of the predictors
batsmanIdx_input = Input(shape=(1,), name='batsmanIdx')
bowlerIdx_input = Input(shape=(1,), name='bowlerIdx')
ballNum_input = Input(shape=(1,), name='ballNum')
ballsRemaining_input = Input(shape=(1,), name='ballsRemaining')
runs_input = Input(shape=(1,), name='runs')
runRate_input = Input(shape=(1,), name='runRate')
numWickets_input = Input(shape=(1,), name='numWickets')
runsMomentum_input = Input(shape=(1,), name='runsMomentum')
perfIndex_input = Input(shape=(1,), name='perfIndex')

# Set the embedding size as the 4th root of unique batsmen, bowlers
no_of_unique_batman=len(df1["batsmanIdx"].unique()) 
no_of_unique_bowler=len(df1["bowlerIdx"].unique()) 
embedding_size_bat = no_of_unique_batman ** (1/4)
embedding_size_bwl = no_of_unique_bowler ** (1/4)


# create embedding layer for the categorical predictor
batsmanIdx_embedding = Embedding(input_dim=no_of_unique_batman+1, output_dim=16,input_length=1)(batsmanIdx_input)
batsmanIdx_flatten = Flatten()(batsmanIdx_embedding)
bowlerIdx_embedding = Embedding(input_dim=no_of_unique_bowler+1, output_dim=16,input_length=1)(bowlerIdx_input)
bowlerIdx_flatten = Flatten()(bowlerIdx_embedding)

# concatenate all the predictors
x = keras.layers.concatenate([batsmanIdx_flatten,bowlerIdx_flatten, ballNum_input, ballsRemaining_input, runs_input, runRate_input, numWickets_input, runsMomentum_input, perfIndex_input])

# add hidden layers
# Use dropouts for regularisation
x = Dense(64, activation='relu')(x)
x = Dropout(0.1)(x)
x = Dense(32, activation='relu')(x)
x = Dropout(0.1)(x)
x = Dense(16, activation='relu')(x)
x = Dropout(0.1)(x)
x = Dense(8, activation='relu')(x)
x = Dropout(0.1)(x)

# add output layer
output = Dense(1, activation='sigmoid', name='output')(x)
print(output.shape)

# create a DL model
model = Model(inputs=[batsmanIdx_input,bowlerIdx_input, ballNum_input, ballsRemaining_input, runs_input, runRate_input, numWickets_input, runsMomentum_input, perfIndex_input], outputs=output)
model.summary()

# compile model
optimizer=keras.optimizers.Adam(learning_rate=.01, beta_1=0.9, beta_2=0.999, epsilon=1e-07, decay=0.0, amsgrad=True)

model.compile(optimizer=optimizer, loss='binary_crossentropy', metrics=['accuracy'])

# train the model
history=model.fit([train_dataset1['batsmanIdx'],train_dataset1['bowlerIdx'],train_dataset1['ballNum'],train_dataset1['ballsRemaining'],train_dataset1['runs'],
           train_dataset1['runRate'],train_dataset1['numWickets'],train_dataset1['runsMomentum'],train_dataset1['perfIndex']], train_labels, epochs=40, batch_size=1024,
          validation_data = ([test_dataset1['batsmanIdx'],test_dataset1['bowlerIdx'],test_dataset1['ballNum'],test_dataset1['ballsRemaining'],test_dataset1['runs'],
           test_dataset1['runRate'],test_dataset1['numWickets'],test_dataset1['runsMomentum'],test_dataset1['perfIndex']],test_labels), verbose=1)

plt.plot(history.history["loss"])
plt.plot(history.history["val_loss"])
plt.title("model loss")
plt.ylabel("loss")
plt.xlabel("epoch")
plt.legend(["train", "test"], loc="upper left")
plt.show()

Model: "model_5"
__________________________________________________________________________________________________
 Layer (type)                   Output Shape         Param #     Connected to                     
==================================================================================================
 batsmanIdx (InputLayer)        [(None, 1)]          0           []                               
                                                                                                  
 bowlerIdx (InputLayer)         [(None, 1)]          0           []                               
                                                                                                  
 embedding_10 (Embedding)       (None, 1, 16)        75888       ['batsmanIdx[0][0]']             
                                                                                                  
 embedding_11 (Embedding)       (None, 1, 16)        55808       ['bowlerIdx[0][0]']              
                                                                                                  
 flatten_10 (Flatten)           (None, 16)           0           ['embedding_10[0][0]']           
                                                                                                  
 flatten_11 (Flatten)           (None, 16)           0           ['embedding_11[0][0]']           
                                                                                                  
 ballNum (InputLayer)           [(None, 1)]          0           []                               
                                                                                                  
 ballsRemaining (InputLayer)    [(None, 1)]          0           []                               
                                                                                                  
 runs (InputLayer)              [(None, 1)]          0           []                               
                                                                                                  
 runRate (InputLayer)           [(None, 1)]          0           []                               
                                                                                                  
 numWickets (InputLayer)        [(None, 1)]          0           []                               
                                                                                                  
 runsMomentum (InputLayer)      [(None, 1)]          0           []                               
                                                                                                  
 perfIndex (InputLayer)         [(None, 1)]          0           []                               
                                                                                                  
 concatenate_5 (Concatenate)    (None, 39)           0           ['flatten_10[0][0]',             
                                                                  'flatten_11[0][0]',             
                                                                  'ballNum[0][0]',                
                                                                  'ballsRemaining[0][0]',         
                                                                  'runs[0][0]',                   
                                                                  'runRate[0][0]',                
                                                                  'numWickets[0][0]',             
                                                                  'runsMomentum[0][0]',           
                                                                  'perfIndex[0][0]']              
                                                                                                  
 dense_19 (Dense)               (None, 64)           2560        ['concatenate_5[0][0]']          
                                                                                                  
 dropout_19 (Dropout)           (None, 64)           0           ['dense_19[0][0]']               
                                                                                                  
 dense_20 (Dense)               (None, 32)           2080        ['dropout_19[0][0]']             
                                                                                                  
 dropout_20 (Dropout)           (None, 32)           0           ['dense_20[0][0]']               
                                                                                                  
 dense_21 (Dense)               (None, 16)           528         ['dropout_20[0][0]']             
                                                                                                  
 dropout_21 (Dropout)           (None, 16)           0           ['dense_21[0][0]']               
                                                                                                  
 dense_22 (Dense)               (None, 8)            136         ['dropout_21[0][0]']             
                                                                                                  
 dropout_22 (Dropout)           (None, 8)            0           ['dense_22[0][0]']               
                                                                                                  
 output (Dense)                 (None, 1)            9           ['dropout_22[0][0]']             
                                                                                                  
==================================================================================================
Total params: 137,009
Trainable params: 137,009
Non-trainable params: 0
__________________________________________________________________________________________________
Epoch 1/40
937/937 [==============================] - 11s 10ms/step - loss: 0.5683 - accuracy: 0.6968 - val_loss: 0.4480 - val_accuracy: 0.7708
Epoch 2/40
937/937 [==============================] - 9s 10ms/step - loss: 0.4477 - accuracy: 0.7721 - val_loss: 0.4305 - val_accuracy: 0.7833
Epoch 3/40
937/937 [==============================] - 9s 10ms/step - loss: 0.4229 - accuracy: 0.7832 - val_loss: 0.3984 - val_accuracy: 0.7936
...
...
937/937 [==============================] - 10s 10ms/step - loss: 0.2909 - accuracy: 0.8627 - val_loss: 0.2943 - val_accuracy: 0.8613
Epoch 38/40
937/937 [==============================] - 10s 10ms/step - loss: 0.2892 - accuracy: 0.8633 - val_loss: 0.2933 - val_accuracy: 0.8621
Epoch 39/40
937/937 [==============================] - 10s 10ms/step - loss: 0.2889 - accuracy: 0.8638 - val_loss: 0.2941 - val_accuracy: 0.8620
Epoch 40/40
937/937 [==============================] - 10s 11ms/step - loss: 0.2886 - accuracy: 0.8639 - val_loss: 0.2929 - val_accuracy: 0.8621

d. Compute and plot the ROC-AUC for the above model

from sklearn.metrics import roc_curve

# Select a random sample set
tf.random.set_seed(59)
train = df1.sample(frac=0.9,random_state=0)
test = df1.drop(train_dataset.index)
test_dataset1 = test[['batsmanIdx','bowlerIdx','ballNum','ballsRemaining','runs','runRate','numWickets','runsMomentum','perfIndex']]
test_labels = test.pop('isWinner')

# Compute the predicted values
y_pred_keras = model.predict([test_dataset1['batsmanIdx'],test_dataset1['bowlerIdx'],test_dataset1['ballNum'],test_dataset1['ballsRemaining'],test_dataset1['runs'],
           test_dataset1['runRate'],test_dataset1['numWickets'],test_dataset1['runsMomentum'],test_dataset1['perfIndex']]).ravel()

# Compute TPR & FPR
fpr_keras, tpr_keras, thresholds_keras = roc_curve(test_labels, y_pred_keras)

fpr_keras, tpr_keras, thresholds_keras = roc_curve(test_labels, y_pred_keras)
from sklearn.metrics import auc

# Plot the Area Under the Curve (AUC)
auc_keras = auc(fpr_keras, tpr_keras)
plt.figure(1)
plt.plot([0, 1], [0, 1], 'k--')
plt.plot(fpr_keras, tpr_keras, label='Keras (area = {:.3f})'.format(auc_keras))
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.title('ROC curve')
plt.legend(loc='best')
plt.show()

The ROC_AUC for the Deep Learning Model is 0.946 as seen below

e. Save the Keras model for use in Python

from keras.models import Model
model.save("wpDL.h5")

f. Load the model in R using rhdf5 package for use in GooglyPlusPlus

library(rhdf5)
dl_model <- load_model_hdf5('wpDL.h5')

This was a huge success for me to be able to create the Deep Learning model in Python and use it in my Shiny app GooglyPlusPlus. The Deep Learning Keras model is light-weight and extremely fast.

The Deep Learning model has now been integrated into GooglyPlusPlus. Now you can check the Win Probability using both a) glmnet (Logistic Regression with lasso regularisation) b) Keras Deep Learning model with dropouts as regularisation

In addition I have created 2 features based on Win Probability (WP)

i) Win Probability (Side-by-side – Plot(interactive) : With this functionality the 1st and 2nd innings will be side-by-side. When the 1st innings is played by team 1, the Win Probability of team 2 = 100 – WP (team1). Similarly, when the 2nd innings is being played by team 2, the Win Probability of team1 = 100 – WP (team 2)

ii) Win Probability (Overlapping) – Plot (static): With this functionality the Win Probabilities of both team1(1st innings) & team 2 (2nd innings) are displayed overlapping, so that we can see how the probabilities vary ball-by-ball.

Note: Since the same UI is used for all match functions I had to re-use the Plot(interactive) and Plot(static) radio buttons for Win Probability (Side-by-side) and Win Probability(Overlapping) respectively

Here are screenshots using both ML models with both functionality for some random matches

B) ICC T20 Men World Cup – Netherland-South Africa- 2022-11-06

i) Match Worm wicket chart

ii) Win Probability with LR (Side-by-Side- Plot(interactive))

iii) Win Probability LR (Overlapping- Plot(static))

iv) Win Probability Deep Learning (Side-by-side – Plot(interactive)

In the 213th ball of the innings South Africa was slightly ahead of Netherlands. After that they crashed and burned!

v) Win Probability Deep Learning (Overlapping – Plot (static)

It can be seen that in the 94th ball of both innings South Africa was ahead of Netherlands before the eventual slump.

C) Intl. T20 (Women) India – New Zealand – 2020 – 02 – 27

Here is an interesting match between India and New Zealand T20 Women’s teams. NZ successfully chased the India’s total in a wildly swinging fortunes. See the charts below

i) Match Worm Wicket chart

ii) Win Probability with LR (Side-by-side – Plot (interactive)

iii) Win Probability with LR (Overlapping – Plot (static)

iv) Win Probability with DL model (Side-by-side – Plot (interactive))

v) Win Probability with DL model (Overlapping – Plot (static))

The above functionality in plotting the Win Probability using LR or DL with both options (Side-by-side or Overlapping) is available for all 9 T20 leagues currently supported by GooglyPlusPlus.

Go ahead and give gpp2023-1 a try!!!

Do also check out my other posts’

  1. Deep Learning from first principles in Python, R and Octave – Part 7
  2. Big Data 6: The T20 Dance of Apache NiFi and yorkpy
  3. Latency, throughput implications for the Cloud
  4. Design Principles of Scalable, Distributed Systems
  5. Cricpy adds team analytics to its arsenal!!
  6. Analyzing performances of cricketers using cricketr template
  7. Modeling a Car in Android
  8. Using Linear Programming (LP) for optimizing bowling change or batting lineup in T20 cricket
  9. Introducing QCSimulator: A 5-qubit quantum computing simulator in R
  10. Experiments with deblurring using OpenCV
  11. Using embeddings, collaborative filtering with Deep Learning to analyse T20 players

To see all posts click Index of posts

Boosting Win Probability accuracy with player embeddings

In my previous post Computing Win Probability of T20 matches I had discussed various approaches on computing Win Probability of T20 matches. I had created ML models with glmnet and random forest using TidyModels. This was what I had achieved

  • glmnet : accuracy – 0.67 and sensitivity/specificity – 0.68/0.65
  • random forest : accuracy – 0.737 and roc_auc- 0.834
  • DL model with Keras in Python : accuracy – 0.73

I wanted to see if the performance of the models could be further improved. I got a suggestion from a AI/DL whizkid, who is close to me, to include embeddings for batsmen and bowlers. He felt that win percentage is influenced by which batsman faces which bowler.

So, I started to explore this idea. Embeddings can be used to convert categorical variables to a vector of continuous floating point numbers.Fortunately R’s Tidymodels, has a convenient functionality to create embeddings. By including embeddings for batsman, bowler the performance of my ML models improved vastly. Now the performance is

  • glmnet : accuracy – 0.728 and roc_auc – 0.81
  • random forest : accuracy – 0.927 and roc_auc – 0.98
  • mlp-dnn :accuracy – 0.762 and roc_auc – 0.854

As can be seem there is almost a 20% increase in accuracy with random forests with embeddings over the model without embeddings. Moreover, the feature importance which is plotted below shows that the bowler and batsman embeddings have a significant influence on the Win Probability

Note: The data for this analysis is taken from Cricsheet and has been processed with my R package yorkr.

A. Win Probability using GLM with penalty and player embeddings

Here Generalised Linear Model (GLMNET) for Logistic Regression is used. In the GLMNET the regularisation path is computed for the lasso or elastic net penalty at a grid of values for the regularisation parameter lambda. glmnet is extremely fast and gave an accuracy of 0.72 for an roc_auc of 0.81 with batsman, bowler embeddings. This was good improvement over my earlier implementation with glmnet without the batsman & bowler embeddings which had a

  1. Read the data

a) Read the data from 9 T20 leagues (BBL, CPL, IPL, NTB, PSL, SSM, T20 Men, T20 Women, WBB) and create a single data frame of ball-by-ball data. Display the data frame

library(dplyr)
library(caret)
library(e1071)
library(ggplot2)
library(tidymodels)  
library(embed)

# Helper packages
library(readr)       # for importing data
library(vip) 

df1=read.csv("output3/matchesBBL3.csv")
df2=read.csv("output3/matchesCPL3.csv")
df3=read.csv("output3/matchesIPL3.csv")
df4=read.csv("output3/matchesNTB3.csv")
df5=read.csv("output3/matchesPSL3.csv")
df6=read.csv("output3/matchesSSM3.csv")
df7=read.csv("output3/matchesT20M3.csv")
df8=read.csv("output3/matchesT20W3.csv")
df9=read.csv("output3/matchesWBB3.csv")

#Bind all dataframes together
df=rbind(df1,df2,df3,df4,df5,df6,df7,df8,df9)
glimpse(df)
Rows: 1,199,115
Columns: 10
$ batsman        <chr> "JD Smith", "M Klinger", "M Klinger", "M Klinger", "JD …
$ bowler         <chr> "NM Hauritz", "NM Hauritz", "NM Hauritz", "NM Hauritz",…

$ ballNum        <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, …
$ ballsRemaining <int> 125, 124, 123, 122, 121, 120, 119, 118, 117, 116, 115, …
$ runs           <int> 1, 1, 2, 3, 3, 3, 4, 4, 5, 5, 6, 7, 13, 14, 16, 18, 18,…

$ runRate        <dbl> 1.0000000, 0.5000000, 0.6666667, 0.7500000, 0.6000000, …
$ numWickets     <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…
$ runsMomentum   <dbl> 0.08800000, 0.08870968, 0.08943089, 0.09016393, 0.09090…
$ perfIndex      <dbl> 11.000000, 5.500000, 7.333333, 8.250000, 6.600000, 5.50…
$ isWinner       <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…


df %>% 
  count(isWinner) %>% 
  mutate(prop = n/sum(n))
  isWinner      n      prop
1        
0 614237 0.5122419
2        
1 584878 0.4877581

2) Create training.validation and test sets

b) Split to training, validation and test sets. The dataset is initially split into training and test in the ratio 80%:20%. The training data is again split into training and validation in the ratio 80:20

set.seed(123)
splits      <- initial_split(df,prop = 0.80)
splits
<Training/Testing/Total>
<959292/239823/1199115>
df_other <- training(splits)
df_test  <- testing(splits)

set.seed(234)
val_set <- validation_split(df_other,prop = 0.80)
val_set
# A tibble: 1 × 2
  splits                  
id        
  <list>                  <chr>     
1 <split [767433/191859]> validation

3) Create pre-processing recipe

a) Normalise the following predictors

  • ballNum
  • ballsRemaining
  • runs
  • runRate
  • numWickets
  • runsMomentum
  • perfIndex

b) Create floating point embeddings for

  • batsman
  • bowler

4) Create a Logistic Regression Workflow by adding the GLM model and the recipe

5) Create grid of elastic penalty values for regularisation

6) Train all 30 models

7) Plot the ROC of the model against the penalty

# Use all 12 cores
cores <- parallel::detectCores()
cores
# Create a Logistic Regression model with penalty
lr_mod <- 
  logistic_reg(penalty = tune(), mixture = 1) %>% 
  set_engine("glmnet",num.threads = cores)

# Create pre-processing recipe
lr_recipe <- 
  recipe(isWinner ~ ., data = df_other) %>%
  step_embed(batsman,bowler, outcome = vars(isWinner)) %>%  step_normalize(ballNum,ballsRemaining,runs,runRate,numWickets,runsMomentum,perfIndex) 

# Set the workflow by adding the GLM model with the recipe
lr_workflow <- 
  workflow() %>% 
  add_model(lr_mod) %>% 
  add_recipe(lr_recipe)

# Create a grid for the elastic net penalty
lr_reg_grid <- tibble(penalty = 10^seq(-4, -1, length.out = 30))
lr_reg_grid %>% top_n(-5) 
# A tibble: 5 × 1
   penalty
     
<dbl>
1 0.0001  
2 0.000127
3 0.000161
4 0.000204
5 0.000259

lr_reg_grid %>% top_n(5)  # highest penalty values
# A tibble: 5 × 1
  penalty
    <dbl>
1  0.0386
2  0.0489
3  0.0621
4  0.0788
5  0.1

# Train 30 penalized models
lr_res <- 
  lr_workflow %>% 
  tune_grid(val_set,
            grid = lr_reg_grid,
            control = control_grid(save_pred = TRUE),
            metrics = metric_set(accuracy,roc_auc))

# Plot the penalty versus ROC
lr_plot <- 
  lr_res %>% 
  collect_metrics() %>% 
  ggplot(aes(x = penalty, y = mean)) + 
  geom_point() + 
  geom_line() + 
  ylab("Area under the ROC Curve") +
  scale_x_log10(labels = scales::label_number())

lr_plot

The Penalty vs ROC plot is shown below

8) Display the ROC_AUC of the top models with the penalty

9) Select the model with the best ROC_AUC and the associated penalty. It can be seen the best mean ROC_AUC is 0.81 and the associated penalty is 0.000530

top_models <-
  lr_res %>% 
  show_best("roc_auc", n = 15) %>% 
  arrange(penalty) 
top_models

# A tibble: 15 × 7
    penalty .metric .estimator  mean     n std_err .config              
      <dbl> <chr>   <chr>      <dbl> <int>   <dbl> <chr>                
 1 0.0001   roc_auc binary     0.810     1      NA Preprocessor1_Model01
 2 0.000127 roc_auc binary     0.810     1      NA Preprocessor1_Model02
 3 0.000161 roc_auc binary     0.810     1      NA Preprocessor1_Model03
 4 0.000204 roc_auc binary     0.810     1      NA Preprocessor1_Model04
 5 0.000259 roc_auc binary     0.810     1      NA Preprocessor1_Model05
 6 0.000329 roc_auc binary     0.810     1      NA Preprocessor1_Model06
 7 0.000418 roc_auc binary     0.810     1      NA Preprocessor1_Model07
 8 0.000530 roc_auc binary     0.810     1      NA Preprocessor1_Model08
 9 0.000672 roc_auc binary     0.810     1      NA Preprocessor1_Model09
10 0.000853 roc_auc binary     0.810     1      NA Preprocessor1_Model10
11 0.00108  roc_auc binary     0.810     1      NA Preprocessor1_Model11
12 0.00137  roc_auc binary     0.810     1      NA Preprocessor1_Model12
13 0.00174  roc_auc binary     0.809     1      NA Preprocessor1_Model13
14 0.00221  roc_auc binary     0.809     1      NA Preprocessor1_Model14
15 0.00281  roc_auc binary     0.809     1      NA Preprocessor1_Model15

#Picking the best model and the corresponding penalty
lr_best <- 
  lr_res %>% 
  collect_metrics() %>% 
  arrange(penalty) %>% 
  slice(8)
lr_best
# A tibble: 1 × 7
   
   penalty .metric .estimator  mean     n std_err .config              
     <dbl> <chr>   <chr>      <dbl> <int>   <dbl> <chr>                

1 0.000530 roc_auc binary     0.810     1      NA Preprocessor1_Model08

# Collect predictions and generate the AUC curve
lr_auc <- 
  lr_res %>% 
  collect_predictions(parameters = lr_best) %>% 
  roc_curve(isWinner, .pred_0) %>% 
  mutate(model = "Logistic Regression")

autoplot(lr_auc)

7) Plot the Area under the Curve (AUC).

10) Build the final model with the best LR parameters value as found in lr_best

a) The best performance was for a penalty of 0.000530

b) The accuracy achieved is 0.72. Clearly using the embeddings for batsman, bowlers improves on the performance of the GLM model without the embeddings. The accuracy achieved was 0.72 whereas previously it was 0.67 see (Computing Win Probability of T20 Matches)

c) Create a fit with the best parameters

d) The accuracy is 72.8% and the ROC_AUC is 0.813

# Create a model with the penalty for best ROC_AUC
last_lr_mod <- 
  logistic_reg(penalty = 0.000530, mixture = 1) %>% 
  set_engine("glmnet",num.threads = cores,importance = "impurity")

#Update the workflow with this model
last_lr_workflow <- 
  lr_workflow %>% 
  update_model(last_lr_mod)

#Create a fit
set.seed(345)
last_lr_fit <- 
  last_lr_workflow %>% 
  last_fit(splits)

#Generate accuracy, roc_auc
last_lr_fit %>% 
  collect_metrics()
# A tibble: 2 × 4
  .metric  .estimator .estimate .config             
  
<chr>    <chr>          <dbl> <chr>               
1 accuracy binary         0.728 Preprocessor1_Model1

2 roc_auc  binary         0.813 Preprocessor1_Model1

11) Plot the feature importance

It can be seen that bowler and batsman embeddings are the most significant for the prediction followed by runRate.

runRate –

  • runRate in 1st innings
  • requiredRunRate in 2nd innings

12) Plot the ROC characteristics

last_lr_fit %>% 
  collect_predictions() %>% 
  roc_curve(isWinner, .pred_0) %>% 
  autoplot()

13) Generate a confusion matrix

14) Create a final Generalised Linear Model for Logistic Regression with the penalty of 0.000530

15) Save the model

# generate predictions from the test set
test_predictions <- last_lr_fit %>% collect_predictions()
test_predictions

# generate a confusion matrix
test_predictions %>% 
  conf_mat(truth = isWinner, estimate = .pred_class)

Truth
Prediction     0     1
         
0                  90105 32658
         
1                  32572 84488

final_lr_model <- fit(last_lr_workflow, df_other)

final_lr_model

obj_size(final_lr_model)
146.51 MB


butcher::weigh(final_lr_model)
A tibble: 305 × 2
object                                  size
<chr>                                  <dbl>
  1 pre.actions.recipe.recipe.steps.terms1  57.9
2 pre.actions.recipe.recipe.steps.terms2  57.9
3 pre.actions.recipe.recipe.steps.terms3  57.9


cleaned_lm <- butcher::axe_env(final_lr_model, verbose = TRUE)
#✔ Memory released: "1.04 kB"
#✔ Memory released: "1.62 kB"

saveRDS(cleaned_lm, "cleanedLR.rds")
  

16) Compute Ball-by-ball Win Probability

  • Chennai Super Kings-Lucknow Super Giants-2022-03-31

16a) The corresponding Worm-wicket graph for this match is as below

  • Chennai Super Kings-Lucknow Super Giants-2022-03-31

B) Win Probability using Random Forest with player embeddings

In the 2nd approach I use Random Forest with batsman and bowler embeddings. The performance of the model with embeddings is quantum jump from the earlier performance without embeddings. However, the random forest is also computationally intensive.

1) Read the data

a) Read the data from 9 T20 leagues (BBL, CPL, IPL, NTB, PSL, SSM, T20 Men, T20 Women, WBB) and create a single data frame of ball-by-ball data. Display the data frame

2) Create training.validation and test sets

b) Split to training, validation and test sets. The dataset is initially split into training and test in the ratio 80%:20%. The training data is again split into training and validation in the ratio 80:20

library(dplyr)
library(caret)
library(e1071)
library(ggplot2)
library(tidymodels)  
library(tidymodels)  
library(embed)

# Helper packages
library(readr)       # for importing data
library(vip) 
library(ranger)

# Read all the 9 T20 leagues
df1=read.csv("output3/matchesBBL3.csv")
df2=read.csv("output3/matchesCPL3.csv")
df3=read.csv("output3/matchesIPL3.csv")
df4=read.csv("output3/matchesNTB3.csv")
df5=read.csv("output3/matchesPSL3.csv")
df6=read.csv("output3/matchesSSM3.csv")
df7=read.csv("output3/matchesT20M3.csv")
df8=read.csv("output3/matchesT20W3.csv")
df9=read.csv("output3/matchesWBB3.csv")

# Bind into a single dataframe
df=rbind(df1,df2,df3,df4,df5,df6,df7,df8,df9)

set.seed(123)
df$isWinner = as.factor(df$isWinner)

#Split data into training, validation and test sets
splits      <- initial_split(df,prop = 0.80)
df_other <- training(splits)
df_test  <- testing(splits)
set.seed(234)
val_set <- validation_split(df_other, prop = 0.80)
val_set

2) Create a Random Forest model tuning for number of predictor nodes at each decision node (mtry) and minimum number of predictor nodes (min_n)

3) Use the ranger engine and set up for classification

4) Set up the recipe and include batsman and bowler embeddings

5) Create a workflow and add the recipe and the random forest model with the tuning parameters

# Use all 12 cores parallely
cores <- parallel::detectCores()
cores
[1] 12

# Create the random forest model with mtry and min as tuning parameters
rf_mod <- 
  rand_forest(mtry = tune(), min_n = tune(), trees = 1000) %>% 
  set_engine("ranger", num.threads = cores) %>% 
  set_mode("classification")

# Setup the recipe with batsman and bowler embeddings
rf_recipe <- 
  recipe(isWinner ~ ., data = df_other) %>% 
  step_embed(batsman,bowler, outcome = vars(isWinner)) 

# Create the random forest workflow
rf_workflow <- 
  workflow() %>% 
  add_model(rf_mod) %>% 
  add_recipe(rf_recipe)

rf_mod
# show what will be tuned
extract_parameter_set_dials(rf_mod)

set.seed(345)
# specify which values meant to tune

# Build the model
rf_res <- 
  rf_workflow %>% 
  tune_grid(val_set,
            grid = 10,
            control = control_grid(save_pred = TRUE),
            metrics = metric_set(accuracy,roc_auc))

# Pick the best  roc_auc and the associated tuning parameters
rf_res %>% 
  show_best(metric = "roc_auc")
# A tibble: 5 × 8
   mtry min_n .metric .estimator  mean     n std_err .config              
  <int> <int> <chr>   <chr>      <dbl> <int>   <dbl> <chr>                
1     4     4 roc_auc binary     0.980     1      NA Preprocessor1_Model08
2     9     8 roc_auc binary     0.979     1      NA Preprocessor1_Model03

3     8    16 roc_auc binary     0.974     1      NA Preprocessor1_Model10
4     7    22 roc_auc binary     0.969     1      NA Preprocessor1_Model09

5     5    19 roc_auc binary     0.969     1      NA Preprocessor1_Model06

rf_res %>% 
  show_best(metric = "accuracy")
# A tibble: 5 × 8
   
mtry min_n .metric  .estimator  mean     n std_err .config              
  <int> <int> <chr>    <chr>      <dbl> <int>   <dbl> <chr>                
1  4     4 accuracy binary    0.927     1      NA Preprocessor1_Model08

2  9     8 accuracy binary    0.926     1      NA Preprocessor1_Model03
3  8    16 accuracy binary    0.915     1      NA Preprocessor1_Model10
4  7    22 accuracy binary    0.906     1      NA Preprocessor1_Model09

5  5    19 accuracy binary    0.904     1      NA Preprocessor1_Model0

6) Select all models with the best roc_auc. It can be seen that the best roc_auc is 0.980 for mtry=4 and min_n=4

7) Get the model with the highest accuracy. The highest accuracy achieved is 0.927 or 92.7. This accuracy is also for mtry=4 and min_n=4

# Pick the best  roc_auc and the associated tuning parameters
rf_res %>% 
  show_best(metric = "roc_auc")
# A tibble: 5 × 8
   mtry min_n .metric .estimator  mean     n std_err .config              
  <int> <int> <chr>   <chr>      <dbl> <int>   <dbl> <chr>                
1     4     4 roc_auc binary     0.980     1      NA Preprocessor1_Model08
2     9     8 roc_auc binary     0.979     1      NA Preprocessor1_Model03

3     8    16 roc_auc binary     0.974     1      NA Preprocessor1_Model10
4     7    22 roc_auc binary     0.969     1      NA Preprocessor1_Model09

5     5    19 roc_auc binary     0.969     1      NA Preprocessor1_Model06

# Display the accuracy of the models in descending order and the parameters
rf_res %>% 
  show_best(metric = "accuracy")
# A tibble: 5 × 8
   
mtry min_n .metric  .estimator  mean     n std_err .config              
  <int> <int> <chr>    <chr>      <dbl> <int>   <dbl> <chr>                
1  4     4 accuracy binary    0.927     1      NA Preprocessor1_Model08

2  9     8 accuracy binary    0.926     1      NA Preprocessor1_Model03
3  8    16 accuracy binary    0.915     1      NA Preprocessor1_Model10
4  7    22 accuracy binary    0.906     1      NA Preprocessor1_Model09

5  5    19 accuracy binary    0.904     1      NA Preprocessor1_Model0

8) Select the model with the best parameters for accuracy mtry=4 and min_n=4. For this the accuracy is 0.927. For this configuration the roc_auc is also the best at 0.980

9) Plot the Area Under the Curve (AUC). It can be seen that this model performs really well and it hugs the top left.

# Pick the best model
rf_best <- 
  rf_res %>% 
  select_best(metric = "accuracy")

# The best model has mtry=4 and min=4
rf_best
     mtry min_n .config              
  <int> <int> <chr>                
1     4     4      Preprocessor1_Model08

#Plot AUC
rf_auc <- 
  rf_res %>% 
  collect_predictions(parameters = rf_best) %>% 
  roc_curve(isWinner, .pred_0) %>% 
  mutate(model = "Random Forest")

autoplot(rf_auc)

10) Create the final model with the best parameters

11) Execute the final fit

12) Plot feature importance, The bowler and batsman embedding followed by perfIndex and runRate are features that contribute the most to the Win Probability

last_rf_mod <- 
  rand_forest(mtry = 4, min_n = 4, trees = 1000) %>% 
  set_engine("ranger", num.threads = cores, importance = "impurity") %>% 
  set_mode("classification")

# the last workflow
last_rf_workflow <- 
  rf_workflow %>% 
  update_model(last_rf_mod)

set.seed(345)
last_rf_fit <- 
  last_rf_workflow %>% 
  last_fit(splits)

last_rf_fit %>% 
  collect_metrics()

  .metric  .estimator .estimate .config             
  <chr>    <chr>          <dbl> <chr>               

1 accuracy binary         0.944 Preprocessor1_Model1
2 roc_auc  binary         0.988 Preprocessor1_Model1

last_rf_fit %>% 
  extract_fit_parsnip() %>% 
  vip(num_features = 9)

13) Plot the ROC curve for the best fit

# Plot the ROC for the final model
last_rf_fit %>% 
  collect_predictions() %>% 
  roc_curve(isWinner, .pred_0) %>% 
  autoplot()

14) Create a confusion matrix

We can see that the number of false positives and false negatives is very low

15) Create the final fit with the Random Forest Model

# generate predictions from the test set
test_predictions <- last_rf_fit %>% collect_predictions()
test_predictions

   id               .pred_0 .pred_1  .row .pred_class isWinner .config          
   <chr>              <dbl>   <dbl> <int> <fct>       <fct>    <chr>            
 1 train/test split   0.838  0.162      1 0           0       Preprocessor1_Mo…
 2 
train/test split   0.463  0.537     11 1           0        Preprocessor1_Mo…
 3 
train/test split   0.846  0.154     14 0           0        Preprocessor1_Mo…
 4 
train/test split   0.839  0.161     22 0           0        Preprocessor1_Mo…
 5 
train/test split   0.846  0.154     36 0           0        Preprocessor1_Mo…
 6 
train/test split   0.848  0.152     37 0           0        Preprocessor1_Mo…
 7 
train/test split   0.731  0.269     39 0           0        Preprocessor1_Mo…
 8 
train/test split   0.972  0.0281    40 0           0        Preprocessor1_Mo…
 9 
train/test split   0.655  0.345     42 0           0        Preprocessor1_Mo…
10 
train/test split   0.662  0.338     43 0           0        Preprocessor1_Mo…

# generate a confusion matrix
test_predictions %>% 
  conf_mat(truth = isWinner, estimate = .pred_class)

          Truth
Prediction      0      1
         
          0 116576   7096
         
          1   6391 109760

# Create the final model
final_model <- fit(last_rf_workflow, df_other)

16) Computing Win Probability with Random Forest Model for match

  • Pakistan-India-2022-10-23

17) Worm -wicket graph of match

  • Pakistan-India-2022-10-23

C) Win Probability using MLP – Deep Neural Network (DNN) with player embeddings

In this approach the MLP package of Tidymodels was used. Multi-layer perceptron (MLP) with Deep Neural Network (DNN) was used to compute the Win Probability using player embeddings. An accuracy of 0.76 was obtained

1) Read the data

a) Read the data from 9 T20 leagues (BBL, CPL, IPL, NTB, PSL, SSM, T20 Men, T20 Women, WBB) and create a single data frame of ball-by-ball data. Display the data frame

2) Create training.validation and test sets

b) Split to training, validation and test sets. The dataset is initially split into training and test in the ratio 80%:20%. The training data is again split into training and validation in the ratio 80:20

library(dplyr)
library(caret)
library(e1071)
library(ggplot2)
library(tidymodels)    
library(embed)

# Helper packages
library(readr)       # for importing data
library(vip) 
library(ranger)

df1=read.csv("output3/matchesBBL3.csv")
df2=read.csv("output3/matchesCPL3.csv")
df3=read.csv("output3/matchesIPL3.csv")
df4=read.csv("output3/matchesNTB3.csv")
df5=read.csv("output3/matchesPSL3.csv")
df6=read.csv("output3/matchesSSM3.csv")
df7=read.csv("output3/matchesT20M3.csv")
df8=read.csv("output3/matchesT20W3.csv")
df9=read.csv("output3/matchesWBB3.csv")

df=rbind(df1,df2,df3,df4,df5,df6,df7,df8,df9)


set.seed(123)
df$isWinner = as.factor(df$isWinner)
splits      <- initial_split(df,prop = 0.80)
df_other <- training(splits)
df_test  <- testing(splits)
set.seed(234)
val_set <- validation_split(df_other, 
                            prop = 0.80)
val_set

3) Create a Deep Neural Network recipe

  • Normalize parameters
  • Add embeddings for batsman, bowler

4) Set the MLP-DNN hyperparameters

  • epochs=100
  • hidden units =5
  • dropout regularization =0.1

5) Fit on Training data

cores <- parallel::detectCores()
cores

nn_recipe <- 
  recipe(isWinner ~ ., data = df_other) %>% 
step_normalize(ballNum,ballsRemaining,runs,runRate,numWickets,runsMomentum,perfIndex) %>%
  step_embed(batsman,bowler, outcome = vars(isWinner)) %>%
  prep(training = df_other, retain = TRUE) 

# For validation:
test_normalized <- bake(nn_recipe, new_data = df_test)

set.seed(57974)
# Set the hyper parameters for DNN
# Use Keras
# Fit on training data
nnet_fit <-
  mlp(epochs = 100, hidden_units = 5, dropout = 0.1) %>%
  set_mode("classification") %>% 
  # Also set engine-specific `verbose` argument to prevent logging the results: 
  set_engine("keras", verbose = 0) %>%
  fit(isWinner ~ ., data = bake(nn_recipe, new_data = df_other))

nnet_fit
parsnip model object
Model:"sequential"

____________________________________________________________________________

Layer (type)                                           Output Shape                                    Param #            
============================================================================
dense (Dense)                                           (None, 5)                                          60                 
____________________________________________________________________________

dense_1 (Dense)                                         (None, 5)                                          30                 
____________________________________________________________________________
dropout (Dropout)                                       (None, 5)                                          0                  
____________________________________________________________________________
dense_2 (Dense)                                         (None, 2)                                          12                 
============================================================================
Total params: 102
Trainable params: 102
Non-trainable params: 0

6) Test on Test data

  • Check ROC_AUC. It is 0.854
  • Check accuracy. The MLP-DNN gives a decent performance with an acuracy of 0.76
  • Compute the Confusion Matrix
# Validate on test data
val_results <- 
  df_test %>%
  bind_cols(
    predict(nnet_fit, new_data = test_normalized),
    predict(nnet_fit, new_data = test_normalized, type = "prob")
  )
val_results 

# Check roc_auc
val_results %>% roc_auc(truth = isWinner, .pred_0)
  .metric .estimator .estimate
  
   <chr>   <chr>          <dbl>
1 roc_auc binary         0.854

# Check accuracy
val_results %>% accuracy(truth = isWinner, .pred_class)
  .metric  .estimator .estimate
  <chr>    <chr>          <dbl>
1 accuracy binary         0.762

# Display confusion matrix
val_results %>% conf_mat(truth = isWinner, .pred_class)
          Truth
Prediction     
           0     1        
       0 97419 31564       
       1 25548 85292

Conclusion

  1. Of the 3 ML models, glmnet, random forest and Multi-layer Perceptron DNN, random forest had the best performance
  2. Random Forest ML model with batsman, bowler embeddings was able to achieve an accuracy of 92.4% and a ROC_AUC of 0.98 with very low false positives, negatives. This was a quantum jump from my earlier random forest model without embeddings which had an accuracy of 73.7% and an ROC_AUC of 0.834
  3. The glmnet and NN models are fairly light weight. Random Forest is computationally very intensive.

Check out my other posts

  1. Using Reinforcement Learning to solve Gridworld
  2. Deep Learning from first principles in Python, R and Octave – Part 8
  3. Introducing QCSimulator: A 5-qubit quantum computing simulator in R
  4. Big Data-5: kNiFi-ing through cricket data with yorkpy
  5. Singularity
  6. Practical Machine Learning with R and Python – Part 6
  7. GooglyPlusPlus2022 optimizes batting/bowling lineup
  8. Fun simulation of a Chain in Android
  9. Introducing cricpy:A python package to analyze performances of cricketers
  10. Programming languages in layman’s language

To see all posts click Index of posts

GooglyPlusPlus gets ready for ICC Men’s T20 World Cup

It is time!! So last weekend, I turned the wheels, moved the levers and listened to the hiss of steam, as I cranked up my Shiny app GooglyPlusPlus. The ICC Men’s T20 World Cup is just around the corner, and it was time to prepare for this event. This latest GooglyPlusPlus is current with the latest Intl. men’s T20 match data, give or take a few. GooglyPlusPlus can analyze batsmen, bowlers, matches, team-vs-team, team-vs-all teams, besides also ranking batsmen, bowlers and plot performances in Powerplay, middle and death overs.

In this post, I include a quick refresher of some of features of my app GooglyPlusPlus. Note: This is a random sampling of the functions available. There are more than 120+ features available in the app.

Check out your favourite players and your country’s team with GooglyPlusPlus

Note 1: All charts are interactive

Note 2: You can choose a date range for your analysis

Note 3: The data for this app is taken from Cricsheet

  1. T20 Batsman tab

This tab includes functions pertaining to individual batsmen. Functions include Runs vs Deliveries, moving average runs, cumulative average run, cumulative average strike rate, runs against opposition, runs at venue etc.

For e.g.

a) Suryakumar Yadav’s (India) cumulative strike rate

b) Mohammed Rizwan’s (Pakistan) performance against opposition

2. T20 Bowler’s Tab

The bowlers tab has functions for computing mean economy rate, moving average wickets, cumulative average wicks, cumulative economy rate, bowlers performance against opposition, bowlers performance in venue, predict wickets and others

A random function is shown below

a) Predict wickets for Wanindu Hasaranga of Sri Lanka

3. T20 Match tab

The match tab has functions that can compute match batting & bowling scorecard, batting partnerships, batsmen performance vs bowlers, bowler’s wicket kind, bowler’s wicket match, match worm graph, match worm wicket graph, team runs across 20 overs, team wickets in 20 overs, teams runs or wickets in powerplay, middle and death overs

Here are a couple of functions from this tab

a) Afghanistan vs Ireland – 2022-08-15

b) Australia vs Sri Lanka – 2019-11-01 – Runs across 20 overs

4. T20 Head-to-head tab

This tab provides the analysis of all combination of T20 teams (countries) in different aspects. This tab can compute the overall batting, bowling scorecard in all matches between 2 countries, batsmen partnerships, performances against bowlers, bowlers vs batsmen, runs, strike rate, wickets, economy rate across 20 overs, runs vs SR plot and wicket vs ER plot in all matches between team and so on. Here are a couple of examples from this tab

a) Bangladesh vs West Indies – Batting scorecard from 2019-01-01 to 2022-07-07

b) Wickets vs ER plot – England vs New Zealand – 2019-01-01 to 2021-11-10

5. T20 Team performance overall tab

This tab provides detailed analysis of the team’s performance against all other teams. As in the previous tab there are functions to compute the overall batting, bowling scorecard of a team against all other teams for any specific interval of time. This can help in picking out the most consistent batsmen, bowlers. Besides there are functions to compute overall batting partnerships, bowler vs batsmen, runs, wickets across 20 overs, run vs SR and wickets vs ER etc.

a) Batsmen vs Bowlers (Rank 1- V Kohli 2019-01-01 to 2022-09-25)

b) team Runs vs SR in Death overs (India) (2019-01-01 to 2022-09-25)

6) Optimisation tab

In the optimisation tab we can check the performance of a specific batsmen against specific bowlers or bowlers against batsmen

a) Batsmen vs Bowlers

b) Bowlers vs batsmen

7) T20 Batting Performance tab

This tab performs various analytics like ranking batsmen based on Run over SR and SR over Runs. Also you can plot overall Runs vs SR, and more specifically Runs vs SR in Powerplay, Middle and Death overs. All of this can be done for a specific date range. Here are some examples. The data includes all of T20 (all countries all matches)

a) Rank batsmen (Runs over SR, minimum matches played=33, date range=2019-01-01 to 2022-09-27)

The top 3 batsmen are Mohamen Rizwan, V Kohli and Babar Azam

b) Overall runs vs SR plot (2019-01-01 to 2022-09-27)

c) Overall Runs vs SR in Powerplay (all teams- 2019-01-01-2022-09-27)

This plot will be crowded. However, we can zoom into an area of interest. The controls for interacting with the plot are in the top of the plot as shown

Zooming in and panning to the area we can see the best performers in powerplay are as below

8) T20 Bowling Performance tab

This tab computes and ranks bowlers on Wickets over Economy and Economy rate over wickets. We can also compute and plot the Wickets vs ER in all matches , besides the Wickets vs ER in powerplay, middle and death overs with data from all countries

a) Rank Bowlers (Wickets over ER, minimum matches=28, 2019-01-01 to 2022-09-27)

b) Wickets vs ER plot

S Lamichhane (NEP), Hasaranga (SL) and Shamsi (SA) are excellent bowlers with high wickets and low ER as seen in the plot below

c) Wickets vs ER in death overs (2019-01-01 to 2022-09-27, min matches=24)

Zooming in and panning we see the best performers in death overs are MR Adair (IRE), Haris Rauf(PAK) and Chris Jordan (ENG)

With the excitement building up, it is time you checked out how your country will perform and the players who will do well.

Go ahead give GooglyPlusPlus a spin !!!

Also see

  1. Deep Learning from first principles in Python, R and Octave – Part 5
  2. Big Data-5: kNiFi-ing through cricket data with yorkpy
  3. Understanding Neural Style Transfer with Tensorflow and Keras
  4. De-blurring revisited with Wiener filter using OpenCV
  5. Re-introducing cricketr! : An R package to analyze performances of cricketers
  6. Modeling a Car in Android
  7. Presentation on “Intelligent Networks, CAMEL protocol, services & applications”
  8. Practical Machine Learning with R and Python – Part 2
  9. Cricpy adds team analytics to its arsenal!!
  10. Benford’s law meets IPL, Intl. T20 and ODI cricket

To see all posts click Index of posts

Then, Now(IPL 2022), Beyond : Insights from GooglyPlusPlus

IPL 2022 has just concluded and yet again, it is has thrown a lot of promising and potential youngsters in its wake, while established players have fallen! With IPL 2022, we realise that “Sceptre and Crown must tumble down” and that ‘the glories‘ of form and class like everything else are “shadows not substantial things” (Death the Leveller by James Shirley).

So King Kohli had to kneel, and hitman’ himself got hit. Rishabh Pant, Jadeja also had a poor season. On the contrary there were several youngsters who shone like Abhishek Sharma, Tilak Verma, Umran Malik or a Mohsin Khan

This post is about my potential T20 Indian players for the World Cup 2022 and beyond.

The post below includes my own analysis and thoughts. Feel free to try out my Shiny app GooglyPlusPlus and draw your own conclusions.

You can also view the analyais as a youtube video at Insights from GooglyPlusPlus

How often we hear that data by itself is useless, unless we can draw insights from it? This is a prevailing theme in the corporate world and everybody uses all sorts of tools to analyse and subsequently draw insights. Data analysis can be done in many ways as data can be sliced, diced, chopped in a zillion ways. There are many facets and perspectives to analysing data. Creating insights is easy, but arriving at actionable insights is anything but. So, the problem of selecting the best 11 is difficult as there are so many ways to look at the analysis. My Shiny app GooglyPlusPlus based on my R package yorkr can analyse data in several ways namely

  1. Batsman analysis
  2. Bowler analysis
  3. Match analysis
  4. Team vs team analysis
  5. Team vs all teams analysis
  6. Batsman vs bowler and vice versa
  7. Analysis of in 3,4,5 in power play, middle and death overs

GooglyPlusPlus uses my R package yorkr which has ~ 160 functions some which have several options. So, we can say roughly there are ~500 different ways that analysis can be done or in other words we can gather almost roughly 500+ different insights, not to mention that there are so many combinations of head-on matches and one-vs-all matches.

So generating insights or different ways of analysis data alone is not enough. The question is whether we can get a consolidated view from the different insights. In this post, I try to identify the best contenders for the Indian T20 team. This is far more difficult than it looks. Do you select players on past historical performance or do you choose from the newer crop of players, who have excelled in the recent IPL season. I think this boils down the typical situation in any domain. In engineering, we have tradeoffs – processing power vs memory tradeoff, throughput vs latency tradeoff or in the financial domain it is cost vs benefit or risk vs reward tradeoff. For team selection, the quandary is, whether to choose seasoned players with good historical performance but a poor performances in recent times or go with youngsters who have played with great courage and flair in this latest episode of IPL 2022. Hence there is a tradeoff between reliable but below average performance or risky but superlative performances of new players.

For this I base my potential list from

  • Then (past history of batsmen & bowlers) – I have chosen the performance of batsmen and bowlers in the last 3 years. With we can arrive at those who have had reasonably reliable performance for the last 3 years
  • Now (IPL 2022) – Performance in the current season IPL 2022

A. Then (Jan 2020 – May 2022) – Batsmen analysis

In this section I analyse the performances of batsmen and bowlers from Jan 2022 – May 2022. This is done based on ranking, and plots of Runs vs Strike Rate in Power Play, Middle and Death overs

Also I analyse bowlers based on the overall rank from Jan 2022- May 2022. Further more analysis is done on Wickets vs Economy Rate overall and in Power Play, Middle and Death overs

a. Ranks of batsmen (Runs over Strike Rate) : Jan 2020 – May 2022

The top batsmen consistency wise

[KL Rahul, Shikhar Dhawan, Ruturaj Gaikwad, Ishan Kishan, Shubman Gill, Suryakumar Yadav, Sanju Samson, Mayank Agarwal, Prithvi Shaw, Devdutt Padikkal, Nitish Rana, Virat Kohli, Shreyas Iyer, Ambati Rayadu, Rahul Tripathi, Rishabh Pant, Rohit Sharma, Hardik Pandya]

b. Ranks of batsmen (Strike Rate over Runs) : Jan 2020 – May 2022

The most consistent players from the Strike Rate perspective are

The batsmen with best Strike Rate in the last 3 years are

[Dinesh Karthik, Prithvi Shaw, Hardik Pandya, Rishabh Pant, Sanju Samson, Rahul Tripathi, Suryakumar Yadav, Nitish Rana, Mayank Agarwal, Krunal Pandya, MS Dhoni, Shikhar Dhawan, Ishan Kishan, KL Rahul]

c.Best Batsmen Runs vs SR : Jan 2020 – May 2022

The best batsmen should have a reasonable combination of Runs and SR. The best batsmen are

[KL Rahul, Shikhar Dhawan, Ruturaj Gaikwad, Ishan Kishan, Shubman Gill , Sanju Samson, Suryakumar Yadav, Shubman Gill, Mayank Agarwal, Prithvi Shaw, Nitish Rana, Hardik Pandya, Rishabh Pant, Rahul Tripathi,

d. Best batsmen Runs vs SR in Powerplay: Jan 2020 – May 2022

The best players in Power play

The best players in Power play in the last 3 years are

[KL Rahul, Prithvi Shaw, Rohit Sharma, Devdutt Padikkal, Mayank Agarwal, Virat Kohli, Ishan Kishan, Yashashvi Jaiswal, Wriddhiman Saha, Rahul Tripathi, Sanju Samson, Robin Uthappa, Venkatesh Iyer, Nitish Rana,Suryakumar Yadav, Abhishek Sharma Shreyas Iyer ]

e. Best batsmen Runs vs SR in Middleovers: Jan 2020 – May 2022

The most consistent players in the last 3 years in the middle overs are

[KL Rahul, Sanju Samson, Shikhar Dhawan, Rishabh Pant, Nitish Rana, Shreyas Iyer, Shubman Gill, Ishan Kishan, Devdutt Padikkal, Rahul Tripathi, Ruturaj Gaikwad, Shivam Dube, Hardik Pandya]

f. Best batsmen Runs vs SR in Death overs: Jan 2020 – May 2022

The best batsmen in death overs are

[Dinesh Karthik, Ravindra Jadeja, Hardik Pandya, Rahul Tewatia, MS Dhoni, KL Rahul, Rishabh Pant, Suryakumar Yadav, Ambati Rayadu, Virat Kohli, Nitish Rana, Shikhar Dhawan, Ruturaj Gaikwad, Ishan Kishan]

B) Now (IPL 2022) – Batsmen analysis

IPL 2022 just finished and clearly brings out the batsmen who are in great nick. It is always going to be a judgment call of whether to go for ‘old reliable’ or ‘new and awesome’.

a. Ranks of batsmen (Runs over Strike Rate) : IPL 2022

The best batsmen this season in Runs over Strike rate are

The best batsmen are

[KL Rahul, Shikhar Dhawan, Hardik Pandya, Deepak Hooda, Shubman Gill, Rahul Tripathi, Abhishek Sharma, Ishan Kishan, Wriddhiman Saha, Shreyas Iyer, Tilak Verma, Ruturaj Gaikwad, Sanju Samson, Shivam Dube]

b. Ranks of batsmen (Strike Rate over Runs) : IPL 2022

The batsmen with the best strike rate are

[Dinesh Karthik, Rishabh Pant, Rahul Tewathia, Rahul Tripathi, Sanju Samson, R Ashwin, Deepak Hooda, MS Dhoni, Nitish Rana, Riyan Parag, Shreya Iyer]

c.Best Batsmen Runs vs SR :IPL 2022

From an overall performance the following batsmen shone this season

[KL Rahul, Shikhar Dhawan, Shubman Gill, Hardik Pandya, Abhishel Sharma, Deepak Hooda, Rahul Tripathi, Tilak Verma, Shreya Iyer, Nitish Rana, Sanju Samson, Rishabh Pant]

d. Best batsmen Runs vs SR in Powerplay: IPL 2022

Top batsmen in Power play in IPL 2022

[Abhishek Sharma, Shikhar Dhawan, Rohit Sharma, Ishan Kishan, Shubman Gill, Prithvi Shaw, Wriddhiman Saha, Ishan Kishan, KL Rahul, Ruturaj Gaikwad, Virat Kohli, Yashasvi Jaiswal, Mayank Agarwal, Robin Uthappa, Sanju Samson, Nitish Rana]

e. Best batsmen Runs vs SR in Middleovers: IPL 2022

Best batsmen in middle overs in IPL 2022

[Deepak Hooda, Hardik Pandya, Tilak Verma, KL Rahul, Sanju Samson, Rishabh Pant, Shubman Gill, Ambati Rayudu, Suryaprakash Yadav, Shikhar Dhawan, Ruturaj Gaikwad]

f. Best batsmen Runs vs SR in Death overs: IPL 2022

Top batsmen in death overs in IPL 2022

[Dinesh Karthik, Rahul Tewatia, MS Dhoni, KL Rahul, Azar Patel, Washington Sundar, R Ashwin, Hardik Pandya, Ayush Badoni, Shivam Dube, Suryakumar Yadav, Ravindra Jadeja, Sanju Samson]

Overall Batting Performance in season

Kohli peaked in 2016 and from then on it has been a downward slide (see below)

Taking a look at Kohli’s moving average it is clear that he is past his prime and it will take a herculean effort to regain his lost glory

Similarly, Rohit Sharma’s moving average is constantly around ~30 as seen below

The cumulative average of Rohit Sharma is shown below

Comparing KL Rahul, Shikhar Dhawan, Rohit Sharma and V Kohli we see that KL Rahul and Shikhar Dhawan have had a much superior performance in the last 2-3 years. Rohit has averaged about ~25 runs every season.

Comparing the 4 wicket-keeper batsmen Sanju Samson, Rishabh Pant, Ishan Kishan and Dinesh Karthik from 2016

i) Runs over Strike Rate

We see that Pant peaked in 2018 but has not performed as well since. In the last 2 years Sanju Samson and Ishan Kishan have done well

ii) Strike Rate over Runs

For the last couple of seasons Rishabh Pant and Dinesh Kartik top the strike rate over the other 2

Similar analysis can be done other combinations of batsmen

Choosing the best batsmen from the above, my top 5 batsmen would be

  1. KL Rahul
  2. Shikhar Dhawan
  3. Prithvi Shaw, Ruturaj Gaikwad, Ishan Kishan
  4. Sanju Samson, Shreyas Iyer, Shubman Gill, Shivam Dube,
  5. Abhishek Sharma, Tilak Verma, Rahul Tripathi, Suryakumar Yadav, Deepak Hooda
  6. Rishabh Pant, Dinesh Karthik

Personally, I feel Ishan Kishan and Shreyas Iyer are a little tardy while playing express speeds, as compared to Sanju Samson or Rishabh Pant.

If you notice, I have not included both Virat Kohli or Rohit Sharma who have been below par for some time

C. Then (Jan 2020 – May 2022) – Bowler analysis

This section I analyse the performances of bowlers from Jan 2022 – May 2022. This is done based on ranking, and plots of Wickets vs Economy Rate in Power Play, Middle and Death overs

a. Ranks of bowlers (Wickets over Economy Rate) : Jan 2020 – May 2022

The most consistent bowlers Wickets over Economy Rate for the last 3 years are

[YS Chahal, Jasprit Bumrah, Mohammed Dhami, Harshal Patel, Shardul Thakur, Arshdeep Singh, Rahul Chahar, Varun Chakravarthy, Ravi Bishnoi, Prasidh Krishna, R Ashwon, Axar Patel, Mohammed Siraj, Ravindra Jadeja, Krunal Pandya, Rahul Tewatia]

b. Ranks of bowlers (Economy Rate over Wickets) : Jan 2020 – May 2022

The most economical bowlers since 2020 are

[Axar Patel, Krunal Pandya, Jasprit Bumrah, CV Varun, R Ashwin, Ravi Bishnoi, Rahul Chahar, YS Chahal, Ravindra Jadeja, Harshal Patel, Mohammed Shami, Mohammed Siraj, Rahul Tewatia, Arshdeep Singh, Prasidh Krishna, Shardul Thakur]

c.Best Bowlers Wickets vs ER : Jan 2020 – May 2022

The best bowlers Wickets vs ER will be in the bottom right quadrant. The most consistent and reliable bowlers are

[YS Chahal, Jasprit Bumrah, Mohammed Shami, Harshal Patel, CV Arun, Ravi Bishnoi, Rahul Chahar, R Ashwin, Axar Patel]

d. Best bowlers Wickets vs ER in Powerplay: Jan 2020 – May 2022

The best bowlers in Powerplay are

[Mohammed Shami, Deepak Chahar, Mohammed Siraj, Arshdeep Singh, Jasprit Bumrah, Avesh Khan, Mukesh Choudhary, Shardul Thakur, T Natarajan, Bhuvaneshwar Kumar, WashingtonSundar, Shivam Mavi]

e. Best bowlers Wickets vs ER in Middle overs : Jan 2020 – May 2022

The most reliable performers in middle overs from 2020-2022 are

[YS Chahal, Rahul Chahr, Ravi Bishnoi, Harshal Patel, Axar Patel, Jasprit Bumrah, Umran Malik, R Ashwin, Avesh Khan, Shardul Thakur, Kuldeep Yadav]

f. Best bowlers Wickets vs ER in Death overs : Jan 2020 – May 2022

The most reliable bowlers are

[Harshal Patel, Mohammed Shami, Jasprit Bumrah, Arshdeep Singh, T Natarajan, Avesh Khan, Shardul Thakur, Bhuvaneshwar Kumar, Shivam Mavi, YS Chahal, Prasidh Krishna, Mohammed Siraj, Chetan Sakariya]

B) Now (IPL 2022) – Bowler analysis

a. Ranks of bowlers (Wickets over Economy Rate) : IPL 2022

The best bowlers in IPL 2022 when considering Wickets over Economy Rate

[YS Chahal, Umran Malik, Prasidh Krishna, Mohammed Shami, Kuldeep Yadav, Harshal Patel, T Natarajan, Avesh Khan, Shardul Thakur, Mukesh Choudhary, Jasprit Bumrah, Ravi Bishnoi]

a. Ranks of bowlers (Economy Rate over Wickets) : IPL 2022

The most economical bowlers in IPL 2022 are

[Axar Patel, Jasprit Bumrah, Krunal Pandya, Umesh Yadav, Bhuvaneshwar Kumar, Rahul Chahr, Harshal Patel, Arshdeep Singh, R Ashwion, Umran Malik, Kuldeep Yadav, YS Chahal, Mohammed Shami, Avesh Khan, Prasidh Krishna]

c.Best Bowlers Wickets vs ER : IPL 2022

The overall best bowlers in IPL 2022 are

[YS Chahal, Umran Malik, Harshal Patel, Prasidh Krishna, Mohammed Shami, Kuldeep Yadav, Avesh Khan, Jasprit Bumrah, Umesh Yadav, Bhuvaneshwar Kumar, Arshdeep Singh, R Ashwin, Rahul Chahar, Krunal Pandya]

d. Best bowlers Wickets vs ER in Powerplay: IPL 2022

The best bowlers in IPL 2022 in Power play are

[Mukesh Choudhary, Mohammed Shami, Prasidh Krishna, Umesh Yadav, Avesh Khan, Mohsin Khan, T Natarajan, Jasprit Bumrah, Yash Dayal, Mohammed Siraj]

d. Best bowlers Wickets vs ER in Middle overs: IPL 2022

The best bowlers in IPL 2022 during middle overs

The best bowlers are

[YS Chahal, Umran Malik, Kuldeep Yadav, Harshal Patel, Ravi Bishnoi, R Ashwin]

e. Best bowlers Wickets vs ER in Death overs: IPL 2022

The best bowlers in death overs in IPL 2022 are

[T Natarajan, Harshal Patel, Bhuvaneshwar Kumar, Mohammed Shami, Jasprit Bumrah, Shardul Thakur, YS Chahal, Prasidh Krishna, Avesh Khan, Mohsin Khan, Yash Dayal, Umran Malik, Arshdeep Singh]

Typically in a team we would need a combination of 4 bowlers (2 fast & 2 spinner or 3 fast and 1 spinner) with an additional player who is all rounder.

For 4 bowlers we could have

  1. JJ Bumrah
  2. Mohammed Shami, Umran Malik, Bhuvaneshwar Kumar, Umesh Yadav
  3. Arshdeep Singh, Avesh Khan, Mohsin Khan, Harshal Patel
  4. YS Chahal, Ravi Bishnoi, Rahul Chahar, Axar Patel
  5. Ravindra Jadeja, Hardik Pandya, Rahul Tewathia, R Ashwin

i) Performance comparison (Wickets over Economy Rate)

Bumrah had the best season in 2020. He has been doing quite well and has been among the wickets

ii) Performance comparison (Economy Rate over Wickets)

Bumrah has the best Economy Rate

We can do a wicket prediction of bowlers. So for example for Bumrah it is

iii) Performance evaluation (Wickets over Economy Rate)

Harshal Patel followed by Avesh Khan had a good season last year, but Umran Malik pipped them this year (see below)

iv) Performance analysis of spinners

a. Wickets over Economy Rate: 2022

Chahal has the best season followed by Bishnoi and Chahar this season

b) Economy Rate over WIckets

Axar Patel has the best economy rate followed by Rahul Chahar

Conclusion

The above post identified the best candidates for the Indian team in the future and beyond. In my T20 list, I have neither included Virat Kohli or Rohit Sharma. The data in T20 clearly indicates that they have had their days. There is a lot more talent around. The tradeoff is a little risk for a greater potential performance. My list would be

  1. KL Rahul
  2. Shikhar Dhawan
  3. Ruturaj Gaikwad, Prithvi Shaw, Rahul Tripathi
  4. Suryakumar Yadav, Shreyas Iyer, Abhishek Sharma, Deepak Hooda
  5. Sanju Samson (Wicket keeper/captain)/ Rishabh Pant/Dinesh Karthik
  6. Hardik Pandya, Ravindra Jadeja, Rahul Tewathia
  7. Jasprit Bumrah
  8. Mohammed Shami, Bhuvaneshwar Kumar, Umran Malik
  9. Arshdeep Singh, Avesh Khan, Harshal Patel
  10. YS Chahal
  11. Axar Patel, Ravi Bishnoi, Rahul Chahar

You may agree/ disagree with my list. Feel free to do your analysis with GooglyPlusPlus and come to your own conclusions

This analysis is also available on youtube Insights from GooglyPlusPlus

You may also like

  1. Deep Learning from first principles in Python, R and Octave – Part 1
  2. Player Performance Estimation using AI Collaborative Filtering
  3. The mechanics of Convolutional Neural Networks in Tensorflow and Keras
  4. TWS-4: Gossip protocol: Epidemics and rumors to the rescue
  5. Big Data-4: Webserver log analysis with RDDs, Pyspark, SparkR and SparklyR
  6. Programming languages in layman’s language
  7. Practical Machine Learning with R and Python – Part 4
  8. Pitching yorkpy…swinging away from the leg stump to IPL – Part 3
  9. Revisiting World Bank data analysis with WDI and gVisMotionChart
  10. Natural language processing: What would Shakespeare say?

To see all posts click Index of posts


IPL 2022: Near real-time analytics with GooglyPlusPlus!!!

It is that time of the year when there is “a song in the air, the lark’s on the wing, and the snail’s on the the thorn“. Yes, it is the that time of year when the grand gala event of IPL 2022 is underway. So, I managed to wake myself from my Covid-induced slumber, worked up my ‘creaking bones‘ and cranked up the GooglyPlusPlus machinery.

So now, every morning, a scheduled CRON tab entry will automatically download the previous night’s match data from Cricsheet, unzip, process and transform it into the necessary format required by my R package yorkr, and make it available to my Shiny app GooglyPlusPlus. Hence the data is current and you have access to ‘analytics-in-the-now’!.

As you know in 2021, I added a lot of new features to GooglyPlusPlus, new tabs to do even more. analytics – or in other words there is “more GooglyPlusPlus per click!!”. So now, you have the following

  • Batsman tab: For detailed analysis of batsmen
  • Bowler tab: For detailed analysis of bowlers
  • Match tab: Analysis of individual matches, plot of Runs vs SR, Wickets vs ER in power play, middle and death overs
  • Head-to-head tab: Detailed analysis of team-vs-team batting/bowling scorecard, batting, bowling performances, performances in power play, middle and death overs
  • Team performance tab: Analysis of team-vs-all other teams with batting /bowling scorecard, batting, bowling performances, performances in power play, middle and death overs
  • Optimisation tab: Allows one to pit batsmen vs bowlers and vice-versa. This tab also uses integer programming to optimise batting and bowling lineup
  • Batting analysis tab: Ranks batsmen using Runs or SR. Also plots performances of batsmen in power play, middle and death overs and plots them in a 4×4 grid
  • Bowling analysis tab: Ranks bowlers based on Wickets or ER. Also plots performances of bowlers in power play, middle and death overs and plots them in a 4×4 grid

Also note all these tabs and features are available for all T20 formats namely IPL, Intl. T20 (men, women), BBL, NTB, PSL, CPL, SSM.

Note: All charts are interactive, which means that you can hover, zoom-in, zoom-out, pan etc on the charts

The latest avatar of GooglyPlusPlus2022 is based on my R package yorkr with data from Cricsheet.

Go ahead, give GooglyPlusPlus a try!!!

To know all the new features and how to use them, check out these posts

  1. Ranking of batsmen, bowlers – GooglyPlusPlus2021 interactively ranks T20 batsmen and bowlers!!!
  2. Interactive charts – GooglyPlusPlus2021 is now fully interactive!!!
  3. Detailed batsmen/bowler analytics – GooglyPlusPlus2021 enhanced with drill-down batsman, bowler analytics
  4. Addition of Date Range picker to charts – GooglyPlusPlus2021 adds new bells and whistles!!
  5. Analysis of power play, middle and death overs across players, teams – GooglyPlusPlus2021 now with power play, middle and death over analysis
  6. Analysis based on 4 x 4 grid of players – GooglyPlusPlus2021: Towards more picturesque analytics!
  7. Optimisation of batsmen/bowlers – GooglyPlusPlus2022 optimizes batting/bowling lineup

Here are some random analysis that can be done by GooglyPlusPlus across the tabs. Note the app will be updated daily and the analytics will be current throughout the season of IPL 2022

A) Match tab

a) GT vs DC – 2 Apr 2022

Runs vs SR – Gujarat Titans

b) CSK vs LSG – 31 Mar 2022

Runs across 20 overs

c) KKR vs PBKS -Match wicket worm chart – 1 Apr 2022

B) Batsmen tab

a) Faf Du Plessis – Runs vs Deliveries

b) Sanju Samson – Runs against opposition

C) Bowler’s tab

a) D J Bravo – No of deliveries to wicket

b) Trent Boult – Wickets at Venues

D) Head-to-head tab

a) DC vs MI – Mar -2019 till date : Batting scorecard

b) CSK vs KKR – Jan 2019 till date : Runs vs SR

E) Team vs All Teams tab

a) Punjab Kings vs all Teams – Wickets vs ER in Power play

b) Rajasthan Royals vs all Teams : Jan 2019 till date : Runs vs SR in Power play

F) Optimisation tab

a) Batsmen vs Bowlers

b) Bowlers vs batsmen

G) Batting analysis

This tab is for ranking batsmen

a) Batsmen rank from 2019 till date (Runs over SR)

b) Overall Runs vs SR (Jan 2020 till date)

Best batsmen in top right quadrant

zooming in on the above (right-most)

H) Bowling analysis tab

a) Best middle over bowlers in IPL (2019 onwards)

The bottom right quadrant are the best bowlers

b) Best bowlers in death overs (bottom-right)

Check out GooglyPlusPlus!!!

Also see

  1. Deconstructing Convolutional Neural Networks with Tensorflow and Keras
  2. Deep Learning from first principles in Python, R and Octave – Part 5
  3. Big Data-4: Webserver log analysis with RDDs, Pyspark, SparkR and SparklyR
  4. Latency, throughput implications for the Cloud
  5. Introducing QCSimulator: A 5-qubit quantum computing simulator in R
  6. Practical Machine Learning with R and Python – Part 3
  7. Natural language processing: What would Shakespeare say?
  8. Introducing cricpy:A python package to analyze performances of cricketers

To see all posts click Index of posts

More player analysis with gganimate()

This post continues the analysis of IPL and T20 (men) batsmen and bowlers through animated charts. In my last post Analyzing player performance with animated charts! I had used animated horizontal bars to display the totalRuns or totalWickets over a 3 year ‘sliding window’. While that was cool, the only drawback of that animation was the batsman and bowler performance was measured in a single dimension of either total(mean) runs or total(mean) wickets.

I think to fairly describe batsmen and bowlers we need at least the following 2 attributes

  • Runs and Strike rate for batsmen and
  • Wickets and Economy rate for bowlers

So, I have created new animation charts which use these attributes for batsmen and bowlers.

The animated charts are

  • Based on a sliding window of 3 years (Jan 2008- Dec 2010, Jan 2009-Dec 2010,…, Jan 2019-Dec 2021)
  • I have taken the top 10 percentile and sometimes the top 5 percentile of batsmen and bowlers to keep the charts more manageable
  • The charts are based on gganimate().

Note 1: I tried several options for the animation before settling on this one. The animation may seem a bit jerky but, we can follow the progress of players more easily through the years

Note 2: Some charts may display points, without the corresponding names. I think this may be because the animation tries to create intermediate points between the charts.

Note 3: For fine-grained, but static analysis across different intervals or seasons, checkout my my posts GooglyPlusPlus2021 now with power play, middle and death over analysis and GooglyPlusPlus2021: Towards more picturesque analytics!

The code for the animation can be cloned from Github at animation2. Feel free to modify the parameters for a different animation behavior.

Here are performances of IPL and T20 (men) players. Note all charts are based on a 3 year staggered window. The Top 10 percentile is considered

  1. Runs vs SR – IPL

We can that Shikhar Dhawan is a top performer for 4 years from 2018-2021. He definitely deserved a slot in the India WC 15 member squad.

2. Wickets vs ER – IPL

Similarly, YS Chahal also deserved a slot in the 15 member sqad

3. Runs vs SR in Power play – IPL

S Dhawan, De Kock & KL Rahul are the best players in Power play

4. Runs vs Strike rate in Middle overs – IPL

Rishabh Pant, Shreyas Iyer,Sanju Samson and KL Rahul are best performers in Middle overs

5.Runs vs SR in Death overs – IPL

It is MS Dhoni all the way, till Hardik Pandya catches up. But H Pandya had poor IPL seasons in 2020, 2021. See my post GooglyPlusPlus2021: Towards more picturesque analytics! for finer analysis

6. Wickets vs ER in Power play – IPL

In the early years B. Kumar led. More recently D Chahar and T Boult

7. Wickets vs ER in Middle overs – IPL

YS Chahal, Rashid Khan, Imran Tahir and Rahul Chahar lead in Middle overs

8. Wickets vs ER in Death overs – IPL

Bumrah & Rabada top performers

9. Runs vs SR – T20 (men)

Babar Azam, PR Stirling, Rohit Sharma, S Dhawan, KL Rahul are best performers in recent times

10. Wickets vs ER – T20 (men)

Wanindu Hasaranga, T Shamsi, Shadab Khan, Rashid Khan, T Boult are best performers in recent times

11. Runs vs SR in Power Play – T20 (men)

PR Stirling, RG Sharma, C Munro, Shikhar Dhawan lead

12. Runs vs SR in Middle overs – T20 (men)

Babar Azam, followed by Kohli, S Dhawan, Rizwan, RG Sharma in recent years

13. Runs vs SR in Death overs – T20 (men)

Shoaib Malik, V Kohli, Mohamed Nabi. Mohammed Rizwan and other top the death overs

14. Wickets vs ER in Power play (T20 men)

TG Southee, Mujeeb Ur Rahman and B Stanlake lead in recent years

15. Wickets vs ER in Middle overs – T20 (men)

Top bowlers are Shadab Khan, T Shamsi, Kuldeep Yadav, YS Chahal and AC Agar

16. Wickets vs ER in Death overs – T20 (men)

Haris Rauf, AJ Tye, Rashid Khan and Chris Jordan excel in death overs

You may also like

  1. Re-introducing cricketr! : An R package to analyze performances of cricketers
  2. Cricketr adds team analytics to its repertoire!!!
  3. Pitching yorkpy … short of good length to IPL – Part 1
  4. yorkr rocks women’s One Day International (ODI) and International T20!!
  5. Big Data-5: kNiFi-ing through cricket data with yorkpy
  6. Using Linear Programming (LP) for optimizing bowling change or batting lineup in T20 cricket
  7. Introducing cricpy:A python package to analyze performances of cricketers
  8. Benford’s law meets IPL, Intl. T20 and ODI cricket
  9. GooglyPlusPlus2021 is now fully interactive!!!
  10. Sixer – R package cricketr’s new Shiny avatar

To see all posts click Index of posts

Analyzing player performance with animated charts!

Analytics is by definition, the science (& art) of identifying, discovering and interpreting patterns in data. There are different ways of capturing these patterns through charts (bar, pie, cumulative data, moving average etc.). One such way is the motion or animated chart which captures the changes in data across different time periods. This was made famous by Hans Rosling in his Gapminder charts.

In this post, I use animated charts, based on gganimate(), to display the rise and fall of batsmen and bowlers in IPL and Intl. T20 (men). I only did this for these 2 formats as they have sufficient data over at least 10+ years.

To construct these animated charts, I use a ‘sliding window’ of 3 years, so that we get a clearer view of batsman and bowler consistency. The animated charts show the performance of players for this moving window for e.g. Jan 2008- Dec 2010, Jan 2009-Dec 2011, Jan 2010- Dec 2012 and so on till Jan 2019- Dec 2021. This is done for both batting( total runs) and bowling (total wickets). If you would like to analyse the performance of particular batsmen, bowler during specific periods or for a team vs another team or in the overall T20 format, check out my post GooglyPlusPlus2021: Towards more picturesque analytics!

You clone/fork the code from Github here animation.

Note: This code is based on a snippet from this blog How to create animations in R with gganimate by Ander Fernandez Jauregui

Included below are the animated charts.

Important note: The year which is displayed on the side actually represents the last 3 years, for e.g. 2015 (2013, 2014, 2015) or 2019 (2017, 2018, 2019)

  1. IPL Batting performance

We can see that Kohli stays in the top 3 from 2015-2019

2. IPL Bowling performance

Malinga ruled from 2010- 2015. Bumrah is in top 3 from 2019-2021

3. IPL Batting in Power play

Adam Gilchrist, Tendulkar, Warner, KL Rahul, Shikhar Dhawan have a stay at the top

4. IPL Batting in Middle overs

Rohit Sharma, Kohli, Pant have their stay at the top

5. IPL Batting Death overs

MS Dhoni is lord and master of the death overs in IPL for a rolling period of 10 years from 2011-2020. No wonder, he is the best finisher of T20 cricket

6. IPL Bowling Power Play

Bhuvanesh Kumar is in top 3 from 2014-2018 and then Deepak Chahar

7. IPL Bowling Middle overs

Toppers Harbhajan Singh, YS Chahal, Rashid Khan

8. IPL Bowling Death overs

SL Malinga, B. Kumar, JJ Bumrah and Rabada top the list across the years

9. T20 (men) Batting performance

Kohli, Babar Azam, P R Stirling are best performers

10. T20 (men) bowling performance

Saaed Ajmal tops from 2010-2014 and Rashid Khan 2018-2020

11. T20 (men) batting Power play

Shahzad, D Warner, Rohit Sharma, PR Stirling best performers

12. T20 (men) batting middle overs

Babar Azam is the best middle overs player from 2018-2021

13. T20(men) batting death overs

MS Dhoni, Shoaib Malik, V Kohli, David Miller are the best death over players

14. T20 (men) bowling Power play

Mohammad Nabi, Mujeeb ur Rahman, TG Southee are the best bowlers in power play

15. T20 (men) bowling middle overs

Imran Tahir from 2015-2017, Shadab Khan from 2018-2020, T Shamsi in 2021 top the tables

16. T20 (men) bowling death overs

Saaed Ajmal, A J Tye, Bumrah, Haris Rauf occupy the top slot in different periods

Also see

  1. Experiments with deblurring using OpenCV
  2. Using Reinforcement Learning to solve Gridworld
  3. Deep Learning from first principles in Python, R and Octave – Part 8
  4. Big Data-4: Webserver log analysis with RDDs, Pyspark, SparkR and SparklyR
  5. The Anomaly
  6. Practical Machine Learning with R and Python – Part 3
  7. Using Linear Programming (LP) for optimizing bowling change or batting lineup in T20 cricket
  8. Introducing cricpy:A python package to analyze performances of cricketers

To see all posts click Index of posts

GooglyPlusPlus2021 enhanced with drill-down batsman, bowler analytics

This latest update to GooglyPlusPlus2021 includes the following changes

a) All the functions in the ‘Batsman’ and ‘Bowler ‘tabs now include a date range, which allows you specify a period of interest.

b) The ‘Rank Batsman’ and ‘Rank Bowler’ tabs also include a date range selector, against the earlier version which had a ‘Since year’ slider see GooglyPlusPlus2021 bubbles up top T20 players in all formats!. The earlier ‘Since year’ slider option could only rank for the latest year or for all years up to the current year. Now with the new ‘date range’ picker we can check the batsman and bowler ranks in any IPL season or (any T20 format) or for a range of years.

c) Note: The Head-to-head and Overall performance tabs already include a date range selector.

There are 10 batsman functions and 9 bowler function that have changed for the following T20 and ODI formats and Rank batsman and bowler includes the ‘date range’ and has changed for all T20 formats.

GooglyPlusPlus2021 supports all the following T20 formats

i) IPL ii) Intl T20(men) iii) Intl T20(women) iv) BBL v) NTB vi) PSL vii) WBB viii) CPL ix) SSM T20 formats – ( 9 T20 panels)

i) ODI (men) ii) ODI (women) – 2 ODI panels

i.e. the changes impact (10 + 9) x 11 + (1 + 1 ) x 9 = 227 tabs which have been changed

The addition of date range enables a fine-grained analysis of players as the players progress through the years.

Note: All charts are interactive. To see how to use interactive charts of GooglyPlusPlus2021 see

GooglyPlusPlus2021 is now fully interactive!!!

GooglyPlusPlus2021 is based on my R package yorkr. The data is take from Cricsheet

You can clone/fork this latest version of GooglyPlusPlus2021 from Github at gpp2021-7

Check out the Shiny app here GooglyPlusPlus2021!!!

I have included some random screen shots of some of using these tabs and options in GooglyPlusPlus2021.

A) KL Rahul’s Cumulative average in IPL 2021 vs IPL 2020

a) KL Rahul in IPL 2021

b) KL Rahul in IPL 2020

B) Performance of Babar Azam in Intl. T20 (men)

a) Babar Azam’s cumulative average from 2019

b) Babar Azam’s Runs against opposition since 2019

Note: Intl. T20 (women) data available upto Mar 2020 from Cricsheet

a) A J Healy performance between 2010 – 2015

b) A J Healy performance between 2015 – 2020

D) M S Dhoni’s performance with the bat pre-2020 and post 2020

There has been a significant decline in Dhoni’s performance in the last couple of years

I) Dhoni’s performance from Jan 2010 to Dec 2019

a) Moving average at 25+ (Dhoni before)

The moving average actually moves up…

b) Cumulative average at 25+ (Dhoni before)

c) Cumulative Strike rate 140+ (Dhoni before)

d) Dhoni’s moving average is ~10-12 (post 2020)

e) Dhoni’s cumulative average (post 2020)

f) Dhoni’s strike rate ~80 (post 2020)

E) Bumrah’s performance in IPL

a) Bumrah’s performance in IPL 2020

b) Bumrah’s performance in IPL 2021

F) Moving average wickets for A. Shrubsole in ODI (women)

G) Chris Jordan’s cumulative economy rate

We can see that Jordan has become more expensive over the years

G) Ranking players

In this latest version the ‘Since year slider’ has been replaced with a Date Range selector. With this we can identify the player ranks in any IPL, CPL, PSL or BBL season. We can also check the performance over the last couple of years. Note: The matches played and Runs over Strike rate or Strike rate over runs can be computed. Similarly for bowlers we have Wickets over Economy rate and Economy rate over wickets options.

a) Ranking IPL batsman in IPL season 2020

b) Ranking Intl. T20 (batsmen) from Jan 2019 to Jul 2021

c) Ranking Intl. T20 bowlers (women) from Jan 2019 – Jul 2021

d) Best IPL bowlers over the last 3 seasons (Wickets over Economy rate)

e) Best IPL bowlers over the last 3 seasons (Economy rate over wickets)

You can clone/download this latest version of GooglyPlusPlus2021 from Github at gpp2021-7

Take GooglyPlusPlus2021 for a spin!!

Hope you have fun checking out the different tabs with the different options!!

Also see

  1. Deconstructing Convolutional Neural Networks with Tensorflow and Keras
  2. Using Reinforcement Learning to solve Gridworld
  3. Introducing QCSimulator: A 5-qubit quantum computing simulator in R
  4. De-blurring revisited with Wiener filter using OpenCV
  5. Deep Learning from first principles in Python, R and Octave – Part 5
  6. Big Data-4: Webserver log analysis with RDDs, Pyspark, SparkR and SparklyR
  7. Practical Machine Learning with R and Python – Part 4
  8. Pitching yorkpy…on the middle and outside off-stump to IPL – Part 2
  9. What would Shakespeare say?
  10. Bull in a china shop – Behind the scenes in android

To see more posts click Index of posts

GooglyPlusPlus2021: Restarting IPL 2021 as-it-happens!!!

The IPL 2021 extravaganza has restarted again, now in Dubai, and it was time for me to crank up good ol’ GooglyPlusPlus2021. As in my earlier post, GooglyPlus2021 with IPL 2021 as it happens, during the initial set of IPL 2021 games,, a command script will execute automatically every day, download the latest data files, unzip, sort, process and put them in appropriate directories so that GooglyPlusPlus can work its magic on the data, with my R package yorkr. You can do analysis of IPL 2021 matches, batsmen, bowlers, historical performance analysis of head-to-head clashes and performances of teams.

Note: Since the earlier instalment of IPL 2021, there are 2 key changes that have taken place in GooglyPlusPlus.

Now,

a) All charts are interactive. You can hover over charts, click, double-click to get more details. To see more details on how to use the interactive charts, see my post GooglyPlusPlus2021 is now fully interactive!

b) You can now analyse historical performances, compute team batting and bowling scorecards for specified periods. To know details see GooglyPlusPlus2021 adds new bells and whistles!

You can try out my app GooglyPlusPlus2021 by clicking GooglyPlusPlus2021

The code for my R package yorkr is available at Github at yorkr

You can clone/fork GooglyPlusPlus2021 from github at gpp2021-6

IPL 2021 is already underway.

Some key analysis and highlights of the 2 recently concluded IPL matches

  • CSK vs MI
  • KKR vs RCB

a) CSK vs MI (19 Sep 2021) – Batting Partnerships (CSK)

b) CSK vs MI (19 Sep 2021) – Bowling scorecard (MI)

c) CSK vs MI (19 Sep 2021) – Match worm chart

Even though MI had a much better start and were cruising along to a victory, they lost the plot around the 18.1 th over as seen below (hover on the chart)

d

d) KKR vs RCB ( 20 Sep 2021) – Bowling wicket match

This chart gives the wickets taken by the bowler and the total runs conceded

e) KKR vs RCB ( 20 Sep 2021) – Match worm chart

This was a no contest. RCB batting was pathetic and KKR blasted their way to victory as seen in this worm chart

Note: You can also do historical analysis of teams with GooglyPlusPlus2021

For the match to occur today PBKS vs RR (21 Sep 2021) we can perform head-to-head historical analysis. Here Kings XI Punjab has been chosen instead of Punjab Kings as that was its name.

f) Head-to-head (PBKS vs RR) today’s match 21 Sep 2021

For the Rajasthan Royals Sanjy Samson and Jos Buttler have the best performance from 2018 -2021 as seen below

For Punjab Kings KL Rahul and Chris Gayle are the leading scorers for the period 2018-2021

g) Current ranking of batsmen IPL 2021

h) Current ranking of bowlers IPL 2021

Also you analyse individual batsman and bowlers

i) Batsman analysis

To see Rituraj Gaikwad performance checkout the batsman tab

j) Bowler analysis

Performance of Varun Chakaravarty

Remember to check out GooglyPlusPlus2021 for your daily analysis of matches, teams, batsmen and bowlers. Your ride will be waiting for you!!!

You can clone/fork GooglyPlusPlus2021 from github at gpp2021-6

GooglyPlusPlus2021 has been updated with all completed 31 matches

 

Mumbai Indians-Royal Challengers Bangalore-2021-04-09Chennai Super Kings-Delhi Capitals-2021-04-10
Kolkata Knight Riders-Sunrisers Hyderabad-2021-04-11Punjab Kings-Rajasthan Royals-2021-04-12
Mumbai Indians-Kolkata Knight Riders-2021-04-13Royal Challengers Bangalore-Sunrisers Hyderabad-2021-04-14
Delhi Capitals-Rajasthan Royals-2021-04-15Punjab Kings-Chennai Super Kings-2021-04-16
Mumbai Indians-Sunrisers Hyderabad-2021-04-17Royal Challengers Bangalore-Kolkata Knight Riders-2021-04-18
Punjab Kings-Delhi Capitals-2021-04-18Chennai Super Kings-Rajasthan Royals-2021-04-19
Mumbai Indians-Delhi Capitals-2021-04-20Punjab Kings-Sunrisers Hyderabad-2021-04-21
Chennai Super Kings-Kolkata Knight Riders-2021-04-21Rajasthan Royals-Royal Challengers Bangalore-2021-04-22
Mumbai Indians-Punjab Kings-2021-04-23Kolkata Knight Riders-Rajasthan Royals-2021-04-24
Chennai Super Kings-Royal Challengers Bangalore-2021-04-25Delhi Capitals-Sunrisers Hyderabad-2021-04-25
Punjab Kings-Kolkata Knight Riders-2021-04-26Royal Challengers Bangalore-Delhi Capitals-2021-04-27
Sunrisers Hyderabad-Chennai Super Kings-2021-04-28Rajasthan Royals-Mumbai Indians-2021-04-29
Kolkata Knight Riders-Delhi Capitals-2021-04-29Punjab Kings-Royal Challengers Bangalore-2021-04-30.RData
Chennai Super Kings-Mumbai Indians-2021-05-01Rajasthan Royals-Sunrisers Hyderabad-2021-05-02
Punjab Kings-Delhi Capitals-2021-05-02Chennai Super Kings-Mumbai Indians-2021-09-19
Royal Challengers Bangalore-Kolkata Knight Riders-2021-09-20Rajasthan Royals-Punjab Kings-2021-09-21
Sunrisers Hyderabad-Delhi Capitals-2021-09-22.RDataMumbai Indians-Kolkata Knight Riders-2021-09-23.RData
Royal Challengers Bangalore-Chennai Super Kings-2021-09-24.RDataPunjab Kings-Sunrisers Hyderabad-2021-09-25
Delhi Capitals-Rajasthan Royals-2021-09-25.RDataRoyal Challengers Bangalore-Mumbai Indians-2021-09-26.RData
Kolkata Knight Riders-Chennai Super Kings-2021-09-26.RDataKolkata Knight Riders-Chennai Super Kings-2021-09-26.RData
Delhi Capitals-Kolkata Knight Riders-2021-09-28.RDataRajasthan Royals-Royal Challengers Bangalore-2021-09-29.RData
Sunrisers Hyderabad-Chennai Super Kings-2021-09-30.RDataKolkata Knight Riders-Punjab Kings-2021-10-01.RData
Chennai Super Kings-Rajasthan Royals-2021-10-02.RDataMumbai Indians-Delhi Capitals-2021-10-02.RData
Royal Challengers Bangalore-Punjab Kings-2021-10-03.RDataChennai Super Kings-Delhi Capitals-2021-10-04.RData
Rajasthan Royals-Mumbai Indians-2021-10-05.RDataSunrisers Hyderabad-Royal Challengers Bangalore-2021-10-06.RData

Also see

  1. Deep Learning from first principles in Python, R and Octave – Part 5
  2. Introducing QCSimulator: A 5-qubit quantum computing simulator in R
  3. Computer Vision: Ramblings on derivatives, histograms and contours
  4. Designing a Social Web Portal
  5. Understanding Neural Style Transfer with Tensorflow and Keras
  6. Big Data 6: The T20 Dance of Apache NiFi and yorkpy
  7. Practical Machine Learning with R and Python – Part 6
  8. Introducing cricpy:A python package to analyze performances of cricketers
  9. A closer look at “Robot Horse on a Trot” in Android
  10. Cricketr adds team analytics to its repertoire!!!

To see all posts click Index of posts

GooglyPlusPlus2021 interactively ranks T20 batsmen and bowlers!!!

Every time I think that I have my R packages or Shiny apps all wrapped up, I find another idea trots up and knocks at my door. Since I intend to keep GooglyPlusPlus current with the latest data, I decided to include the ranking functions in my Shiny app GooglyPlusPlus.

Fortunately, since GooglyPlusPlus is based on my R package ‘yorkr‘ (see Introducing cricket package yorkr: Beaten by sheer pace!), I could make the necessary changes to the ranking functions in the package, so that it could be incorporated into my latest Shiny app GooglyPlusPlus2021!! To know how to use GooglyPlusPlus see my post Introducing GooglyPlusPlus

Note: GooglyPlusPlus can analyze batsmen, bowlers, matches and teams.

Take GooglyPlusPlus2021 for a test drive!!!

You can clone/fork GooglyPlusPlus2021 from Github

Here are a few scenarios from GooglyPlusPlus2021

A) Ranking batsmen

Ranking IPL batsmen (minMatches = 80) – The following table shows the ranking of IPL players who have played 80 matches or more

B) Identifying batsmen of potential and promise

Ranking IPL batsmen (minMatches =70) –  If we reduce the minimum number of matches played to 70, then we see it pushes up KL Rahul above Kohli.

Ranking IPL batsmen (minMatches =60) – When the slider is moved to 60, we see that Rishabh Pant has a better mean average and mean strike rate and is also ranked above Kohli. We can identify promising players this way. However, it is also likely that some players may be just a bright flash in the pan

C) Ranking T20 bowlers (men)

D) Ranking NTB Batsmen

GooglyPlusPlus2021 can rank all T20 formats (IPL, BBL, Intl. T20 (men), Intl. T20 (women), NTB, PSL and WBB. Do give it a try!

Also remember that GooglyPlusPlus2021 includes close to 100+ functions which enable it to perform analysis of batsmen, bowlers, T20 matches, head-to-head confrontation of T20 teams and overall performance of T20 teams . To know more about GooglyPlusPlus2021 see Introducing GooglyPlusPlus

You can download the code for this app from Github at GooglyPlusPlus2021

Do give GooglyPlusPlus2021 a spin!!

I do have some other ideas also which I will be incorporating  into GooglyPlusPlus2021.

Watch this space!!

Also see
1. Deep Learning from first principles in Python, R and Octave – Part 7
2. A method to crowd source pothole marking on (Indian) roads
3. Big Data 7: yorkr waltzes with Apache NiFi
4. Understanding Neural Style Transfer with Tensorflow and Keras
5. Revisiting World Bank data analysis with WDI and gVisMotionChart
6. Natural language processing: What would Shakespeare say?
7. Introducing QCSimulator: A 5-qubit quantum computing simulator in R
8. Introducing cricpy:A python package to analyze performances of cricketers
9. Simulating an Edge Shape in Android

To see all posts click Index of posts